Modelling and verifying privacy-type properties

in applied-pi calculus

Stéphanie Delaune

Post-doctoral student at LORIA — Cassis Project

Thursday 26th April

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Electronic voting

Advantages:
R +I‘

o Convenient,

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Electronic voting

Advantages:
. '\ A\
o Convenient, v

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

Possible issue: formal methods

abstract analysis of the protocol against formally-stated properties

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Example: Fujioka et al. protocol (1992)

Cryptographic primitives as an equational theory

@ Public Key
getpk(host(pubkey)) = pubkey

o Commitment

open(commit(m,r),r) = m

@ Blind Signature
checksign(sign(m, sk), pk(sk)) = m
unblind(blind(m,r),r) = m
unblind(sign(blind(m,r),sk),r) = sign(m,sk)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April

3/ 38



Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V—A : V, sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b), A

— to ensure privacy, blind signatures are used

S. Delaune (LORIA — Projet Cassis)

Privacy-type properties Thursday 26th April 4 /38



Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V—A : V, sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b), A

— to ensure privacy, blind signatures are used

Voting phase:

3. V—C : commit(vote,r), sign(commit(vote,r),A)
4. C— .|, commit(vote, r), sign(commit(vote,r),A)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April

4/ 38



Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V—A : V, sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b), A

— to ensure privacy, blind signatures are used

Voting phase:
3. V—C : commit(vote,r), sign(commit(vote,r),A)
4. C— .|, commit(vote, r), sign(commit(vote,r),A)
Counting phase:

5. V—-C : ILr
6. C publishes the outcome of the vote

— to ensure privacy, anonymous channel are used at step 3 and 5

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 4 /38



Security properties ...

Eligibility: only legitimate voters can vote, and only
once

Fairness: no early results can be obtained which could
influence the remaining voters

Mol Ccelfe ANMee.
IA DoNNE (RocurTioN
A v ominATeR

Individual verifiability:
a voter can verify that her vote was
really counted

Universal verifiability:
the published outcome really is the
sum of all the votes

Belgique - Election 2004 - http:/ /www.pourevabe/ - () Kanar

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 5/ 38



Privacy-type security properties

Privacy: the fact that a particular voted in a particular way is not revealed
to anyone

Receipt-freeness: a voter cannot prove that she
voted in a certain way (this is important to pro-
tect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts
with the voter during the protocol, (e.g. by preparing messages)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 6 /38



Summary

Observations:
@ Definitions of security properties are often insufficiently precise

@ No clear distinction between receipt-freeness and coercion-resistance

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 7/ 38



Observations:
@ Definitions of security properties are often insufficiently precise

@ No clear distinction between receipt-freeness and coercion-resistance

Goal:
@ Propose “formal methods” definitions of privacy-type properties,

@ Design automatic procedures to verify them.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 7/ 38



Observations:
@ Definitions of security properties are often insufficiently precise

@ No clear distinction between receipt-freeness and coercion-resistance

Goal:
@ Propose “formal methods” definitions of privacy-type properties,

@ Design automatic procedures to verify them.

Difficulties:

@ equivalence based-security properties are harder than reachability
properties (e.g. secrecy, authentication),

@ electronic voting protocols are often more complex than authentication
protocols,

@ less classical cryptographic primitives (e.g. blind signature).

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 7/ 38



Results and Work in Progress

Modelling:

@ Formalisation of privacy, receipt-freeness and coercion-resistance as
some kind of observational equivalence in the applied pi-calculus,

@ Coercion-Resistance = Receipt-Freeness = Privacy,

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 8/ 38



Results and Work in Progress

Modelling:

@ Formalisation of privacy, receipt-freeness and coercion-resistance as
some kind of observational equivalence in the applied pi-calculus,

@ Coercion-Resistance = Receipt-Freeness = Privacy,

Case Studies:
@ Fujioka et al.'92 — commitment and blind signature,
@ Okamoto'96 — trap-door bit commitment and blind signature,

@ Lee et al."03 — re-encryption and designated verifier proof of re-encryption.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 8/ 38



Results and Work in Progress

Modelling:

@ Formalisation of privacy, receipt-freeness and coercion-resistance as
some kind of observational equivalence in the applied pi-calculus,

@ Coercion-Resistance = Receipt-Freeness = Privacy,

Case Studies:
@ Fujioka et al.'92 — commitment and blind signature,
@ Okamoto'96 — trap-door bit commitment and blind signature,

@ Lee et al."03 — re-encryption and designated verifier proof of re-encryption.

Verification: How to check such privacy-type properties?
@ by using an existing tool (e.g. ProVerif)

@ by developping new techniques (symbolic bisimulation)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 8/ 38



Outline of the talk

@ Introduction

© Applied 7-calculus

© Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
Q@ Verification of privacy-type properties (works in progress)

© Conclusion and Future Works

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 9/ 38



Outline of the talk

© Applied 7-calculus

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 10 / 38



Voting protocols in the applied 7-calculus

Definition (Voting process)

VP =vh.(Vor|---|Von |AL] | Am)

@ Voj: voter processes and v € dom(o;) refers to the value of the vote
@ A;: election authorities which are required to be honest,

@ 1: channel names

— S is a context which is as VP but has a hole instead of two of the Vo;

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 11 / 38



Example: Fujioka et al. (1992)

Main Process

process

(* private channels *)

v. privCh; v. pkaChl; v. pkaCh2; v. skaCh;

v. skvaCh; v. skvbCh;
(¥ administrators *)

(processK | processA | processA | processC | processC |

(* voters *)

(let skvCh = skvaCh in let v = a in processV) |

(let skvCh

S. Delaune (LORIA — Projet Cassis)

skvbCh in let v

Privacy-type properties

b in processV) )

Thursday 26th April

12 / 38



Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));

Thursday 26th April 13 / 38

S. Delaune (LORIA — Projet Cassis) Privacy-type properties



Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));

in(ch,m2);

let result = checksign(m2,pubka) in

if result = blindedcommittedvote then

let signedcommittedvote=unblind(m2,blinder) in

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 13 / 38



Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));
in(ch,m2);
let result = checksign(m2,pubka) in
if result = blindedcommittedvote then
let signedcommittedvote=unblind(m2,blinder) in

phase 1;
out (ch, (committedvote,signedcommittedvote));
in(ch, (1,=committedvote,=signedcommittedvote)) ;

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 13 / 38



Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));
in(ch,m2);
let result = checksign(m2,pubka) in
if result = blindedcommittedvote then
let signedcommittedvote=unblind(m2,blinder) in

phase 1;

out (ch, (committedvote,signedcommittedvote));
in(ch, (1,=committedvote,=signedcommittedvote)) ;
phase 2;

out (ch, (1,r)).

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 13 / 38



Observational equivalence

Observational equivalence (=)

The largest symmetric relation R on processes such that A R B implies
Q if Al a, then B |} a,
Q if A—* A, then B —* B’ and A R B’ for some B/,
© C[A] R C[B] for all closing evaluation contexts C[].

— A |l a when A can send a message on the channel a.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Observational equivalence

Observational equivalence (=)

The largest symmetric relation R on processes such that A R B implies
Q if Al a, then B |} a,
Q if A—* A, then B —* B’ and A R B’ for some B/,
© C[A] R C[B] for all closing evaluation contexts C[].

— A |l a when A can send a message on the channel a.

Example 1: out(a, s) % out(a, s’)

—  C[_] =in(a,x).if x = s then out(c, ok) | _

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Observational equivalence

Observational equivalence (=)

The largest symmetric relation R on processes such that A R B implies
Q if Al a, then B |} a,
Q if A—* A, then B —* B’ and A R B’ for some B/,
© C[A] R C[B] for all closing evaluation contexts C[].

— A |l a when A can send a message on the channel a.

Example 2:
vs.out(a, enc(s, k)).out(a, enc(s, k"))

%

vs,s'.out(a, enc(s, k)).out(a, enc(s’, k"))

— C[_] =in(a, x).in(a, y).if (dec(x, k) = dec(y, k")) then out(c, ok) |

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 14 / 38



Observational equivalence

Observational equivalence (=)

The largest symmetric relation R on processes such that A R B implies
Q if Al a, then B |} a,
Q if A—* A, then B —* B’ and A R B’ for some B/,
© C[A] R C[B] for all closing evaluation contexts C[].

— A |l a when A can send a message on the channel a.

Example 3: vs.out(a, s) ~ vs.out(a, h(s))

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Labeled bisimilarity

Labeled bisimilarity (=)

The largest symmetric relation R on closed extended processes, such that
AR B implies

O ¢(A) =; ¢(B) (static equivalence)

Q if A— A, then B —* B’ and A’ R B’ for some B/,

Q ifAS A, then B —*%—* B and A’ R B’ for some B'.

Theorem ; [Abadi & Fournet, 01]

Observational equivalence is labeled bisimilarity: A~ B < A=y B.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Static equivalence

A frame is a process of the form vA.({M/ }|...| {M /.. }).

Static equivalence (&)

Let ¢1 = viy.o1 and ¢p = viip.op be two frames. We have that ¢; ~ ¢»

when
o dom(¢p1) = dom(¢2)
o for all terms U, V such that (fn(U) U fn(V)) N (A1 U i) = 0,

(U = V)oy iff (U =¢ V)os

S. Delaune (LORIA — Projet Cassis)

Privacy-type properties Thursday 26th April

16 / 38




Static equivalence

A frame is a process of the form vA.({M/ }|...| {M /.. }).

Static equivalence (&)

Let ¢1 = viy.o1 and ¢p = viip.op be two frames. We have that ¢; ~ ¢»
when

o dom(¢p1) = dom(¢2)
o for all terms U, V such that (fn(U) U fn(V)) N (A1 U i) = 0,

(U = V)oy iff (U =¢ V)os

Example 1. vk.({"CN /3 [ {4/,}) 26 vk ({7 BN Ly 1))
— (U, V) = (dec(x,y), a)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 16 / 38



Static equivalence

A frame is a process of the form vA.({M/ }|...| {M /.. }).

Static equivalence (&)

Let ¢1 = viy.o1 and ¢p = viip.op be two frames. We have that ¢; ~ ¢»
when

o dom(¢p1) = dom(¢2)
o for all terms U, V such that (fn(U) U fn(V)) N (A1 U i) = 0,

(U = V)oy iff (U =¢ V)os

Example 2: vk, a.({""N /) [ {¥/,}) = vk, b.({"CR 1y [ {4/,))

S. Delaune (LORIA — Projet Cassis)

Privacy-type properties Thursday 26th April 16 / 38



Static equivalence

A frame is a process of the form vA.({M/ }|...| {M /.. }).

Static equivalence (&)

Let ¢1 = viy.o1 and ¢p = viip.op be two frames. We have that ¢; ~ ¢»
when

o dom(¢p1) = dom(¢2)
o for all terms U, V such that (fn(U) U fn(V)) N (A1 U i) = 0,

(U = V)oy iff (U =¢ V)os

Example 3: vk fere@k) | A~k fene(bk) ) A

S. Delaune (LORIA — Projet Cassis)

Privacy-type properties Thursday 26th April 16 / 38



Outline of the talk

© Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 17 / 38



Formalisation of privacy

Classically modeled as observational equivalences between two slightly
different processes P; and P, but

@ changing the identity does not work, as identities are revealed

@ changing the vote does not work, as the votes are revealed at the end

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 18 / 38



Formalisation of privacy

Classically modeled as observational equivalences between two slightly
different processes P; and P, but

@ changing the identity does not work, as identities are revealed

@ changing the vote does not work, as the votes are revealed at the end

Solution:
— consider 2 honest voters and swap their votes

A voting protocol respects privacy if

SIVal?/v} | Ve{®/v}] = SIVa{®/v} | Ve{?/.}]-

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 18 / 38



Naive example 1

Voter process

V' = out(ch, {V}pub(s))

What about privacy?

Val/v} | Va{b/u} % Val?/u} | Ve{*/u}

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 19 / 38



Naive example 1

Voter process

V' = out(ch, {V}pub(s))

What about privacy?

Val/v} | Va{b/u} % Val?/u} | Ve{*/u}

ie.

?
OUt(Chv {a}pub(s)) | OUt(Cha {b}pub(s)) ~ OUt(Ch, {b}pub(s)) ’ OUt(Chv {a}pub(s))

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 19 / 38



Naive example 1

Voter process

V' = out(ch, {V}pub(s))

What about privacy?

Val/v} | Va{b/u} % Val?/u} | Ve{*/u}

ie.

?
OUt(Chv {a}pub(s)) | OUt(Cha {b}pub(s)) ~ OUt(Ch, {b}pub(s)) ’ OUt(Chv {a}pub(s))

— OK

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 19 / 38



Naive example 2

Voter process

V(Id) = out(ch, (Id, {v}pub(s)))

What about privacy?

Val/v} | Va{b/u} % Val?/u} | Ve{*/u}

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 20 / 38



Naive example 2

Voter process

V(Id) = out(ch, (Id, {v}pub(s)))

What about privacy?

VaC/} | Val®/) % Valb/o} | Ve(?/)
out(ch, (A, {pus)) | 0ut(ch. (8. {Bhpus)

~
~

out(ch, (A, {b}pub(s))) | out(ch, (B, {a}pub(5)>)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 20 / 38



Naive example 2

Voter process

V(Id) = out(ch, (Id, {v}pub(s)))

What about privacy?

VaC/} | Val®/) % Valb/o} | Ve(?/)
out(ch, (A, {pus)) | 0ut(ch. (8. {Bhpus)

~
~

out(ch, (A, {b}pub(s))) | out(ch, (B, {a}pub(s)>)

— NOT OK (with deterministic encryption)
However, if we consider probabilistic encryption, then privacy holds.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 20 / 38



Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V—A : V, sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b), A

Voting phase:
3. V—C : commit(vote,r), sign(commit(vote,r),A)
4. C— .|, commit(vote, r), sign(commit(vote, r), A)
Counting phase:

5. V—-C : Ir
6. C publishes the outcome of the vote

What about privacy?
vpkaCh1.(Va{?/,} | VB{?/,}| processK) ~zp vpkaCh1.(Va{®/,} | ViB{?/,}| processK)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 21 /38



First phase - Fujioka et al.

e On the left: vpkaChl.(Va{?/,} | V&{®/,}| processK)

in(skvaCh,skva in(skvbCh,skvb
p ) py M L Py —

vxy.out(ch,xq : ; :
( ) I/bA, ra, va rB.(P3 ‘ {(hostva,s:gn(blmd(commlt(a,rA),bA),skva))/Xl})

*

vxz.out(ch,xz) . . .
vba, ra, bg, I’B.(P4 ‘ {(hostva,s:gn(blmd(commlt(a,rA),bA),skva))/Xl}

| {(hostvb,sign(blind(commit(b,rB),bB),skvb)/X })
2

e On the right: vpkaChl.(Va{®/,} | VB{?/,}| processK)

in(skvaCh,skva) in(skvbCh,skvb)

Q —*

{(hostva,sign(blind(commit(b,rA),bA),skva))/ })
X1

Q (@]

vbp.vravbg.vrg.(Qs |

vba.vravbg.vrg. ( Qs ‘ {(hostva,s:gn(bImd(commlt(b,rA),bA),skva)) /Xl }
| {(hostvb,sign(blind(commit(a,rB),bB),skvb)/ })
X2

vxy.out(ch,xi)
B

vxz.out(ch,x2)
ST

—  Va{?/.} (on the left) has been imitated by V4{?/,} (on the right),
and  V{®/,} (on the left) has been imitated by Vig{?/,} (on the right).

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 22 /38



Second phase - Fujioka et al.

e On the left: vpkaChl.(Va{?/,} | V&{®/,}| processK)

bp = vba.vravbg.urg. {(hostva ,sign(blind(commit(a,ra), bA),skva))/ } ‘
{(hostvb ,sign(blind(commit(b,rg),bg),skvb)) / } |
(commit(a,ra),sign(commit(a,ra),ska)) } ’

{(commlt(b,rB),s:gn(commlt(b ,rg),ska)) / 4}

e On the right: vpkaCh1.(Va{®/,} | VB{?/.,}| processK)

¢Q’ = vbp.vra.vbg.vrs. {(hostva ,sign(blind(commit(b,ra),ba), skva))/ } |
{(hostvb ,sign(blind(commit(a,rg),bg), skvb))/ } |
{(commlt(a,rB),SIgn(commlt(a,rB) ska))/x3} ‘
{

commit(b,ra),sign(commit(b,rp),ska)) / }
Xa

—  Va{?/,} (on the left) has been imitated by Vg{?/,} (on the right),
and Vg{®?/,} (on the left) has been imitated by V4{®/,} (on the right).

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 23 / 38



Third phase - Fujioka et al.

e On the left: vpkaChl.(Va{?/,} | V&{®/,}| processK)
bépr = vbp.vravbg.urs. {(hostva,sign(blind(commit(a,rA),bA),skva))/Xl
{ hostvb,sign(blind(commit(b,rB),bB),skvb))/ } |
x2
commit(a,rp),sign(commit(a,ra),ska)) N ‘

(
(
{Ecommit(b,rB),sign(commit(b,rB),ska))/X4} |

{Uara) [} [ {Ue8) [}
e On the right: vpkaCh1.(Va{®/,} | VB{?/,}| processK)

(bQ” = vbp.vra.vbg.vrs. {(hostva,sign(blind(commit(b,rA),bA),skva))/X

{(hostvb,sign(blind(commit(a,rB),bB),skvb))/

(commit(a,rB),sign(commit(a,rB),ska))/ }
X3

(commit(b,ra),sign(commit(b,rp),ska)) /
Xa

{Uare) [} [ {Ue) [}

— Again, voters voting in the same way simulated each other (as in the
previous phase).

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 24 / 38



Receipt-freeness: Leaking secrets to the coercer

To model receipt-freeness we need to specify that a coerced voter
cooperates with the coercer by leaking secrets on a channel ch

We denote by V<" the process built from the process V as follows:
e 0°h =,

(P ‘ Q)ch = pch | Qch,

(vn.P)M = vn.out(ch, n).Ph,

(in(u, x).P)" = in(u, x).out(ch, x).P,

(out(u, M).P)h = out(u, M).Ph,

e © 6 ¢ ¢

We denote by V\ut(<h) = ,ch (V/ |lin(ch, x)).

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Receipt-freeness

Definition (Receipt-freeness)

A voting protocol is receipt-free if there exists a process V/’, satisfying

o \//\out(chc,) ~ VA{a/v}y
o S[Va{“/v}" | Va{?/u}] = SIV' | Ve{°/\}].

Intuitively, there exists a process V/ which
@ does vote 3,
@ leaks (possibly fake) secrets to the coercer,

@ and makes the coercer believe he voted ¢

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 26 / 38



Naive example 1

Voter process

V' = out(ch, {V}pub(s))

What about receipt-freenes?

i.e. Does there exists V'’ such that
o \//\out(chc,) ~ VA{a/v}y
o Va{/v}e | Ve{?/v} ~ V' | VB{°/\}.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 27 / 38



Naive example 1

Voter process

V' = out(ch, {V}pub(s))

What about receipt-freenes?
i.e. Does there exists V'’ such that
o \//\out(chc,) ~ VA{a/v}y
o Va{c/u}h | VB{?/v} = V' | VB{/\}.

The voter does not use any secret data (private key, nonce ...). Hence,
the process V' = V4{?/,} satisfies the requirements.

o Va{?/, p\eutlehe) = vafa/,},
o Va{/u} | Ve{?/u} = Va{?/u} | Va{°/\}.
— OK

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 27 / 38



Other examples

Naive example 2 (with probabilistic encryption)

Voter process

V(Id) = vr.out(ch, (Id, {v},,us)))

What about receipt-freenes?

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 28 / 38



Other examples

Naive example 2 (with probabilistic encryption)

Voter process

V(Id) = vr.out(ch, (Id, {v},,us)))

What about receipt-freenes?

—— NOT OK since r can be used as a receipt

28 / 38

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Other examples

Naive example 2 (with probabilistic encryption)

Voter process

V(Id) = vr.out(ch, (Id, {v},,us)))

What about receipt-freenes?

—— NOT OK since r can be used as a receipt

Protocol due to Fujioka et al.
What about receipt-freenes?

— NOT OK since the blinding b4 and the commitment r4 can be used as
a receipt

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 28 / 38



Coersion-Resistance is defined in a similar way (the voter has to used the
outputs provided by the coercer)

Let VP be a voting protocol. We have formally shown that: VP is
coercion-resistant =—> V/P is receipt-free =—> V/P respects privacy.

Case Study (1): protocol due to Fujioka et al.

@ We have established privacy
— holds even if the authorities are corrupt
@ This protocol is not receipt-free

— the random numbers for blinding and commitment can be used as
a receipt

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 20 / 38



Some additional case studies

Case Study (2): Protocol due to Okamoto

@ We have established privacy and receipt-free
— the random numbers for commitment can not be used as a receipt
since there is a trapdoor.

open(tdcommit(m,r,td),r) = m
tdcommit(my,r,td) = tdcommit(my, f(my,r,td, my), td)

@ This protocol is not coercion-resistant
< the commitment can be provided by the coercer without revealing
the trapdoor to the voter.

Case Study (3): Protocol due to Lee et al.
@ protocol based on re-encryption and designated verifier proofs,

@ coercion-resistance holds

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



Outline of the talk

@ Verification of privacy-type properties (works in progress)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 31/ 38



An existing tool (ProVerif)

Labeled bisimilarity (=)

The largest symmetric relation R on processes, such that A R B implies
Q ¢(A)=~;4(B) (depends on E),
Q if A— A, then B —* B’ and A’ R B’ for some B,
Q ifAS A, then B —*%—* B and A’ R B’ for some B'.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April



An existing tool (ProVerif)

Labeled bisimilarity (=)
The largest symmetric relation R on processes, such that A R B implies

Q ¢(A)~s¢(B) (depends on E),
Q if A— A, then B —* B’ and A R B’ for some B/,

Q ifAS A, then B —*%—* B and A’ R B’ for some B'.

This relation is in general undecidable. Why?

@ unfolding tree is infinite in depth
@ unfolding tree is infinititely branching (because of inputs)

@ equational theories may be complex

Thursday 26th April 32 /38

Privacy-type properties

S. Delaune (LORIA — Projet Cassis)



An existing tool (ProVerif)

Labeled bisimilarity (=)
The largest symmetric relation R on processes, such that A R B implies

Q ¢(A)~s¢(B) (depends on E),
Q if A— A, then B —* B’ and A R B’ for some B/,

Q ifAS A, then B —*%—* B and A’ R B’ for some B'.

This relation is in general undecidable. Why?

@ unfolding tree is infinite in depth
@ unfolding tree is infinititely branching (because of inputs)

@ equational theories may be complex

Tool: Proverif
—— Obviously, the procedure is not complete.

Thursday 26th April 32 /38

Privacy-type properties

S. Delaune (LORIA — Projet Cassis)



Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(S) | {b}pub(S) ~ {b}pub(S) | {a}pub(S)

. and more generally for any electronic voting protocols.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 33 /38



Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(s) | {B}pub(s) = {b}pub(s) | {a}pub(s)
. and more generally for any electronic voting protocols.
Why?
@ ProVerif works on biprocesses (processes having the same structure).

P~ Q let bool = choice[true,false] in
- if bool = true then P else Q
@ Technique relies on easily matching up the execution paths of the two

processes

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 33 /38



Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(s) | {B}pub(s) = {b}pub(s) | {a}pub(s)
. and more generally for any electronic voting protocols.
Why?
@ ProVerif works on biprocesses (processes having the same structure).

let bool = choice[true,false] in

PrQ if bool = true then P else Q

@ Technique relies on easily matching up the execution paths of the two
processes

First Phase Val?/,} | Ve{E/,} = Vall/,} | VB{?/\}

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 33 /38



Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(s) | {B}pub(s) = {b}pub(s) | {a}pub(s)
. and more generally for any electronic voting protocols.
Why?
@ ProVerif works on biprocesses (processes having the same structure).

P~ Q let bool = choice[true,false] in
- if bool = true then P else Q

@ Technique relies on easily matching up the execution paths of the two
processes

First Phase Val?/,} | Ve{E/,} = Vall/,} | VB{?/\}
Second Phase  Va{?/,} | VB{®/,} = VA{t/,} | VB{?/.}

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 33 /38



First approach: procedure based on ProVerif

— with Mark Ryan and Ben Smith (University of Birmingham)

Val?/v} | Ve{®/v} = Val®/u} | Ve{?/v}

where Vx = V};phasel; V)2(

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 34 / 38



First approach: procedure based on ProVerif

— with Mark Ryan and Ben Smith (University of Birmingham)
Val?/v} | Ve{®/v} = Val®/v} | VB{?/\}

where Vx = V)%;phasel; V)2(

To establish the equivalence, it may be sufficient to show that
o VA{?/} | VB{®/v} = Vi{®/u} | VE{®/u}. (1°° phase)
o for all interleaving 1 of Vi{?/,} | VE{®/.}. there (2" phase)
exists an interleaving /» of VX{?/,} | Vi{?/,} such that
I phasel; (VA{*/v} | V3{®/.}) =~ I phasel; (V3{?/,} | VA{®/\})

and vice-versa,

@ and some additional assumptions.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 34 / 38



Second approach: symbolic bisimulation

— with Steve Kremer (LSV) and Mark Ryan (University of Birmingham)

Our Goal:
to do better than Proverif in the context of a bounded number of sessions

o Infinite depth:
< we restrict to consider processes without replication.

@ Infinite branching:
— define a notion of symbolic processes and symbolic bisimulation

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 35 / 38



Symbolic Bisimulation

Concrete Side:

vs, k.(in(c,x); P | {{s}k/y})

in(c,m1)

vs, k(P{™ [x} [ {17/, })

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 36 / 38



Symbolic Bisimulation

Concrete Side:

vs, k.(in(c,x); P | {{s}k/y})

Symbolic Side: .
(vs, k.(in(c,x); P | {{S}k/y}) . C) in(c,x)
(I/S7 k(P | {{S}k/y}) - CU {I/S, k{{s}k/y} - X})

in(c,m1)

vs, k(P{™ [x} [ {17/, })

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 36 / 38



Symbolic Bisimulation

Concrete Side:
vs, k.(in(c,x); P | {7/, })
Symbolic Side:

(vs, k.(in(c,x); P | {t3%/,}) ; C)
(vs, k(P {3/, }) s CU{ws, k{%/,} IF x})

Symbolic bisimulation /s, is the largest symmetric relation R such that
(A; Ca) R (B; Cg) implies
@ Ch and Cg are E-equivalent,
o if (A; Ca) —s (A" Cl) with Sole(Cy) # 0 then there exists
(B"; Cp) such that (B ; Cg) —% (B'; Cg) and (A"; C}) R (B'; Cg)
o if (A; Ca) S5 (A CY) ...

in(c,m1)

vs, k.(P{™ /x} | {t7%/y})

in(c,x)

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 36 / 38



Main Result

Let A and B be two processes. We have that

(A;(Z))%symb(B;(Z)) — A~/ B

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 37 /38



Main Result

Let A and B be two processes. We have that

(A;(Z))%symb(B;(Z)) — A~/ B

Sources of Incompleteness

< due to the fact that the instanciation of an input variable is postponed
until the moment it is actually used

Example: Py =~y Q1 whereas (P1; 0) Asymb (Q1; 0).

P1 = vei.in(cy, x).(out(cy, b) | in(c1, y) | if x = a then in(c1, z).out(c, a))
Q1 = ver.in(c, x).(out(c, b) | in(c1,y) | in(c1, z).if x = a then out(cp, a))

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 37 /38



Main Result

Let A and B be two processes. We have that

(A;(Z))%symb(B;(Z)) — A~/ B

Sources of Incompleteness
< due to the fact that the instanciation of an input variable is postponed
until the moment it is actually used

Example: Py =~y Q1 whereas (P1; 0) Asymb (Q1; 0).

P1 = vei.in(cy, x).(out(cy, b) | in(c1, y) | if x = a then in(c1, z).out(c, a))
Q1 = ver.in(c, x).(out(c, b) | in(c1,y) | in(c1, z).if x = a then out(cp, a))

— but we think that our symbolic bisimulation is complete enough to deal
with many interesting cases.

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 37 /38



Conclusion and Future Works

Conclusion:
o First formal definitions of receipt-freeness and coercion-resistance
@ 3 case studies giving interesting insights

@ A notion of symbolic bisimulation that is sound w.r.t. the concrete one

Works in Progress:

@ An automatic procedure based on ProVerif

S. Delaune (LORIA — Projet Cassis) Privacy-type properties Thursday 26th April 38 / 38



Conclusion and Future Works

Conclusion:
o First formal definitions of receipt-freeness and coercion-resistance
@ 3 case studies giving interesting insights

@ A notion of symbolic bisimulation that is sound w.r.t. the concrete one

Works in Progress:

@ An automatic procedure based on ProVerif

Future Works:

@ to design a procedure to solve our constaint systems for a class of
equational theory as larger as possible

@ to implement a tool based on this approach,

o individual /universal verifiability

S. Delaune (LORIA — Projet Cassis)

Privacy-type properties Thursday 26th April 38 / 38



	Introduction
	Applied -calculus
	Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
	Verification of privacy-type properties (works in progress)
	Conclusion and Future Works

