Modelling and verifying privacy-type properties of electroning voting protocols

Stéphanie Delaune

Post-doctorante au LORIA – Projet Cassis

Monday 12th March
Electronic voting

Advantages:

- Convenient,
- Efficient facilities for tallying votes.

Drawbacks:

- Risk of large-scale and undetectable fraud,
- Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards and sell them on the Internet that would allow for multiple votes"

Avi Rubin

Possible issue: formal methods
abstract analysis of the protocol against formally-stated properties
Electronic voting

Advantages:

- Convenient,
- Efficient facilities for tallying votes.

Drawbacks:

- Risk of large-scale and undetectable fraud,
- Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards and sell them on the Internet that would allow for multiple votes"

Avi Rubin

Possible issue: formal methods

abstract analysis of the protocol against formally-stated properties
Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. \(V \rightarrow A : \ V, \text{sign}(\text{blind}(\text{commit}(\text{vote}, r), b), V) \)
2. \(A \rightarrow V : \ \text{sign}(\text{blind}(\text{commit}(\text{vote}, r), b), A) \)

\(\rightarrow \) to ensure privacy, \text{blind} signatures are used

Voting phase:

3. \(V \rightarrow C : \ \text{sign}(\text{commit}(\text{vote}, r), A) \)
4. \(C \rightarrow : \ l, \text{sign}(\text{commit}(\text{vote}, r), A) \)

Counting phase:

5. \(V \rightarrow C : \ l, r \)
6. \(C \) publishes the outcome of the vote

\(\rightarrow \) to ensure privacy, anonymous channel are used at step 3 and 5
Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. \(V \rightarrow A : V, \text{sign(blind(commit(vote, r), b), V)} \)
2. \(A \rightarrow V : \text{sign(blind(commit(vote, r), b), A)} \)

\(\rightarrow \) to ensure privacy, blind signatures are used

Voting phase:

3. \(V \rightarrow C : \text{sign(commit(vote, r), A)} \)
4. \(C \rightarrow : I, \text{sign(commit(vote, r), A)} \)

Counting phase:

5. \(V \rightarrow C : I, r \)
6. \(C \) publishes the outcome of the vote

\(\rightarrow \) to ensure privacy, anonymous channel are used at step 3 and 5
Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. $V \rightarrow A : V, \text{sign}(\text{blind}(\text{commit}(\text{vote}, r), b), V)$
2. $A \rightarrow V : \text{sign}(\text{blind}(\text{commit}(\text{vote}, r), b), A)$

\[\text{to ensure privacy, blind signatures are used} \]

Voting phase:

3. $V \rightarrow C : \text{sign}(\text{commit}(\text{vote}, r), A)$
4. $C \rightarrow : I, \text{sign}(\text{commit}(\text{vote}, r), A)$

Counting phase:

5. $V \rightarrow C : I, r$
6. C publishes the outcome of the vote

\[\text{to ensure privacy, anonymous channel are used at step 3 and 5} \]
Security properties ...

Eligibility: only legitimate voters can vote, and only once

Fairness: no early results can be obtained which could influence the remaining voters

Individual verifiability:
a voter can verify that her vote was really counted

Universal verifiability:
the published outcome really is the sum of all the votes
Privacy-type security properties

Privacy: the fact that a particular voted in a particular way is not revealed to anyone

Receipt-freeness: a voter cannot prove that she voted in a certain way (this is important to protect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts with the voter during the protocol, (e.g. by preparing messages)
Summary

Observations:
- Definitions of security properties are often **insufficiently precise**
- **No clear distinction** between receipt-freeness and coercion-resistance

Goal:
1. Propose “formal methods” definitions of privacy-type properties,
2. Design automatic procedures to verify them.

Difficulties:
- **equivalence** based-security properties are harder than reachability properties (*e.g.* secrecy, authentication),
- electronic voting protocols are often **more complex** than authentication protocols,
- **less classical** cryptographic primitives (*e.g.* blind signature).
Summary

Observations:
- Definitions of security properties are often **insufficiently precise**
- **No clear distinction** between receipt-freeness and coercion-resistance

Goal:
1. Propose "**formal methods**" definitions of privacy-type properties,
2. Design **automatic** procedures to verify them.

Difficulties:
- **equivalence** based-security properties are harder than reachability properties (e.g. secrecy, authentication),
- electronic voting protocols are often **more complex** than authentication protocols,
- **less classical** cryptographic primitives (e.g. blind signature).
Summary

Observations:
- Definitions of security properties are often *insufficiently precise*
- *No clear distinction* between receipt-freeness and coercion-resistance

Goal:
1. Propose “*formal methods*” definitions of privacy-type properties,
2. Design *automatic* procedures to verify them.

Difficulties:
- *equivalence* based-security properties are harder than reachability properties (*e.g.* secrecy, authentication),
- electronic voting protocols are often *more complex* than authentication protocols,
- *less classical* cryptographic primitives (*e.g.* blind signature).
Results and Work in Progress

Modelling:

- **Formalisation** of privacy, receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,

Case Studies:

- Fujioka et al.'92 – commitment and blind signature,
- Okamoto’96 – trap-door bit commitment and blind signature,
- Lee et al.’03 – re-encryption and designated verifier proof of re-encryption.

Verification: How to check such privacy-type properties?

- by using an existing tool (e.g. ProVerif)
- by developing new techniques (symbolic bisimulation)
Results and Work in Progress

Modelling:
- **Formalisation** of privacy, receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,

Case Studies:
- Fujioka *et al.*'92 – commitment and blind signature,
- Okamoto’96 – trap-door bit commitment and blind signature,
- Lee *et al.*’03 – re-encryption and designated verifier proof of re-encryption.

Verification: How to check such privacy-type properties?
- by using an existing tool (*e.g.* ProVerif)
- by developing new techniques (symbolic bisimulation)
Results and Work in Progress

Modelling:

- **Formalisation** of privacy, receipt-freeness and coercion-resistance as some kind of observational **equivalence** in the **applied pi-calculus**,
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,

Case Studies:

- Fujioka *et al.*'92 – commitment and blind signature,
- Okamoto’96 – trap-door bit commitment and blind signature,
- Lee *et al.*’03 – re-encryption and designated verifier proof of re-encryption.

Verification: How to check such privacy-type properties?

- by using an existing tool (e.g. ProVerif)
- by developing **new techniques** (symbolic bisimulation)
Outline of the talk

1. Introduction
2. Applied π-calculus
3. Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
4. Verification of privacy-type properties (works in progress)
5. Conclusion and Future Works
Outline of the talk

1. Introduction

2. Applied π-calculus

3. Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)

4. Verification of privacy-type properties (works in progress)

5. Conclusion and Future Works
Motivation for using the applied π-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

Basic programming language with constructs for concurrency and communication

- Based on the π-calculus [Milner et al., 92]
- In some ways similar to the spi-calculus [Abadi & Gordon, 98]

Advantages:

- Allows us to model less classical cryptographic primitives
- Both reachability and equivalence-based specification of properties
- Automated proofs using ProVerif tool [Blanchet]
- Powerful proof techniques for hand proofs
- Successfully used to analyze a variety of security protocols
Motivation for using the applied π-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

basic programming language with constructs for **concurrency** and
communication

- based on the π-calculus [Milner et al., 92]
- in some ways similar to the **spi-calculus** [Abadi & Gordon, 98]

Advantages:

- allows us to model **less classical** cryptographic primitives
- both **reachability** and **equivalence**-based specification of properties
- **automated proofs** using **ProVerif** tool [Blanchet]
- **powerful proof techniques** for hand proofs
- successfully used to analyze a **variety** of security protocols
The applied π-calculus on an example

Syntax:

- **Equational theory:** $dec(enc(x, y), y) = x$
- **Process:**

$$P = \nu s, k. (out(c_1, enc(s, k)) | in(c_1, y).out(c_2, dec(y, k))).$$

Semantics:

- **Operational semantics \rightarrow:** closed by structural equivalence (\equiv) and application of evaluation contexts such that

 Comm: $\quad \text{out}(a, x).P | \text{in}(a, x).Q \rightarrow P | Q$

 Then: $\quad \text{if } M = M \text{ then } P \text{ else } Q \rightarrow P$

 Else: $\quad \text{if } M = N \text{ then } P \text{ else } Q \rightarrow Q \quad (M \not\equiv N)$

- **Example:** $P \rightarrow \nu s, k. out(c_2, s)$

- **Labeled operational semantics $\xrightarrow{\alpha}$**
The applied π-calculus on an example

Syntax:
- **Equational theory**: $\text{dec}(\text{enc}(x, y), y) = x$
- **Process**:

 $$P = \nu s, k. (\text{out}(c_1, \text{enc}(s, k)) | \text{in}(c_1, y).\text{out}(c_2, \text{dec}(y, k))).$$

Semantics:
- **Operational semantics** \rightarrow: closed by **structural equivalence** (\equiv) and application of **evaluation contexts** such that:

 Comm
 $\text{out}(a, x).P | \text{in}(a, x).Q \rightarrow P | Q$

 Then
 if $M = M$ then P else $Q \rightarrow P$

 Else
 if $M = N$ then P else $Q \rightarrow Q$ ($M \not\equiv_E N$)

Example: $P \rightarrow \nu s, k.\text{out}(c_2, s)$

- **Labeled operational semantics** α
The applied \(\pi \)-calculus on an example

Syntax:

- Equational theory: \(\text{dec}(\text{enc}(x, y), y) = x \)
- Process:

\[
P = \nu s, k. (\text{out}(c_1, \text{enc}(s, k)) \parallel \text{in}(c_1, y). \text{out}(c_2, \text{dec}(y, k))).
\]

Semantics:

- Operational semantics \(\rightarrow \): closed by structural equivalence \((\equiv) \) and application of evaluation contexts such that

 \[
 \begin{align*}
 \text{Comm} & \quad \text{out}(a, x). P \parallel \text{in}(a, x). Q \rightarrow P \parallel Q \\
 \text{Then} & \quad \text{if } M = M \text{ then } P \text{ else } Q \rightarrow P \\
 \text{Else} & \quad \text{if } M = N \text{ then } P \text{ else } Q \rightarrow Q \quad (M \not\equiv N)
 \end{align*}
 \]

- Example: \(P \rightarrow \nu s, k. \text{out}(c_2, s) \)

- Labeled operational semantics \(\overset{\alpha}{\rightarrow} \)
The applied π-calculus on an example

Syntax:
- Equational theory: $\text{dec}(\text{enc}(x, y), y) = x$
- Process:
 \[P = \nu s, k.(\text{out}(c_1, \text{enc}(s, k)) \mid \text{in}(c_1, y).\text{out}(c_2, \text{dec}(y, k))). \]

Semantics:
- Operational semantics \rightarrow: closed by structural equivalence (\equiv) and application of evaluation contexts such that
 \[\begin{align*}
 \text{Comm} & \quad \text{out}(a, x).P \mid \text{in}(a, x).Q \rightarrow P \mid Q \\
 \text{Then} & \quad \text{if } M = M \text{ then } P \text{ else } Q \rightarrow P \\
 \text{Else} & \quad \text{if } M = N \text{ then } P \text{ else } Q \rightarrow Q \quad (M \not\equiv E N)
 \end{align*} \]
- Example: $P \rightarrow \nu s, k.\text{out}(c_2, s)$
- Labeled operational semantics α

\[\hspace{1cm} \]
Equivalences on processes

Observational equivalence (\approx)

The largest symmetric relation \mathcal{R} on processes such that $A \mathcal{R} B$ implies

1. if $A \Downarrow a$, then $B \Downarrow a$,
2. if $A \rightarrow^* A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',

Labeled bisimilarity (\approx_ℓ)

The largest symmetric relation \mathcal{R} on processes, such that $A \mathcal{R} B$ implies

1. $\phi(A) \approx_s \phi(B)$ (static equivalence)
2. if $A \rightarrow A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',
3. if $A \xrightarrow{\alpha} A'$, then $B \rightarrow^* \xrightarrow{\alpha} B'$ and $A' \mathcal{R} B'$ for some B'.

S. Delaune (LORIA – Projet Cassis) Electronic Voting Monday 12th March 12 / 30
Equivalences on processes

Observational equivalence (≈)

The largest symmetric relation \(\mathcal{R} \) on processes such that \(A \mathcal{R} B \) implies

1. if \(A \Downarrow a \), then \(B \Downarrow a \),
2. if \(A \rightarrow^* A' \), then \(B \rightarrow^* B' \) and \(A' \mathcal{R} B' \) for some \(B' \),
3. \(C[A] \mathcal{R} C[B] \) for all closing evaluation contexts \(C[\cdot] \).

Labeled bisimilarity (≈_L)

The largest symmetric relation \(\mathcal{R} \) on processes, such that \(A \mathcal{R} B \) implies

1. \(\phi(A) \approx_s \phi(B) \) (static equivalence)
2. if \(A \rightarrow A' \), then \(B \rightarrow^* B' \) and \(A' \mathcal{R} B' \) for some \(B' \),
3. if \(A \xrightarrow{\alpha} A' \), then \(B \rightarrow^* \xrightarrow{\alpha} B' \) and \(A' \mathcal{R} B' \) for some \(B' \).
Definition (Voting process)

\[VP \equiv \nu \tilde{n}. (V \sigma_1 | \cdots | V \sigma_n | A_1 | \cdots | A_m) \]

- \(V \sigma_i \): voter processes and \(\nu \in \text{dom}(\sigma_i) \) refers to the value of the vote
- \(A_j \): election authorities which are required to be honest,
- \(\tilde{n} \): channel names

\(\rightsquigarrow S \) is a context which is as \(VP \) but has a hole instead of two of the \(V \sigma_i \)
Example: Fujioka et al. (1992)

Main Process

process
 (* private channels *)
 ν. privCh; ν. pkaCh1; ν. pkaCh2; ν. skaCh;
 ν. skvaCh; ν. skvbCh;
 (* administrators *)
 (processK | processA | processA | processC | processC |
 (* voters *)
 (let skvCh = skvaCh in let v = a in processV) |
 (let skvCh = skvbCh in let v = b in processV))
Example: Fujioka et al. (1992)

let processV =
 (* his private key *)
in(skvCh, skv); let hostv = host(pk(skv)) in
 (* public keys of the administrator *)
in(pkaCh1, pubka);
ν. blinder; ν. r; let committedvote = commit(v, r) in
let blindedcommittedvote = blind(committedvote, blinder) in
out(ch, (hostv, sign(blindedcommittedvote, skv)));
in(ch, m2);
let result = checksign(m2, pubka) in
if result = blindedcommittedvote then
 let signedcommittedvote = unblind(m2, blinder) in
 phase 1;
 out(ch, (committedvote, signedcommittedvote));
in(ch, (1 = committedvote, = signedcommittedvote));
 phase 2;
 out(ch, (1, r)).
let processV =
(* his private key *)
in(skvCh, skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaCh1, pubka);
ν. blinder; ν. r; let committedvote = commit(v,r) in
let blindedcommittedvote = blind(committedvote, blinder) in
out(ch, (hostv, sign(blindedcommittedvote, skv)));
in(ch, m2);
let result = checksign(m2, pubka) in
if result = blindedcommittedvote then
let signedcommittedvote = unblind(m2, blinder) in
phase 1;
out(ch, (committedvote, signedcommittedvote));
in(ch, (l, =committedvote, =signedcommittedvote));
phase 2;
out(ch, (l, r)).
Example: Fujioka et al. (1992)

let processV =
 (* his private key *)
 in(skvCh,skv); let hostv = host(pk(skv)) in
 (* public keys of the administrator *)
 in(pkaCh1,pubka);
 \[\nu.\text{blinder}; \nu.\ r;\text{ let committedvote} = \text{commit}(v,r)\text{ in}\]
 let blindedcommittedvote=blind(committedvote,blinder) in
 out(ch,(hostv,sign(blindedcommittedvote,skv)));
 in(ch,m2);
 let result = checksign(m2,pubka) in
 if result = blindedcommittedvote then
 let signedcommittedvote=unblind(m2,blinder) in
 \textbf{phase 1};
 out(ch,(committedvote,signedcommittedvote));
 in(ch,(l,=committedvote,=signedcommittedvote));
 \textbf{phase 2};
 out(ch,(l,r)).
Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaCh1,pubka);
ν. blinder; ν. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out(ch,(hostv,sign(blindedcommittedvote,skv)));
in(ch,m2);
let result = checksign(m2,pubka) in
if result = blindedcommittedvote then
let signedcommittedvote=unblind(m2,blinder) in
phase 1;
out(ch,(committedvote,signedcommittedvote));
in(ch,(l,committedvote,signedcommittedvote));
phase 2;
out(ch,(l,r)).
Outline of the talk

1. Introduction

2. Applied π-calculus

3. Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)

4. Verification of privacy-type properties (works in progress)

5. Conclusion and Future Works
Formalisation of privacy

Classically modeled as observational equivalences between two slightly different processes P_1 and P_2, but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end

Solution:
" consider 2 honest voters and swap their votes

A voting protocol respects privacy if

$$S[V_A ^{a/v} | V_B ^{b/v}] \approx S[V_A ^{b/v} | V_B ^{a/v}].$$
Formalisation of privacy

Classically modeled as observational equivalences between two slightly different processes P_1 and P_2, but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end

Solution:

→ consider 2 honest voters and swap their votes

A voting protocol respects privacy if

$$S[V_A\{a/v\} \ | \ V_B\{b/v\}] \approx S[V_A\{b/v\} \ | \ V_B\{a/v\}].$$
Some Examples

\[S[V_A\{^a/\nu\} \mid V_B\{^b/\nu\}] \approx S[V_A\{^b/\nu\} \mid V_B\{^a/\nu\}] \]

Naive vote protocol (version 1)

\[V \rightarrow S : \{\nu\}_{\text{pub}(S)} \]

What about privacy?
Some Examples

\[S[V_A^{\{a/v\}} \mid V_B^{\{b/v\}}] \approx S[V_A^{\{b/v\}} \mid V_B^{\{a/v\}}] \]

Naive vote protocol (version 1)

\[V \rightarrow S : \{v\}_{\text{pub}(S)} \]

What about privacy? OK
Some Examples

\[S[V_A{a/v} \mid V_B{b/v}] \approx S[V_A{b/v} \mid V_B{a/v}] \]

Naive vote protocol (version 1)

\[V \rightarrow S : \{v\}_{pub(S)} \]

What about privacy? OK

Naive vote protocol (version 2)

\[V \rightarrow S : Id, \{v\}_{pub(S)} \]

What about privacy?
Some Examples

\[S[V_A\{a/v\} \mid V_B\{b/v\}] \approx S[V_A\{b/v\} \mid V_B\{a/v\}] \]

Naive vote protocol (version 1)

\[V \rightarrow S : \{v\}_{\text{pub}(S)} \]

What about privacy? OK

Naive vote protocol (version 2)

\[V \rightarrow S : \text{Id, } \{v\}_{\text{pub}(S)} \]

What about privacy?

- deterministic encryption: NOT OK
- probabilistic encryption: OK
Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. $V \rightarrow A : V, \text{sign}(\text{blind}(\text{commit}(vote, r), b), V)$
2. $A \rightarrow V : \text{sign}(\text{blind}(\text{commit}(vote, r), b), A)$

\rightarrow to ensure privacy, blind signatures are used

Voting phase:

3. $V \rightarrow C : \text{sign}(\text{commit}(vote, r), A)$
4. $C \rightarrow : l, \text{sign}(\text{commit}(vote, r), A)$

Counting phase:

5. $V \rightarrow C : l, r$
6. C publishes the outcome of the vote

\rightarrow to ensure privacy, anonymous channel are used at step 3 and 5
Leaking secrets to the coercer

To model receipt-freeness we need to specify that a coerced voter cooperates with the coercer by leaking secrets on a channel ch

We denote by V^{ch} the process built from the process V as follows:

- $0^{ch} \equiv 0$,
- $(P \mid Q)^{ch} \equiv P^{ch} \mid Q^{ch}$,
- $(\nu n.P)^{ch} \equiv \nu n.\text{out}(ch, n).P^{ch}$,
- $(\text{in}(u, x).P)^{ch} \equiv \text{in}(u, x).\text{out}(ch, x).P^{ch}$,
- $(\text{out}(u, M).P)^{ch} \equiv \text{out}(u, M).P^{ch}$,
- \ldots

We denote by $V\backslash\text{out}(ch, \cdot) \equiv \nu ch.(V \mid !\text{in}(ch, x))$.
Receipt-freeness

Definition (Receipt-freeness)

A voting protocol is receipt-free if there exists a process V', satisfying

- $V' \setminus \text{out}(chc, \cdot) \approx V_A\{^a/_v\}$,
- $S[V_A\{^c/_v\}^{chc} \mid V_B\{^a/_v\}] \approx S[V' \mid V_B\{^c/_v\}]$.

Intuitively, there exists a process V' which

- does vote a,
- leaks (possibly fake) secrets to the coencer,
- and makes the coencer believe he voted c
Summary

Coercion-Resistance is defined in a similar way (the voter has to used the outputs provided by the coercer)

Lemma

Let VP be a voting protocol. We have formally shown that: VP is coercion-resistant \implies VP is receipt-free \implies VP respects privacy.

Case Study (1): Fujioka et al.

- We have established privacy
 \iff holds even if the authorities are corrupt
- This protocol is not receipt-free
 \iff the random numbers for blinding and commitment can be used as a receipt
Outline of the talk

1. Introduction

2. Applied π-calculus

3. Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)

4. Verification of privacy-type properties (works in progress)

5. Conclusion and Future Works
An existing tool (ProVerif)

Labeled bisimilarity (\approx_ℓ)

The largest symmetric relation \mathcal{R} on processes, such that $A \mathcal{R} B$ implies

1. $\phi(A) \approx_s \phi(B)$ (depends on E),
2. if $A \rightarrow A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',
3. if $A \xrightarrow{\alpha} A'$, then $B \rightarrow^* \xrightarrow{\alpha} B'$ and $A' \mathcal{R} B'$ for some B'.

This relation is in general undecidable. Why?

- unfolding tree is infinite in depth
- unfolding tree is infinititely branching (because of inputs)
- equational theories may be complex

Tool: Proverif

Obviously, the procedure is not complete.
Labeled bisimilarity (\approx_ℓ)

The largest symmetric relation \mathcal{R} on processes, such that $A \mathcal{R} B$ implies

1. $\phi(A) \approx_s \phi(B)$ (depends on E),
2. if $A \rightarrow A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',
3. if $A \overset{\alpha}{\rightarrow} A'$, then $B \overset{\alpha}{\rightarrow}^* B'$ and $A' \mathcal{R} B'$ for some B'.

This relation is in general **undecidable**. Why?

- unfolding tree is **infinite** in depth
- unfolding tree is **infinititely branching** (because of inputs)
- equational theories may be **complex**

Tool: ProVerif

\longrightarrow Obviously, the procedure is not complete.
An existing tool (ProVerif)

Labeled bisimilarity (\approx_ℓ)

The largest symmetric relation \mathcal{R} on processes, such that $A \mathcal{R} B$ implies

1. $\phi(A) \approx_s \phi(B)$ (depends on E),
2. if $A \rightarrow A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',
3. if $A \xrightarrow{\alpha} A'$, then $B \rightarrow^* \xrightarrow{\alpha}^* B'$ and $A' \mathcal{R} B'$ for some B'.

This relation is in general undecidable. Why?

- unfolding tree is infinite in depth
- unfolding tree is infinitely branching (because of inputs)
- equational theories may be complex

Tool: Proverif

→ Obviously, the procedure is not complete.
Drawbacks of ProVerif

ProVerif is not able to establish privacy for the naive vote protocol

\[\{ a \}_{\text{pub}(S)} \ | \ \{ b \}_{\text{pub}(S)} \approx \{ b \}_{\text{pub}(S)} \ | \ \{ a \}_{\text{pub}(S)} \]

... and more generally for any electronic voting protocols.

Why?

- ProVerif works on biprocesses (processes having the same structure).

 \[P \approx Q \iff \text{let bool = choice[true,false] in if bool = true then P else Q} \]

- Technique relies on easily matching up the execution paths of the two processes

 First Phase \[V_A \{ a/v \} \ | \ V_B \{ b/v \} \approx V_A \{ b/v \} \ | \ V_B \{ a/v \} \]

 Second Phase \[V_A \{ a/v \} \ | \ V_B \{ b/v \} \approx V_A \{ b/v \} \ | \ V_B \{ a/v \} \]
Drawbacks of ProVerif

ProVerif is not able to establish privacy for the naive vote protocol

\[\{a\}_{\text{pub}(S)} \mid \{b\}_{\text{pub}(S)} \approx \{b\}_{\text{pub}(S)} \mid \{a\}_{\text{pub}(S)} \]

... and more generally for any electronic voting protocols.

Why?

- ProVerif works on biprocesses (processes having the same structure).
 \[P \approx Q \iff \text{let } \text{bool} = \text{choice}[\text{true},\text{false}] \text{ in } \]
 \[\text{if } \text{bool} = \text{true} \text{ then } P \text{ else } Q \]

- Technique relies on easily matching up the execution paths of the two processes

First Phase

\[V_A \{a/v\} \mid V_B \{b/v\} \approx V_A \{b/v\} \mid V_B \{a/v\} \]

Second Phase

\[V_A \{a/v\} \mid V_B \{b/v\} \approx V_A \{b/v\} \mid V_B \{a/v\} \]
Drawbacks of ProVerif

ProVerif is not able to establish privacy for the naive vote protocol

$$\{a\}_{\text{pub}(S)} \mid \{b\}_{\text{pub}(S)} \approx \{b\}_{\text{pub}(S)} \mid \{a\}_{\text{pub}(S)}$$

... and more generally for any electronic voting protocols.

Why?

- ProVerif works on biprocesses (processes having the same structure).

 $$P \approx Q \iff \begin{align*}
 &\text{let bool }= \text{choice[true,false]} \text{ in} \\
 &\text{if bool }= \text{true then } P \text{ else } Q
 \end{align*}$$

- Technique relies on easily matching up the execution paths of the two processes

 First Phase
 $$V_A\{a/v\} \mid V_B\{b/v\} \approx V_A\{b/v\} \mid V_B\{a/v\}$$

 Second Phase
 $$V_A\{a/v\} \mid V_B\{b/v\} \approx V_A\{b/v\} \mid V_B\{a/v\}$$
Drawbacks of ProVerif

ProVerif is not able to establish privacy for the naive vote protocol

$$\{a\}_{\text{pub}(S)} \parallel \{b\}_{\text{pub}(S)} \approx \{b\}_{\text{pub}(S)} \parallel \{a\}_{\text{pub}(S)}$$

... and more generally for any electronic voting protocols.

Why?

- ProVerif works on biprocesses (processes having the same structure).

 $$P \approx Q \iff \text{let bool} = \text{choice}[\text{true, false}] \text{ in}
 \text{if bool} = \text{true then } P \text{ else } Q$$

- Technique relies on easily matching up the execution paths of the two processes

 First Phase
 $$V_A\{^a/v\} \parallel V_B\{^b/v\} \approx V_A\{^b/v\} \parallel V_B\{^a/v\}$$

 Second Phase
 $$V_A\{^a/v\} \parallel V_B\{^b/v\} \approx V_A\{^b/v\} \parallel V_B\{^a/v\}$$
First approach: procedure based on ProVerif

with Mark Ryan and Ben Smith (University of Birmingham)

\[V_A^{a/v} | V_B^{b/v} \approx V_A^{b/v} | V_B^{a/v} \]

where \(V_X = V_X^1; phase1; V_X^2 \)
First approach: procedure based on ProVerif

with Mark Ryan and Ben Smith (University of Birmingham)

\[V_A^{a/v} \upharpoonright V_B^{b/v} \approx V_A^{b/v} \upharpoonright V_B^{a/v} \]

where \(V_X = V_X^1; \textit{phase1}; V_X^2 \)

Conjecture

To establish the equivalence, it may be sufficient to show that

- \(V_A^1 {^a/v} \upharpoonright V_B^1 {^b/v} \approx V_A^1 {^b/v} \upharpoonright V_B^1 {^a/v} \), \hspace{1cm} (1st phase)
- for all interleaving \(l_1 \) of \(V_A^1 {^a/v} \upharpoonright V_B^1 {^b/v} \), there exists an interleaving \(l_2 \) of \(V_A^1 {^b/v} \upharpoonright V_B^1 {^a/v} \) such that
 \[l_1; \text{phase1}; (V_A^2 {^a/v} \upharpoonright V_B^2 {^b/v}) \approx l_2; \text{phase1}; (V_B^2 {^a/v} \upharpoonright V_A^2 {^b/v}) \]
 and vice-versa,
- and some additional assumptions.
Second approach: symbolic bisimulation

→ with Steve Kremer (LSV) and Mark Ryan (University of Birmingham)

Our Goal:
to do better than Proverif in the context of a \textit{bounded} number of sessions

- Infinite depth:
 ← we restrict to consider processes without replication.

- Infinite branching:
 ← define a notion of \textit{symbolic} processes and \textit{symbolic} bisimulation
Symbolic Bisimulation

Concrete Side:
\[\nu s, k.(\text{in}(c, x); P \mid \{s\}_k / y)) \xrightarrow{\text{in}(c, m_1)} \nu s, k.(P \{m_1 / x \mid \{(s)\}_k / y)) \]

Symbolic Side:
\[(\nu s, k.(\text{in}(c, x); P \mid \{(s)\}_k / y)) ; C \xrightarrow{\text{in}(c, x)} (\nu s, k.(P \mid \{(s)\}_k / y)) ; C \cup \{\nu s, k.\{(s)\}_k / y \models x\} \]

Definition

Symbolic bisimulation \(\approx_{symb} \) is the largest symmetric relation \(R \) such that

- \((A ; C_A) R (B ; C_B) \) implies
 - \(C_A \) and \(C_B \) are \(E \)-equivalent,
 - if \((A ; C_A) \rightarrow_s (A' ; C'_A) \) with \(\text{Sol}_E(C'_A) \neq \emptyset \) then there exists
 \((B' ; C'_B) \) such that \((B ; C_B) \rightarrow^* (B' ; C'_B) \) and \((A' ; C'_A) R (B' ; C'_B) \)
 - if \((A ; C_A) \xrightarrow{\alpha} (A' ; C'_A) \) ...
Symbolic Bisimulation

Concrete Side:
\[
\nu s, k.(\text{in}(c, x); P \mid \{s\}_k / y) \xrightarrow{\text{in}(c, m_1)} \nu s, k.(P^{m_1 / x} \mid \{s\}_k / y)
\]

Symbolic Side:
\[
(\nu s, k.(\text{in}(c, x); P \mid \{s\}_k / y) ; C) \xrightarrow{\text{in}(c, x)} (\nu s, k.(P \mid \{s\}_k / y) ; C \cup \{\nu s, k.\{s\}_k / y \models x\})
\]

Definition

Symbolic bisimulation \(\approx_{symb}\) is the largest symmetric relation \(\mathcal{R}\) such that:

- \(A ; C_A \mathcal{R} (B ; C_B)\) implies
 - \(C_A\) and \(C_B\) are E-equivalent,
 - if \((A ; C_A) \rightarrow_s (A' ; C_A')\) with \(\text{Sol}_E(C_A') \neq \emptyset\) then there exists \((B' ; C_B')\) such that \((B ; C_B) \rightarrow^*_s (B' ; C_B')\) and \((A' ; C_A') \mathcal{R} (B' ; C_B')\)
 - if \((A ; C_A) \xrightarrow{\alpha} (A' ; C_A')\) ...
Symbolic Bisimulation

Concrete Side:
\[\nu s, k.(\text{in}(c, x); P \mid \{s\}_k / y) \xrightarrow{\text{in}(c,m_1)} \nu s, k.(P^{m_1} / x \mid \{s\}_k / y) \]

Symbolic Side:
\[(\nu s, k.(\text{in}(c, x); P \mid \{s\}_k / y)); C \xrightarrow{\text{in}(c,x)} (\nu s, k.(P \mid \{s\}_k / y)); C \cup \{\nu s, k.\{s\}_k / y \models x\} \]

Definition

Symbolic bisimulation \(\approx_{symb} \) is the largest symmetric relation \(R \) such that \((A ; C_A) R (B ; C_B)\) implies

- \(C_A \) and \(C_B \) are E-equivalent,
- if \((A ; C_A) \rightarrow_s (A' ; C'_A)\) with \(\text{Sol}_E(C'_A) \neq \emptyset \) then there exists \((B' ; C'_B)\) such that \((B ; C_B) \rightarrow_s^* (B' ; C'_B)\) and \((A' ; C'_A) R (B' ; C'_B)\)
- if \((A ; C_A) \xrightarrow{\alpha} (A' ; C'_A)\) ...
Conjecture

Let A and B be two processes. We have that

$$(A ; \emptyset) \approx_{symb} (B ; \emptyset) \implies A \approx_\ell B$$

Sources of Incompleteness

\iff due to the fact that the instanciation of an input variable is postponed until the moment it is actually used

Example: $P_1 \approx_\ell Q_1$ whereas $(P_1 ; \emptyset) \not\approx_{symb} (Q_1 ; \emptyset)$.

$P_1 = \nu c_1 . \text{in}(c_2, x) . (\text{out}(c_1, b) \mid \text{in}(c_1, y) \mid \text{if } x = a \text{ then } \text{in}(c_1, z) . \text{out}(c_2, a))$

$Q_1 = \nu c_1 . \text{in}(c_2, x) . (\text{out}(c_1, b) \mid \text{in}(c_1, y) \mid \text{in}(c_1, z) . \text{if } x = a \text{ then } \text{out}(c_2, a))$

\iff but we think that our symbolic bisimulation is complete enough to deal with many interesting cases.
Main Result

Conjecture

Let A and B be two processes. We have that

$$(A ; \emptyset) \approx_{symb} (B ; \emptyset) \implies A \approx_{\ell} B$$

Sources of Incompleteness

\Leftarrow due to the fact that the instanciation of an input variable is postponed until the moment it is actually used.

Example: $P_1 \approx_{\ell} Q_1$ whereas $(P_1 ; \emptyset) \not\approx_{symb} (Q_1 ; \emptyset)$.

$P_1 = \nu c_1 . \text{in}(c_2, x) . (\text{out}(c_1, b) \mid \text{in}(c_1, y) \mid \text{if } x = a \text{ then } \text{in}(c_1, z) . \text{out}(c_2, a))$

$Q_1 = \nu c_1 . \text{in}(c_2, x) . (\text{out}(c_1, b) \mid \text{in}(c_1, y) \mid \text{in}(c_1, z) . \text{if } x = a \text{ then } \text{out}(c_2, a))$

\Leftarrow but we think that our symbolic bisimulation is complete enough to deal with many interesting cases.
Main Result

Conjecture
Let A and B be two processes. We have that

$$(A ; \emptyset) \approx_{symb} (B ; \emptyset) \implies A \approx_\ell B$$

Sources of Incompleteness
\leftarrow due to the fact that the instanciation of an input variable is postponed until the moment it is actually used

Example: $P_1 \approx_\ell Q_1$ whereas $(P_1 ; \emptyset) \not\approx_{symb} (Q_1 ; \emptyset)$.

$P_1 = \nu c_1.\text{in}(c_2, x). (\text{out}(c_1, b) \mid \text{in}(c_1, y) \mid \text{if } x = a \text{ then } \text{in}(c_1, z).\text{out}(c_2, a))$

$Q_1 = \nu c_1.\text{in}(c_2, x). (\text{out}(c_1, b) \mid \text{in}(c_1, y) \mid \text{in}(c_1, z).\text{if } x = a \text{ then } \text{out}(c_2, a))$

\leftarrow but we think that our symbolic bisimulation is complete enough to deal with many interesting cases.
Conclusion and Future Works

Conclusion:

- First **formal definitions** of receipt-freeness and coercion-resistance
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,
- 3 Case studies giving interesting insights

Works in Progress:

- An automatic procedure based on ProVerif
- A symbolic bisimulation for the applied pi calculus

Future Works:

- to design a procedure to solve our constraint systems for a class of equational theory as larger as possible
- to implement a tool based on this approach,
- other properties based on *not being able to prove* (abuse freeness)
Conclusion and Future Works

Conclusion:

- First **formal definitions** of receipt-freeness and coercion-resistance
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,
- 3 Case studies giving interesting insights

Works in Progress:

- An automatic procedure based on ProVerif
- A symbolic bisimulation for the applied pi calculus

Future Works:

- to **design a procedure** to solve our constraint systems for a class of equational theory as larger as possible
- to implement a **tool** based on this approach,
- **other properties** based on *not being able to prove* (abuse freeness)