Modelling and verifying privacy-type properties

of electroning voting protocols

Stéphanie Delaune

School of Computer Science, University of Birmingham, UK

S. Delaune (Sch. of Computer Science) Electronic Voting 1/28

Electronic voting

Advantages:
R +I‘

o Convenient,

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

S. Delaune (Sch. of Computer Science) Electronic Voting 2/ 28

Electronic voting

Advantages:
. '\ A\
o Convenient, v

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

Possible issue: formal methods

abstract analysis of the protocol against formally-stated properties

S. Delaune (Sch. of Computer Science) Electronic Voting 2/ 28

Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V— A : V,sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b),A

— to ensure privacy, blind signatures are used

S. Delaune (Sch. of Computer Science) Electronic Voting

3/ 28

Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V— A : V,sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b),A

— to ensure privacy, blind signatures are used

Voting phase:

3. V—C : sign(commit(vote,r),A)
4. C— .1, sign(commit(vote, r), A)

S. Delaune (Sch. of Computer Science) Electronic Voting

3/ 28

Example: Fujioka et al. protocol (1992)

First Phase:
the voter gets a “token” from the administrator.

1. V— A : V,sign(blind(commit(vote,r),b), V)
2. A—V : sign(blind(commit(vote,r),b),A

— to ensure privacy, blind signatures are used

Voting phase:
3. V—C : sign(commit(vote,r),A)
4. C— .1, sign(commit(vote, r), A)
Counting phase:

5. V—>C : Ir
6. C publishes the outcome of the vote

—— to ensure privacy, anonymous channel are used at step 3 and 5

S. Delaune (Sch. of Computer Science) Electronic Voting

3/ 28

Privacy-type security properties

Privacy: the fact that a particular voted in a particular way is not revealed
to anyone

Receipt-freeness: a voter cannot prove that she
voted in a certain way (this is important to pro-
tect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts
with the voter during the protocol, (e.g. by preparing messages)

S. Delaune (Sch. of Computer Science) Electronic Voting 4 /28

Summary

Observations:
@ Definitions of security properties are often insufficiently precise

@ No clear distinction between receipt-freeness and coercion-resistance

S. Delaune (Sch. of Computer Science) Electronic Voting 5/ 28

Observations:
@ Definitions of security properties are often insufficiently precise

@ No clear distinction between receipt-freeness and coercion-resistance

Goal:
@ Propose “formal methods” definitions of privacy-type properties,

@ Design automatic procedures to verify them.

S. Delaune (Sch. of Computer Science) Electronic Voting 5/ 28

Observations:
@ Definitions of security properties are often insufficiently precise

@ No clear distinction between receipt-freeness and coercion-resistance

Goal:
@ Propose “formal methods” definitions of privacy-type properties,

@ Design automatic procedures to verify them.

Difficulties:

@ equivalence based-security properties are harder than reachability
properties (e.g. secrecy, authentication),

@ electronic voting protocols are often more complex than authentication
protocols,

@ less classical cryptographic primitives (e.g. blind signature).

S. Delaune (Sch. of Computer Science) Electronic Voting 5/ 28

Results and Work in Progress

Modelling:

@ Formalisation of privacy, receipt-freeness and coercion-resistance as
some kind of observational equivalence in the applied pi-calculus,

@ Coercion-Resistance = Receipt-Freeness = Privacy,

S. Delaune (Sch. of Computer Science) Electronic Voting 6 /28

Results and Work in Progress

Modelling:

@ Formalisation of privacy, receipt-freeness and coercion-resistance as
some kind of observational equivalence in the applied pi-calculus,

@ Coercion-Resistance = Receipt-Freeness = Privacy,

Case Studies:
@ Fujioka et al.'92 — commitment and blind signature,
@ Okamoto'96 — trap-door bit commitment and blind signature,

@ Lee et al."03 — re-encryption and designated verifier proof of re-encrption.

S. Delaune (Sch. of Computer Science) Electronic Voting 6 /28

Results and Work in Progress

Modelling:

@ Formalisation of privacy, receipt-freeness and coercion-resistance as
some kind of observational equivalence in the applied pi-calculus,

@ Coercion-Resistance = Receipt-Freeness = Privacy,

Case Studies:
@ Fujioka et al.'92 — commitment and blind signature,
@ Okamoto'96 — trap-door bit commitment and blind signature,

@ Lee et al."03 — re-encryption and designated verifier proof of re-encrption.

Verification: How to check such privacy-type properties?
@ by using an existing tool (e.g. ProVerif)

@ by developping new techniques (symbolic bisimulation)

S. Delaune (Sch. of Computer Science) Electronic Voting 6 /28

Outline of the talk

@ Introduction

© Applied r-calculus

© Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
Q@ Verification of privacy-type properties

© Conclusion and Future Works

S. Delaune (Sch. of Computer Science) Electronic Voting 7/ 28

Outline of the talk

© Applied r-calculus

S. Delaune (Sch. of Computer Science) Electronic Voting 8/ 28

Motivation for using the applied 7-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

@ based on the 7-calculus [Milner et al., 92]

@ in some ways similar to the spi-calculus [Abadi & Gordon, 98]

S. Delaune (Sch. of Computer Science) Electronic Voting

9/ 28

Motivation for using the applied 7-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

@ based on the 7-calculus [Milner et al., 92]

@ in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Advantages:
@ allows us to model less classical cryptographic primitives

both reachability and equivalence-based specification of properties

°
@ automated proofs using ProVerif tool [Blanchet]
@ powerful proof techniques for hand proofs

°

successfully used to analyze a variety of security protocols

S. Delaune (Sch. of Computer Science) Electronic Voting 9/ 28

The applied 7-calculus on an example

Syntax:
@ Equational theory: dec(enc(x,y),y) = x
@ Process:
P = vs, k.(out(c1, enc(s, k)) | in(c1, y).out(co, dec(y, k))).

S. Delaune (Sch. of Computer Science) Electronic Voting 10 / 28

The applied 7-calculus on an example

Syntax:
@ Equational theory: dec(enc(x,y),y) = x
@ Process:
P = vs, k.(out(c1, enc(s, k)) | in(c1, y).out(co, dec(y, k))).

Semantics:
@ Operational semantics —: closed by structural equivalence (=) and
application of evaluation contexts such that
Comm out(a,x).P|in(a,x).Q — P | Q
Then if M= M then Pelse Q — P
Else if M= N then Pelse Q — Q (M #g N)

S. Delaune (Sch. of Computer Science) Electronic Voting 10 / 28

The applied 7-calculus on an example

Syntax:
@ Equational theory: dec(enc(x,y),y) = x
@ Process:
P = vs, k.(out(c1, enc(s, k)) | in(c1, y).out(co, dec(y, k))).

Semantics:

@ Operational semantics —: closed by structural equivalence (=) and
application of evaluation contexts such that

Comm out(a,x).P|in(a,x).Q — P | Q
Then if M= M then Pelse Q — P
Else if M= N then Pelse Q — Q (M #g N)

Example: P — wvs, k.out(cy, s)

S. Delaune (Sch. of Computer Science) Electronic Voting 10 / 28

The applied 7-calculus on an example

Syntax:
@ Equational theory: dec(enc(x,y),y) = x
@ Process:
P = vs, k.(out(c1, enc(s, k)) | in(c1, y).out(co, dec(y, k))).

Semantics:

@ Operational semantics —: closed by structural equivalence (=) and
application of evaluation contexts such that

Comm out(a,x).P|in(a,x).Q — P | Q
Then if M= M then Pelse Q — P
Else if M= N then Pelse Q — Q (M #g N)

Example: P — wvs, k.out(cy, s)
o Labeled operational semantics —

S. Delaune (Sch. of Computer Science) Electronic Voting 10 / 28

Equivalences on processes

Observational equivalence (=)

The largest symmetric relation R on processes such that A R B implies
Q if Al a, then B |} a,
Q if A—* A, then B —* B’ and A R B’ for some B/,
© C[A] R C[B] for all closing evaluation contexts C[].

S. Delaune (Sch. of Computer Science) Electronic Voting 11 / 28

Equivalences on processes

Observational equivalence (=)

The largest symmetric relation R on processes such that A R B implies
Q if Al a, then B || a,
Q if A—* A, then B —* B’ and A’ R B’ for some B/,
© C[A] R C[B] for all closing evaluation contexts C[].

Labeled bisimilarity (=)

The largest symmetric relation R on processes, such that A R B implies
Q ¢(A) =s ¢(B) (static equivalence)
Q if A— A, then B —* B’ and A’ R B’ for some B,
Q ifAS A, then B—*%—* B and A R B’ for some B’.

S. Delaune (Sch. of Computer Science) Electronic Voting 11 / 28

Voting protocols in the applied 7-calculus

Definition (Voting process)

VP =vh.(Vor|---|Von |AL] | Am)

@ Voj: voter processes and v € dom(o;) refers to the value of the vote
@ A;: election authorities which are required to be honest,

@ 1: channel names

— S is a context which is as VP but has a hole instead of two of the Vo;

S. Delaune (Sch. of Computer Science) Electronic Voting 12 / 28

Example: Fujioka et al. (1992)

Main Process

process
(* private channels *)

v. privCh; v. pkaChl; v. pkaCh2; v. skaCh;

v. skvaCh; v. skvbCh;
(¥ administrators *)

(processK | processA | processA | processC | processC |

(* voters *)

(let skvCh = skvaCh in let v = a in processV) |

(let skvCh

S. Delaune (Sch. of Computer Science)

skvbCh in let v

b in processV))

Electronic Voting

13 / 28

Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));

S. Delaune (Sch. of Computer Science) Electronic Voting 14 / 28

Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));
in(ch,m2);
let result = checksign(m2,pubka) in
if result = blindedcommittedvote then
let signedcommittedvote=unblind(m2,blinder) in

S. Delaune (Sch. of Computer Science) Electronic Voting 14 / 28

Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));
in(ch,m2);
let result = checksign(m2,pubka) in
if result = blindedcommittedvote then
let signedcommittedvote=unblind(m2,blinder) in

phase 1;
out (ch, (committedvote,signedcommittedvote));
in(ch, (1,=committedvote,=signedcommittedvote)) ;

S. Delaune (Sch. of Computer Science) Electronic Voting 14 / 28

Example: Fujioka et al. (1992)

let processV =
(* his private key *)
in(skvCh,skv); let hostv = host(pk(skv)) in
(* public keys of the administrator *)
in(pkaChl,pubka) ;
v. blinder; v. r; let committedvote = commit(v,r) in
let blindedcommittedvote=blind(committedvote,blinder) in
out (ch, (hostv,sign(blindedcommittedvote,skv)));
in(ch,m2);
let result = checksign(m2,pubka) in
if result = blindedcommittedvote then
let signedcommittedvote=unblind(m2,blinder) in

phase 1;

out (ch, (committedvote,signedcommittedvote));
in(ch, (1,=committedvote,=signedcommittedvote)) ;
phase 2;

out (ch, (1,r)).

S. Delaune (Sch. of Computer Science) Electronic Voting 14 / 28

Outline of the talk

© Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)

S. Delaune (Sch. of Computer Science) Electronic Voting 15 / 28

Formalisation of privacy

Classically modeled as observational equivalences between two slightly
different processes Py and P», but

@ changing the identity does not work, as identities are revealed

@ changing the vote does not work, as the votes are revealed at the end

S. Delaune (Sch. of Computer Science) Electronic Voting 16 / 28

Formalisation of privacy

Classically modeled as observational equivalences between two slightly
different processes Py and P», but

@ changing the identity does not work, as identities are revealed

@ changing the vote does not work, as the votes are revealed at the end

Solution:
— consider 2 honest voters and swap their votes

A voting protocol respects privacy if

S[Va{?/u} | Ve{®/}] = SIVa{®/v} | VB{®/u}]-

S. Delaune (Sch. of Computer Science) Electronic Voting 16 / 28

Some Examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy?

S. Delaune (Sch. of Computer Science) Electronic Voting 17 / 28

Some Examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

S. Delaune (Sch. of Computer Science) Electronic Voting 17 / 28

Some Examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Naive vote protocol (version 2)

V - S /d, {V}pub(S)

What about privacy?

S. Delaune (Sch. of Computer Science) Electronic Voting 17 / 28

Some Examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Naive vote protocol (version 2)

V - S /d, {V}pub(S)

What about privacy?

@ deterministic encryption: NOT OK
@ probabilistic encryption: OK

S. Delaune (Sch. of Computer Science) Electronic Voting 17 / 28

Leaking secrets to the coercer

To model receipt-freeness we need to specify that a coerced voter
cooperates with the coercer by leaking secrets on a channel ch

We denote by V<" the process built from the process V as follows:
e 0h =0,
° (P‘ Q)ch = pch | Qch,
o (vn.P)" = vn.out(ch, n).Ph,
o (in(u, x).P)" = in(u, x).out(ch, x).Ph,
o (out(u, M).P)" = out(u, M).P",
° ...

We denote by V\out(ch-) = ych (V |lin(ch, x)).

S. Delaune (Sch. of Computer Science) Electronic Voting 18 / 28

Receipt-freeness

Definition (Receipt-freeness)

A voting protocol is receipt-free if there exists a process V', satisfying

o \//\out(chc,) ~ VA{a/v},
o S[Va{/v} | Ve{?/u}] = SIV' | V&{°/\}].

Intuitively, there exists a process V'’ which
@ does vote a,
o leaks (possibly fake) secrets to the coercer,

@ and makes the coercer believe he voted ¢

S. Delaune (Sch. of Computer Science) Electronic Voting 19 / 28

Coersion-Resistance is defined in a similar way (the voter has to used the
outputs provided by the coercer)

Let VP be a voting protocol. We have formally shown that: VP is
coercion-resistant =—> V/P is receipt-free =—> V/P respects privacy.

Case Study (1): Fujioka et al.
@ We have established privacy
— holds even if the authorities are corrupt

@ This protocol is not receipt-free
— the random numbers for blinding and commitment can be used as
a receipt

S. Delaune (Sch. of Computer Science) Electronic Voting 20 / 28

Outline of the talk

Q@ Verification of privacy-type properties

S. Delaune (Sch. of Computer Science) Electronic Voting 21 /28

An existing tool (ProVerif)

Labeled bisimilarity (=)

The largest symmetric relation R on processes, such that A R B implies
Q ¢(A)=~;4(B) (depends on E),
Q if A— A, then B —* B’ and A’ R B’ for some B,
Q ifAS A, then B—*%—* B and A’ R B’ for some B'.

S. Delaune (Sch. of Computer Science) Electronic Voting 22 /28

An existing tool (ProVerif)

Labeled bisimilarity (=)
The largest symmetric relation R on processes, such that A R B implies

Q ¢(A)~s¢(B) (depends on E),
Q if A— A, then B —* B and A R B’ for some B/,

Q ifAS A, then B—*%—* B and A’ R B’ for some B'.

This relation is in general undecidable. Why?
@ unfolding tree is infinite in depth
@ unfolding tree is infinititely branching (because of inputs)

@ equational theories may be complex

S. Delaune (Sch. of Computer Science) Electronic Voting 22 /28

An existing tool (ProVerif)

Labeled bisimilarity (=)
The largest symmetric relation R on processes, such that A R B implies

Q ¢(A)~s¢(B) (depends on E),
Q if A— A, then B —* B and A R B’ for some B/,

Q ifAS A, then B—*%—* B and A’ R B’ for some B'.

This relation is in general undecidable. Why?
@ unfolding tree is infinite in depth
@ unfolding tree is infinititely branching (because of inputs)

@ equational theories may be complex

Tool: Proverif
—— Obviously, the procedure is not complete.

S. Delaune (Sch. of Computer Science) Electronic Voting 22 /28

Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(S) | {b}pub(S) ~ {b}pub(S) | {a}pub(S)

. and more generally for any electronic voting protocols.

S. Delaune (Sch. of Computer Science) Electronic Voting 23 /28

Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(s) | {B}pub(s) = {b}pub(s) | {a}pub(s)
. and more generally for any electronic voting protocols.
Why?
@ ProVerif works on biprocesses (processes having the same structure).

let bool = choice[true,false] in

PrQ if bool = true then P else Q

@ Technique relies on easily matching up the execution paths of the two
processes

S. Delaune (Sch. of Computer Science) Electronic Voting 23 /28

Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(s) | {6} pub(s) = {b}pub(s) | {2} pub(s)
. and more generally for any electronic voting protocols.
Why?
@ ProVerif works on biprocesses (processes having the same structure).

let bool = choice[true,false] in

if bool = true then P else Q

@ Technique relies on easily matching up the execution paths of the two
processes
First Phase

P~Q

Val?/v} | Ve{®/u} = Va{®/u} | VB{®/\}

S. Delaune (Sch. of Computer Science) Electronic Voting 23 /28

Drawbacks of ProVerif

Proverif is not able to establish privacy for the naive vote protocol

{a}pub(s) | {B}pub(s) = {b}pub(s) | {a}pub(s)
. and more generally for any electronic voting protocols.
Why?
@ ProVerif works on biprocesses (processes having the same structure).

let bool = choice[true,false] in

PrQ if bool = true then P else Q

@ Technique relies on easily matching up the execution paths of the two
processes
Second Phase

Val/u} | Ve{®/u} = Val®/u} | Ve{?/}

S. Delaune (Sch. of Computer Science) Electronic Voting 23 /28

How can we improve ProVerif?

— with Mark Ryan and Ben Smith (University of Birmingham)

Val®/v} | Ve{®/v} = Val®/u} | Ve {/\}

where Vx = V)%;phasel; V)%

To establish the equivalence, it may be sufficient to show that

o VA{?/u} I Va{®/v} = Vi{®/u} | Va{*/u},
o for all interleaving 11 of Vi{?/,} | VE{®/.}. there
exists an interleaving /» of VX{?/,} | V5{?/,} such that

h; phasel; (V3{?/,} | V3{®/.}) =~ b;phasel; (V3{*/.} | Va{®/.})

and vice-versa,

@ and some additional assumptions.

(1%t phase)
(2" phase)

S. Delaune (Sch. of Computer Science) Electronic Voting

24 / 28

Can we do better than ProVerif?

— with Steve Kremer (LSV) and Mark Ryan (University of Birmingham)

Our Goal:
to do better than Proverif in the context of a bounded number of sessions

@ Infinite depth:
< we restrict to consider processes without replication.
@ Infinite branching:
— define a notion of symbolic processes and symbolic bisimulation

S. Delaune (Sch. of Computer Science) Electronic Voting 25 / 28

Symbolic Bisimulation

Concrete Side:

vs, k.(in(c,x); P | {{s}k/y})

in(c,m1)

vs, k(P{™ [x} [{17/, })

S. Delaune (Sch. of Computer Science) Electronic Voting 26 / 28

Symbolic Bisimulation

Concrete Side:

vs, k.(in(c,x); P | {{s}k/y})

Symbolic Side: .
(vs, k.(in(c,x); P | {{S}k/y}) . C) in(c,x)
(I/S7 k(P | {{S}k/y}) - CU {I/S, k{{s}k/y} - X})

in(c,m1)

vs, k(P{™ [x} [{17/, })

S. Delaune (Sch. of Computer Science) Electronic Voting 26 / 28

Symbolic Bisimulation

Concrete Side:
vs, k.(in(c,x); P | {7/, })
Symbolic Side:

(vs, k.(in(c,x); P | {t3%/,}) ; C)
(vs, k(P {3/, }) s CU{ws, k{%/,} IF x})

Symbolic bisimulation /s, is the largest symmetric relation R such that
(A; Ca) R (B; Cg) implies
@ Ch and Cg are E-equivalent,
o if (A; Ca) —s (A" C}) with Sole(Cy) # 0 then there exists
(B"; Cp) such that (B ; Cg) —% (B'; Cg) and (A"; C}) R (B'; Cg)
o if (A; Ca) S5 (A CY) ...

in(c,m1)

vs, k.(P{™ /x} | {t7%/y})

in(c,x)

S. Delaune (Sch. of Computer Science) Electronic Voting 26 / 28

Main Result

Let A and B be two processes. We have that

(A; 0) ~gymp (B; 0) = A~y B

S. Delaune (Sch. of Computer Science) Electronic Voting 27 / 28

Main Result

Let A and B be two processes. We have that

(A; 0) ~gymp (B; 0) = A~y B

Sources of Incompleteness

— due to the fact that the instanciation of an input variable is postponed
until the moment it is actually used

Example: Py =~y Q1 whereas (P1; 0) Agmps (Q1; 0).

P1 = vey.in(cp, x).(out(cy, b) | in(c1, y) | if x = a then in(cy, z).out(cz, a))
Q1 = vey.in(ep, x).(out(cy, b) | in(cy,y) | in(c1, 2).if x = a then out(cp, a))

S. Delaune (Sch. of Computer Science) Electronic Voting 27 / 28

Main Result

Let A and B be two processes. We have that

(A; 0) ~gymp (B; 0) = A~y B

Sources of Incompleteness
— due to the fact that the instanciation of an input variable is postponed
until the moment it is actually used

Example: Py =~y Q1 whereas (P1; 0) Agmps (Q1; 0).

P1 = vey.in(cp, x).(out(cy, b) | in(c1, y) | if x = a then in(cy, z).out(cz, a))
Q1 = vey.in(ep, x).(out(cy, b) | in(cy,y) | in(c1, 2).if x = a then out(cp, a))

— but we think that our symbolic bisimulation is complete enough to deal
with many interesting cases.

S. Delaune (Sch. of Computer Science) Electronic Voting 27 / 28

Conclusion and Future Works

Conclusion:
@ First formal definitions of receipt-freeness and coercion-resistance
@ Coercion-Resistance = Receipt-Freeness = Privacy,

@ 3 Case studies giving interesting insights

Current Works:
@ An automatic procedure based on ProVerif

@ A symbolic bisimulation for the applied pi calculus

S. Delaune (Sch. of Computer Science) Electronic Voting 28 / 28

Conclusion and Future Works

Conclusion:
@ First formal definitions of receipt-freeness and coercion-resistance
@ Coercion-Resistance = Receipt-Freeness = Privacy,
@ 3 Case studies giving interesting insights
Current Works:
@ An automatic procedure based on ProVerif
@ A symbolic bisimulation for the applied pi calculus
Future Works:

@ to design a procedure to solve our constaint systems for a class of
equational theory as larger as possible

@ to implement a tool based on this approach,

@ other properties based on not being able to prove (abuse freeness)

S. Delaune (Sch. of Computer Science) Electronic Voting 28 / 28

	Introduction
	Applied -calculus
	Formalisation of Privacy-type Properties (Privacy, Receipt-Freeness)
	Verification of privacy-type properties
	Conclusion and Future Works

