Modelling and verifying privacy-type properties of electroning voting protocols

Stéphanie Delaune

Post-doctorante au LORIA – Projet Cassis

Monday 12th March

Electronic voting

Advantages:

- Convenient,
- Efficient facilities for tallying votes.

Drawbacks:

- Risk of large-scale and undetectable fraud,
- Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards and sell them on the Internet that would allow for multiple votes"

Avi Rubin

Possible issue: formal methods abstract analysis of the protocol against formally-stated properties

Electronic voting

Advantages:

- Convenient,
- Efficient facilities for tallying votes.

Drawbacks:

- Risk of large-scale and undetectable fraud,
- Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards and sell them on the Internet that would allow for multiple votes"

Avi Rubin

Possible issue: formal methods abstract analysis of the protocol against formally-stated properties

Example: Fujioka et al. protocol (1992)

First Phase:

the voter gets a "token" from the administrator.

- 1. $V \rightarrow A$: V, sign(blind(commit(vote, r), b), V)
- 2. $A \rightarrow V$: sign(blind(commit(vote, r), b), A)
- → to ensure privacy, blind signatures are used

Voting phase

- 3. $V \rightarrow C$: sign(commit(vote, r), A)
- 4. $C \rightarrow : I, sign(commit(vote, r), A)$

Counting phase

- 5. $V \rightarrow C$: I, r
- 6. C publishes the outcome of the vote
- \longrightarrow to ensure privacy, anonymous channel are used at step 3 and 5

Example: Fujioka et al. protocol (1992)

First Phase:

the voter gets a "token" from the administrator.

- 1. $V \rightarrow A$: V, sign(blind(commit(vote, r), b), V)
- 2. $A \rightarrow V$: sign(blind(commit(vote, r), b), A)
- → to ensure privacy, blind signatures are used

Voting phase:

- 3. $V \rightarrow C$: sign(commit(vote, r), A)
- 4. $C \rightarrow : l, sign(commit(vote, r), A)$

Counting phase

- 5. $V \rightarrow C$: I, I
- 6. C publishes the outcome of the vote
- \longrightarrow to ensure privacy, anonymous channel are used at step 3 and 5

Example: Fujioka et al. protocol (1992)

First Phase:

the voter gets a "token" from the administrator.

- 1. $V \rightarrow A$: V, sign(blind(commit(vote, r), b), V)
- 2. $A \rightarrow V$: sign(blind(commit(vote, r), b), A)
- → to ensure privacy, blind signatures are used

Voting phase:

- 3. $V \rightarrow C$: sign(commit(vote, r), A)
- 4. $C \rightarrow : I, sign(commit(vote, r), A)$

Counting phase:

- 5. $V \rightarrow C$: l, r
- 6. C publishes the outcome of the vote
- \longrightarrow to ensure privacy, anonymous channel are used at step 3 and 5

Security properties ...

Eligibility: only legitimate voters can vote, and only once

Fairness: no early results can be obtained which could influence the remaining voters

Individual verifiability:

a voter can verify that her vote was really counted

Universal verifiability:

the published outcome really is the sum of all the votes

Privacy-type security properties

Privacy: the fact that a particular voted in a particular way is not revealed to anyone

Receipt-freeness: a voter cannot prove that she voted in a certain way (this is important to protect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts with the voter during the protocol, (e.g. by preparing messages)

Summary

Observations:

- Definitions of security properties are often insufficiently precise
- No clear distinction between receipt-freeness and coercion-resistance

Goal:

- Propose "formal methods" definitions of privacy-type properties,
- Design automatic procedures to verify them.

Difficulties

- equivalence based-security properties are harder than reachability properties (e.g. secrecy, authentication),
- electronic voting protocols are often more complex than authentication protocols,
- less classical cryptographic primitives (e.g. blind signature).

Summary

Observations:

- Definitions of security properties are often insufficiently precise
- No clear distinction between receipt-freeness and coercion-resistance

Goal:

- Propose "formal methods" definitions of privacy-type properties,
- Design automatic procedures to verify them.

Difficulties

- equivalence based-security properties are harder than reachability properties (e.g. secrecy, authentication),
- electronic voting protocols are often more complex than authentication protocols,
- less classical cryptographic primitives (e.g. blind signature).

Summary

Observations:

- Definitions of security properties are often insufficiently precise
- No clear distinction between receipt-freeness and coercion-resistance

Goal:

- Propose "formal methods" definitions of privacy-type properties,
- Design automatic procedures to verify them.

Difficulties:

- equivalence based-security properties are harder than reachability properties (e.g. secrecy, authentication),
- electronic voting protocols are often more complex than authentication protocols,
- less classical cryptographic primitives (e.g. blind signature).

Results and Work in Progress

Modelling:

- Formalisation of privacy, receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance ⇒ Receipt-Freeness ⇒ Privacy,

Case Studies

- Fujioka et al.'92 commitment and blind signature,
- Okamoto'96 trap-door bit commitment and blind signature,
- Lee et al.'03 re-encryption and designated verifier proof of re-encryption

Verification: How to check such privacy-type properties?

- by using an existing tool (e.g. ProVerif)
- by developping new techniques (symbolic bisimulation)

Results and Work in Progress

Modelling:

- Formalisation of privacy, receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,

Case Studies:

- Fujioka et al.'92 commitment and blind signature,
- Okamoto'96 trap-door bit commitment and blind signature,
- Lee et al.'03 re-encryption and designated verifier proof of re-encryption.

Verification: How to check such privacy-type properties?

- by using an existing tool (e.g. ProVerif)
- by developping new techniques (symbolic bisimulation)

Results and Work in Progress

Modelling:

- Formalisation of privacy, receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,

Case Studies:

- Fujioka et al.'92 commitment and blind signature,
- Okamoto'96 trap-door bit commitment and blind signature,
- Lee et al.'03 re-encryption and designated verifier proof of re-encryption.

Verification: How to check such privacy-type properties?

- by using an existing tool (e.g. ProVerif)
- by developping new techniques (symbolic bisimulation)

Outline of the talk

- Introduction
- 2 Applied π -calculus
- Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
- Werification of privacy-type properties (works in progress)
- Conclusion and Future Works

Outline of the talk

- Introduction
- 2 Applied π -calculus
- Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
- 4 Verification of privacy-type properties (works in progress)
- Conclusion and Future Works

Motivation for using the applied π -calculus

Applied pi-calculus: [Abadi & Fournet, 01] basic programming language with constructs for concurrency and communication

- based on the π -calculus [Milner *et al.*, 92]
- in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Advantages

- allows us to model less classical cryptographic primitives
- both reachability and equivalence-based specification of properties
- automated proofs using ProVerif tool [Blanchet]
- powerful proof techniques for hand proofs
- successfully used to analyze a variety of security protocols

Motivation for using the applied π -calculus

Applied pi-calculus: [Abadi & Fournet, 01] basic programming language with constructs for concurrency and communication

- based on the π -calculus [Milner et al., 92]
- in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Advantages:

- allows us to model less classical cryptographic primitives
- both reachability and equivalence-based specification of properties
- automated proofs using ProVerif tool [Blanchet]
- powerful proof techniques for hand proofs
- successfully used to analyze a variety of security protocols

Syntax:

- Equational theory: dec(enc(x, y), y) = x
- Process:

$$P = \frac{vs}{k}.(\operatorname{out}(c_1, \operatorname{enc}(s, k)) \mid \operatorname{in}(c_1, y).\operatorname{out}(c_2, \operatorname{dec}(y, k))).$$

Semantics

 Operational semantics →: closed by structural equivalence (≡) and application of evaluation contexts such that

$$\begin{array}{lll} \mathsf{Comm} & \mathsf{out}(a,x).P \mid \mathsf{in}(a,x).Q \to P \mid Q \\ \mathsf{Then} & \mathsf{if} \ M = M \ \mathsf{then} \ P \ \mathsf{else} \ Q \to P \\ \mathsf{Else} & \mathsf{if} \ M = N \ \mathsf{then} \ P \ \mathsf{else} \ Q \to Q \ \ (M \neq_\mathsf{E} N) \\ \end{array}$$

Example: $P \rightarrow \nu s, k.out(c_2, s)$

ullet Labeled operational semantics $\stackrel{lpha}{
ightarrow}$

Syntax:

- Equational theory: dec(enc(x, y), y) = x
- Process:

$$P = \frac{vs}{k}.(\operatorname{out}(c_1, \operatorname{enc}(s, k)) \mid \operatorname{in}(c_1, y).\operatorname{out}(c_2, \operatorname{dec}(y, k))).$$

Semantics:

 Operational semantics →: closed by structural equivalence (≡) and application of evaluation contexts such that

$$\begin{array}{lll} \mathsf{Comm} & \mathsf{out}(a,x).P \mid \mathsf{in}(a,x).Q \to P \mid Q \\ \mathsf{Then} & \mathsf{if} \ M = M \ \mathsf{then} \ P \ \mathsf{else} \ Q \to P \\ \mathsf{Else} & \mathsf{if} \ M = N \ \mathsf{then} \ P \ \mathsf{else} \ Q \to Q \ \ (M \neq_{\mathsf{E}} N) \\ \end{array}$$

Example: $P \rightarrow \nu s, k.out(c_2, s)$

ullet Labeled operational semantics $\stackrel{lpha}{
ightarrow}$

Syntax:

- Equational theory: dec(enc(x, y), y) = x
- Process:

$$P = \frac{\nu s}{k} \cdot (\operatorname{out}(c_1, \operatorname{enc}(s, k)) \mid \operatorname{in}(c_1, y) \cdot \operatorname{out}(c_2, \operatorname{dec}(y, k))).$$

Semantics:

 Operational semantics →: closed by structural equivalence (≡) and application of evaluation contexts such that

```
 \begin{array}{lll} \mathsf{Comm} & \mathsf{out}(a,x).P \mid \mathsf{in}(a,x).Q \to P \mid Q \\ \mathsf{Then} & \mathsf{if} \ M = M \ \mathsf{then} \ P \ \mathsf{else} \ Q \to P \\ \mathsf{Else} & \mathsf{if} \ M = N \ \mathsf{then} \ P \ \mathsf{else} \ Q \to Q \ \ \ (M \neq_{\mathsf{E}} N) \\ \end{array}
```

Example:
$$P \rightarrow \nu s, k.out(c_2, s)$$

ullet Labeled operational semantics $\stackrel{lpha}{
ightarrow}$

Syntax:

- Equational theory: dec(enc(x, y), y) = x
- Process:

$$P = \frac{vs}{k}.(\operatorname{out}(c_1, \operatorname{enc}(s, k)) \mid \operatorname{in}(c_1, y).\operatorname{out}(c_2, \operatorname{dec}(y, k))).$$

Semantics:

 Operational semantics →: closed by structural equivalence (≡) and application of evaluation contexts such that

```
 \begin{array}{lll} \mathsf{Comm} & \mathsf{out}(a,x).P \mid \mathsf{in}(a,x).Q \to P \mid Q \\ \mathsf{Then} & \mathsf{if} \ M = M \ \mathsf{then} \ P \ \mathsf{else} \ Q \to P \\ \mathsf{Else} & \mathsf{if} \ M = N \ \mathsf{then} \ P \ \mathsf{else} \ Q \to Q \ \ (M \neq_{\mathsf{E}} N) \\ \end{array}
```

Example: $P \rightarrow \nu s, k.out(c_2, s)$

• Labeled operational semantics $\stackrel{\alpha}{\rightarrow}$

Equivalences on processes

Observational equivalence (\approx)

The largest symmetric relation $\mathcal R$ on processes such that $A \ \mathcal R \ B$ implies

- if $A \Downarrow a$, then $B \Downarrow a$,
- ② if $A \to^* A'$, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B',
- \bullet $C[A] \mathcal{R} C[B]$ for all closing evaluation contexts C[].

Labeled bisimilarity $(pprox_\ell)$

The largest symmetric relation $\mathcal R$ on processes, such that $A \ \mathcal R \ B$ implies

- ① $\phi(A) \approx_s \phi(B)$ (static equivalence)
- ② if $A \to A'$, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B',
- \bullet if $A \xrightarrow{\alpha} A'$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \mathcal{R} B'$ for some B'.

Equivalences on processes

Observational equivalence (\approx)

The largest symmetric relation $\mathcal R$ on processes such that $A \ \mathcal R \ B$ implies

- if $A \Downarrow a$, then $B \Downarrow a$,
- ② if $A \rightarrow^* A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',
- \circ $C[A] \mathcal{R} C[B]$ for all closing evaluation contexts C[].

Labeled bisimilarity $(pprox_\ell)$

The largest symmetric relation ${\cal R}$ on processes, such that $A \; {\cal R} \; B$ implies

- $\phi(A) \approx_s \phi(B)$ (static equivalence)
- ② if $A \to A'$, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B',
- \bullet if $A \xrightarrow{\alpha} A'$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \mathcal{R} B'$ for some B'.

Voting protocols in the applied π -calculus

Definition (Voting process)

$$VP \equiv \nu \tilde{n}.(V\sigma_1 \mid \cdots \mid V\sigma_n \mid A_1 \mid \cdots \mid A_m)$$

- $V\sigma_i$: voter processes and $v \in dom(\sigma_i)$ refers to the value of the vote
- A_j: election authorities which are required to be honest,
- ñ: channel names

 \hookrightarrow 5 is a context which is as VP but has a hole instead of two of the $V\sigma_i$

Main Process

```
process
  (* private channels *)
  ν. privCh; ν. pkaCh1; ν. pkaCh2; ν. skaCh;
  ν. skvaCh; ν. skvbCh;
  (* administrators *)
  (processK | processA | processC | processC |
   (* voters *)
  (let skvCh = skvaCh in let v = a in processV) |
  (let skvCh = skvbCh in let v = b in processV) )
```

```
let processV =
   (* his private key *)
  in(skvCh,skv); let hostv = host(pk(skv)) in
   (* public keys of the administrator *)
  in(pkaCh1,pubka);
  \nu. blinder; \nu. r; let committedvote = commit(v,r) in
  let blindedcommittedvote=blind(committedvote,blinder) in
  out(ch,(hostv,sign(blindedcommittedvote,skv)));
```

```
let processV =
   (* his private key *)
  in(skvCh,skv); let hostv = host(pk(skv)) in
   (* public keys of the administrator *)
  in(pkaCh1,pubka);
  \nu. blinder; \nu. r; let committedvote = commit(v,r) in
  let blindedcommittedvote=blind(committedvote,blinder) in
  out(ch,(hostv,sign(blindedcommittedvote,skv)));
  in(ch,m2);
  let result = checksign(m2,pubka) in
  if result = blindedcommittedvote then
  let signedcommittedvote=unblind(m2,blinder) in
```

```
let processV =
  (* his private key *)
  in(skvCh,skv); let hostv = host(pk(skv)) in
   (* public keys of the administrator *)
  in(pkaCh1,pubka);
  \nu. blinder; \nu. r; let committedvote = commit(v,r) in
  let blindedcommittedvote=blind(committedvote,blinder) in
  out(ch,(hostv,sign(blindedcommittedvote,skv)));
  in(ch,m2);
  let result = checksign(m2,pubka) in
  if result = blindedcommittedvote then
  let signedcommittedvote=unblind(m2,blinder) in
  phase 1;
  out(ch,(committedvote,signedcommittedvote));
  in(ch,(1,=committedvote,=signedcommittedvote));
```

```
let processV =
   (* his private key *)
   in(skvCh,skv); let hostv = host(pk(skv)) in
   (* public keys of the administrator *)
  in(pkaCh1,pubka);
  \nu. blinder; \nu. r; let committedvote = commit(v,r) in
  let blindedcommittedvote=blind(committedvote,blinder) in
  out(ch,(hostv,sign(blindedcommittedvote,skv)));
  in(ch,m2);
  let result = checksign(m2,pubka) in
   if result = blindedcommittedvote then
  let signedcommittedvote=unblind(m2,blinder) in
  phase 1;
   out(ch,(committedvote,signedcommittedvote));
   in(ch,(1,=committedvote,=signedcommittedvote));
  phase 2;
  \operatorname{out}(\operatorname{ch},(1,r)).
```

Outline of the talk

- Introduction
- 2 Applied π -calculus
- 3 Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
- 4 Verification of privacy-type properties (works in progress)
- 5 Conclusion and Future Works

Formalisation of privacy

Classically modeled as observational equivalences between two slightly different processes P_1 and P_2 , but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end

Solution

A voting protocol respects privacy if

$$S[V_A\{^a/_v\} \mid V_B\{^b/_v\}] \approx S[V_A\{^b/_v\} \mid V_B\{^a/_v\}].$$

Formalisation of privacy

Classically modeled as observational equivalences between two slightly different processes P_1 and P_2 , but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end

Solution:

A voting protocol respects privacy if

$$S[V_A{a/v} | V_B{b/v}] \approx S[V_A{b/v} | V_B{a/v}].$$

Some Examples

$$S[V_A{a/v} | V_B{b/v}] \approx S[V_A{b/v} | V_B{a/v}]$$

Naive vote protocol (version 1)

$$V \rightarrow S : \{v\}_{\mathsf{pub}(S)}$$

What about privacy?

Some Examples

$$S[V_A{a/v} | V_B{b/v}] \approx S[V_A{b/v} | V_B{a/v}]$$

Naive vote protocol (version 1)

$$V \rightarrow S : \{v\}_{\mathsf{pub}(S)}$$

What about privacy? OK

Some Examples

$$S[V_A{a/v} | V_B{b/v}] \approx S[V_A{b/v} | V_B{a/v}]$$

Naive vote protocol (version 1)

$$V \rightarrow S : \{v\}_{\mathsf{pub}(S)}$$

What about privacy? OK

Naive vote protocol (version 2)

$$V \rightarrow S: Id, \{v\}_{pub(S)}$$

What about privacy?

Some Examples

$$S[V_A{a/v} | V_B{b/v}] \approx S[V_A{b/v} | V_B{a/v}]$$

Naive vote protocol (version 1)

$$V \rightarrow S : \{v\}_{\mathsf{pub}(S)}$$

What about privacy? OK

Naive vote protocol (version 2)

$$V \rightarrow S : Id, \{v\}_{pub(S)}$$

What about privacy?

- deterministic encryption: NOT OK
- probabilistic encryption: OK

Example: Fujioka et al. protocol (1992)

First Phase:

the voter gets a "token" from the administrator.

- 1. $V \rightarrow A$: V, sign(blind(commit(vote, r), b), V)
- 2. $A \rightarrow V$: sign(blind(commit(vote, r), b), A)
- → to ensure privacy, blind signatures are used

Voting phase:

- 3. $V \rightarrow C$: sign(commit(vote, r), A)
- 4. $C \rightarrow : I, sign(commit(vote, r), A)$

Counting phase:

- 5. $V \rightarrow C$: I, r
- 6. C publishes the outcome of the vote
- \longrightarrow to ensure privacy, anonymous channel are used at step 3 and 5

Leaking secrets to the coercer

To model receipt-freeness we need to specify that a coerced voter cooperates with the coercer by leaking secrets on a channel *ch*

We denote by V^{ch} the process built from the process V as follows:

- $0^{ch} = 0$,
- $\bullet (P \mid Q)^{ch} \stackrel{\frown}{=} P^{ch} \mid Q^{ch},$
- $(\nu n.P)^{ch} = \nu n.out(ch, n).P^{ch}$,
- $(\operatorname{in}(u,x).P)^{ch} \cong \operatorname{in}(u,x).\operatorname{out}(ch,x).P^{ch}$
- $(\operatorname{out}(u, M).P)^{ch} \cong \operatorname{out}(u, M).P^{ch}$,
-

We denote by $V^{\setminus out(ch,\cdot)} \cong \nu ch.(V \mid !in(ch,x)).$

Receipt-freeness

Definition (Receipt-freeness)

A voting protocol is receipt-free if there exists a process V', satisfying

- $V'^{out(chc,\cdot)} \approx V_A\{^a/_v\},$
- $S[V_A\{^c/_v\}^{chc} \mid V_B\{^a/_v\}] \approx S[V' \mid V_B\{^c/_v\}].$

Intuitively, there exists a process V' which

- does vote a,
- leaks (possibly fake) secrets to the coercer,
- and makes the coercer believe he voted c

Summary

Coersion-Resistance is defined in a similar way (the voter has to used the outputs provided by the coercer)

Lemma

Let VP be a voting protocol. We have formally shown that: VP is coercion-resistant \implies VP is receipt-free \implies VP respects privacy.

Case Study (1): Fujioka et al.

- We have established privacy
- This protocol is not receipt-free
 - \hookrightarrow the random numbers for blinding and commitment can be used as a receipt

Outline of the talk

- Introduction
- 2 Applied π -calculus
- Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
- 4 Verification of privacy-type properties (works in progress)
- 5 Conclusion and Future Works

An existing tool (ProVerif)

Labeled bisimilarity $(pprox_\ell)$

The largest symmetric relation ${\cal R}$ on processes, such that $A \; {\cal R} \; B$ implies

- $\phi(A) \approx_s \phi(B)$ (depends on E),
- 2 if $A \to A'$, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B',
- \bullet if $A \xrightarrow{\alpha} A'$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \mathcal{R} B'$ for some B'.

This relation is in general undecidable. Why?

- unfolding tree is infinite in depth
 - unfolding tree is infinititely branching (because of inputs)
 - equational theories may be complex

Tool: Proveri

 \longrightarrow Obviously, the procedure is not complete.

An existing tool (ProVerif)

Labeled bisimilarity (\approx_{ℓ})

The largest symmetric relation ${\cal R}$ on processes, such that $A \; {\cal R} \; B$ implies

- $\phi(A) \approx_s \phi(B)$ (depends on E),
- ② if $A \to A'$, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B',
- \bullet if $A \xrightarrow{\alpha} A'$, then $B \xrightarrow{*} \xrightarrow{\alpha} \xrightarrow{*} B'$ and $A' \mathcal{R} B'$ for some B'.

This relation is in general undecidable. Why?

- unfolding tree is infinite in depth
- unfolding tree is infinititely branching (because of inputs)
- equational theories may be complex

Tool: Proverit

→ Obviously, the procedure is not complete.

An existing tool (ProVerif)

Labeled bisimilarity $(pprox_\ell)$

The largest symmetric relation ${\cal R}$ on processes, such that $A \; {\cal R} \; B$ implies

- $\phi(A) \approx_s \phi(B)$ (depends on E),
- ② if $A \to A'$, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B',
- \bullet if $A \xrightarrow{\alpha} A'$, then $B \xrightarrow{*} \xrightarrow{\alpha} \xrightarrow{*} B'$ and $A' \mathcal{R} B'$ for some B'.

This relation is in general undecidable. Why?

- unfolding tree is infinite in depth
- unfolding tree is infinititely branching (because of inputs)
- equational theories may be complex

Tool: Proverif

→ Obviously, the procedure is not complete.

Proverif is not able to establish privacy for the naive vote protocol

$$\{a\}_{\mathsf{pub}(S)} \mid \{b\}_{\mathsf{pub}(S)} \approx \{b\}_{\mathsf{pub}(S)} \mid \{a\}_{\mathsf{pub}(S)}$$

... and more generally for any electronic voting protocols.

Why

ProVerif works on biprocesses (processes having the same structure)

$$P \approx Q \Leftrightarrow$$
 let bool = choice[true,false] in if bool = true then P else Q

 Technique relies on easily matching up the execution paths of the two processes

First Phase
$$V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$$

Second Phase $V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$

Proverif is not able to establish privacy for the naive vote protocol

$$\{a\}_{\mathsf{pub}(S)} \mid \{b\}_{\mathsf{pub}(S)} \approx \{b\}_{\mathsf{pub}(S)} \mid \{a\}_{\mathsf{pub}(S)}$$

... and more generally for any electronic voting protocols.

Why?

ProVerif works on biprocesses (processes having the same structure).

$$P \approx Q$$
 \Leftrightarrow let bool = choice[true,false] in if bool = true then P else Q

 Technique relies on easily matching up the execution paths of the two processes

First Phase
$$V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$$

Second Phase $V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$

Proverif is not able to establish privacy for the naive vote protocol

$$\{a\}_{\mathsf{pub}(S)} \mid \{b\}_{\mathsf{pub}(S)} \approx \{b\}_{\mathsf{pub}(S)} \mid \{a\}_{\mathsf{pub}(S)}$$

... and more generally for any electronic voting protocols.

Why?

• ProVerif works on biprocesses (processes having the same structure).

$$P \approx Q$$
 \Leftrightarrow let bool = choice[true,false] in if bool = true then P else Q

 Technique relies on easily matching up the execution paths of the two processes

First Phase
$$V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$$

Second Phase $V_A\{^a/_v\} \mid V_B\{^b/_v\} pprox V_A\{^b/_v\} \mid V_B\{^a/_v\}$

Proverif is not able to establish privacy for the naive vote protocol

$$\{a\}_{\operatorname{pub}(S)} \mid \{b\}_{\operatorname{pub}(S)} \approx \{b\}_{\operatorname{pub}(S)} \mid \{a\}_{\operatorname{pub}(S)}$$

... and more generally for any electronic voting protocols.

Why?

ProVerif works on biprocesses (processes having the same structure).

$$P \approx Q$$
 \Leftrightarrow let bool = choice[true,false] in if bool = true then P else Q

 Technique relies on easily matching up the execution paths of the two processes

First Phase
$$V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$$

Second Phase $V_A\{^a/_v\} \mid V_B\{^b/_v\} \approx V_A\{^b/_v\} \mid V_B\{^a/_v\}$

First approach: procedure based on ProVerif

→ with Mark Ryan and Ben Smith (University of Birmingham)

$$V_A\{{}^a/_v\} \mid V_B\{{}^b/_v\} \approx V_A\{{}^b/_v\} \mid V_B\{{}^a/_v\}$$

where
$$V_X = V_X^1$$
; phase1; V_X^2

▶ Skip Details

First approach: procedure based on ProVerif

→ with Mark Ryan and Ben Smith (University of Birmingham)

$$V_A\{{}^a/_v\} \mid V_B\{{}^b/_v\} \approx V_A\{{}^b/_v\} \mid V_B\{{}^a/_v\}$$

where $V_X = V_X^1$; phase1; V_X^2

Conjecture

To establish the equivalence, it may be sufficient to show that

- $V_A^1\{a/v\} \mid V_B^1\{b/v\} \approx V_A^1\{b/v\} \mid V_B^1\{a/v\},$ (1st phase)
- for all interleaving I_1 of $V_A^1\{a'_v\} \mid V_B^1\{b'_v\}$, there (2nd phase) exists an interleaving I_2 of $V_A^1\{b'_v\} \mid V_B^1\{a'_v\}$ such that

$$l_1$$
; phase1; $(V_A^2 \{ a^a/_v \} \mid V_B^2 \{ b^b/_v \}) \approx l_2$; phase1; $(V_B^2 \{ a^b/_v \} \mid V_A^2 \{ b^b/_v \})$ and vice-versa.

• and some additional assumptions.

Second approach: symbolic bisimulation

→ with Steve Kremer (LSV) and Mark Ryan (University of Birmingham)

Our Goal:

to do better than Proverif in the context of a bounded number of sessions

- Infinite depth:
 - \hookrightarrow we restrict to consider processes without replication.
- Infinite branching:
 - → define a notion of symbolic processes and symbolic bisimulation

▶ Skip Details

Symbolic Bisimulation

Concrete Side:

$$\nu s, k.(\text{in}(c, x); P \mid \{\{s\}_k/_y\}) \xrightarrow{\text{in}(c, m_1)} \nu s, k.(P\{m_1/_x\} \mid \{\{s\}_k/_y\})$$

Symbolic Side:

Definition

Symbolic bisimulation \approx_{symb} is the largest symmetric relation \mathcal{R} such that $(A; \mathcal{C}_A) \mathcal{R} (B; \mathcal{C}_B)$ implies

- \bullet \mathcal{C}_A and \mathcal{C}_B are E-equivalent,
- if $(A; \mathcal{C}_A) \to_s (A'; \mathcal{C}_A')$ with $Sol_E(\mathcal{C}_A') \neq \emptyset$ then there exists $(B'; \mathcal{C}_B')$ such that $(B; \mathcal{C}_B) \to_s^* (B'; \mathcal{C}_B')$ and $(A'; \mathcal{C}_A') \mathcal{R} (B'; \mathcal{C}_B')$
- if $(A ; \mathcal{C}_A) \xrightarrow{\alpha}_s (A' ; \mathcal{C}'_A)$...

Symbolic Bisimulation

Concrete Side:

$$\nu s, k.(in(c, x); P \mid \{ \{s\}_k/_y \}) \xrightarrow{in(c, m_1)} \nu s, k.(P \{ m_1/_x \} \mid \{ \{s\}_k/_y \})$$

Symbolic Side:

$$(\nu s, k.(\operatorname{in}(c, x); P \mid \{^{\{s\}_k}/_y\}); C) \xrightarrow{\operatorname{in}(c, x)} (\nu s, k.(P \mid \{^{\{s\}_k}/_y\}); C \cup \{\nu s, k.\{^{\{s\}_k}/_y\} \Vdash x\})$$

Definition

Symbolic bisimulation \approx_{symb} is the largest symmetric relation \mathcal{R} such that $(A; \mathcal{C}_A) \mathcal{R} (B; \mathcal{C}_B)$ implies

- \bullet \mathcal{C}_A and \mathcal{C}_B are E-equivalent,
- if $(A ; \mathcal{C}_A) \rightarrow_s (A' ; \mathcal{C}'_A)$ with $Sol_{\mathsf{E}}(\mathcal{C}'_A) \neq \emptyset$ then there exists $(B' ; \mathcal{C}'_B)$ such that $(B ; \mathcal{C}_B) \rightarrow_s^* (B' ; \mathcal{C}'_B)$ and $(A' ; \mathcal{C}'_A) \mathcal{R}$ $(B ; \mathcal{C}_B) \rightarrow_s^* (B' ; \mathcal{C}'_B)$
- if $(A; \mathcal{C}_A) \xrightarrow{\alpha}_s (A'; \mathcal{C}'_A) \dots$

Symbolic Bisimulation

Concrete Side:

$$\nu s, k.(in(c,x); P \mid \{\{s\}_k/_y\}) \xrightarrow{in(c,m_1)} \nu s, k.(P\{m_1/_x\} \mid \{\{s\}_k/_y\})$$

Symbolic Side:

Definition

Symbolic bisimulation \approx_{symb} is the largest symmetric relation $\mathcal R$ such that $(A; \mathcal C_A) \mathcal R (B; \mathcal C_B)$ implies

- \bullet \mathcal{C}_A and \mathcal{C}_B are E-equivalent,
- if $(A ; \mathcal{C}_A) \rightarrow_s (A' ; \mathcal{C}'_A)$ with $Sol_E(\mathcal{C}'_A) \neq \emptyset$ then there exists $(B' ; \mathcal{C}'_B)$ such that $(B ; \mathcal{C}_B) \rightarrow_s^* (B' ; \mathcal{C}'_B)$ and $(A' ; \mathcal{C}'_A) \mathcal{R} (B' ; \mathcal{C}'_B)$
- if $(A ; \mathcal{C}_A) \xrightarrow{\alpha}_s (A' ; \mathcal{C}'_A) \dots$

Main Result

Conjecture

Let A and B be two processes. We have that

$$(A ; \emptyset) \approx_{symb} (B ; \emptyset) \implies A \approx_{\ell} B$$

Sources of Incompleteness

due to the fact that the instanciation of an input variable is postponed until the moment it is actually used

Example: $P_1 pprox_{\ell} Q_1$ whereas $(P_1 ; \emptyset) \notpprox_{symb} (Q_1 ; \emptyset)$.

$$P_1 = \nu c_1.in(c_2, x).(out(c_1, b) \mid in(c_1, y) \mid if x = a \text{ then } in(c_1, z).out(c_2, a))$$

 $Q_1 = \nu c_1.in(c_2, x).(out(c_1, b) \mid in(c_1, y) \mid in(c_1, z).if x = a \text{ then } out(c_2, a))$

 \hookrightarrow but we think that our symbolic bisimulation is complete enough to deal with many interesting cases.

Main Result

Conjecture

Let A and B be two processes. We have that

$$(A ; \emptyset) \approx_{symb} (B ; \emptyset) \implies A \approx_{\ell} B$$

Sources of Incompleteness

Example: $P_1 \approx_{\ell} Q_1$ whereas $(P_1; \emptyset) \not\approx_{symb} (Q_1; \emptyset)$.

$$P_1 = \nu c_1.in(c_2, x).(out(c_1, b) \mid in(c_1, y) \mid if \ x = a \ then \ in(c_1, z).out(c_2, a))$$

 $Q_1 = \nu c_1.in(c_2, x).(out(c_1, b) \mid in(c_1, y) \mid in(c_1, z).if \ x = a \ then \ out(c_2, a))$

with many interesting cases.

Main Result

Conjecture

Let A and B be two processes. We have that

$$(A ; \emptyset) \approx_{symb} (B ; \emptyset) \implies A \approx_{\ell} B$$

Sources of Incompleteness

Example: $P_1 \approx_{\ell} Q_1$ whereas $(P_1; \emptyset) \not\approx_{symb} (Q_1; \emptyset)$.

$$P_1 = \nu c_1.in(c_2, x).(out(c_1, b) | in(c_1, y) | if x = a \text{ then } in(c_1, z).out(c_2, a))$$

 $Q_1 = \nu c_1.in(c_2, x).(out(c_1, b) | in(c_1, y) | in(c_1, z).if x = a \text{ then } out(c_2, a))$

 \hookrightarrow but we think that our symbolic bisimulation is complete enough to deal with many interesting cases.

Conclusion and Future Works

Conclusion:

- First formal definitions of receipt-freeness and coercion-resistance
- Coercion-Resistance ⇒ Receipt-Freeness ⇒ Privacy,
- 3 Case studies giving interesting insights

Works in Progress:

- An automatic procedure based on ProVerif
- A symbolic bisimulation for the applied pi calculus

Future Works:

- to design a procedure to solve our constaint systems for a class of equational theory as larger as possible
- to implement a tool based on this approach
- other properties based on *not being able to prove* (abuse freeness)

Conclusion and Future Works

Conclusion:

- First formal definitions of receipt-freeness and coercion-resistance
- Coercion-Resistance ⇒ Receipt-Freeness ⇒ Privacy,
- 3 Case studies giving interesting insights

Works in Progress:

- An automatic procedure based on ProVerif
- A symbolic bisimulation for the applied pi calculus

Future Works:

- to design a procedure to solve our constaint systems for a class of equational theory as larger as possible
- to implement a tool based on this approach,
- other properties based on not being able to prove (abuse freeness)