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Cryptographic Protocols (1)

Net

Protocol: rules of message exchanges

Goal: secure communications
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Cryptographic Protocols (1)

Protocol: rules of message exchanges

Goal: secure communications

Presence of an attacker

may read every messages sent on the network

may intercept and send new messages
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Cryptographic Protocols (2)

Credit Card

Electronic Purse

Electronic Signature

Electronic Vote

Secure Access
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Goals

Secrecy: May an intruder learn some secret message between two
honest participants ?

Authentication: Is the agent Alice really talking to Bob ?
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Goals

Secrecy: May an intruder learn some secret message between two
honest participants ?

Authentication: Is the agent Alice really talking to Bob ?

Fairness: Alice and Bob want to sign a contract. Alice initiates the
protocol. May Bob obtain some advantage ?

Privacy: Alice participate to an election. May a participant learn
something about the vote of Alice ?

Receipt-Freeness: Alice participate to an election. Does Alice gain
any information (a receipt) which can be used to prove to a coercer
that she voted in a certain way ?

...
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Encryption

Symmetric Encryption

encryption decryption
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Encryption

Symmetric Encryption

encryption decryption

Asymmetric Encryption

encryption decryption

public key private key
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Dolev-Yao Intruder Model

u, v terms
T a finite set of terms (intruder’s knowledge)

Axiom (A)
u ∈ T

T ⊢ u
Pairing (P)

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

Unpairing (UL)
T ⊢ 〈u, v〉

T ⊢ u
Unpairing (UR)

T ⊢ 〈u, v〉

T ⊢ v

Encryption (E)
T ⊢ u T ⊢ v

T ⊢ {u}v

Decryption (D)
T ⊢ {u}v T ⊢ v−1

T ⊢ u

Perfect Cryptography Assumption

No way to obtain knowledge about u from {u}v without knowing v−1
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Needham-Schroeder’s Protocol (1978)

• A → B : {A, Na}pub(B)

B → A : {Na, Nb}pub(A)

A → B : {Nb}pub(B)

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 7 / 39



Needham-Schroeder’s Protocol (1978)

A → B : {A, Na}pub(B)

• B → A : {Na, Nb}pub(A)

A → B : {Nb}pub(B)
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Needham-Schroeder’s Protocol (1978)

A → B : {A, Na}pub(B)

B → A : {Na, Nb}pub(A)

• A → B : {Nb}pub(B)

Questions

Is Nb secret between A and B ?

When B receives {Nb}pub(B), does this message really comes from A ?
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Needham-Schroeder’s Protocol (1978)

A → B : {A, Na}pub(B)

B → A : {Na, Nb}pub(A)

• A → B : {Nb}pub(B)

Questions

Is Nb secret between A and B ?

When B receives {Nb}pub(B), does this message really comes from A ?

Attack

An attack was found 17 years after its publication! [Lowe 96]
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Man in the Middle Attack

Agent A Intrus I Agent B

Attack

involving 2 sessions in parallel,

an honest agent has to initiate a
session with I.

A → B : {A, Na}pub(B)

B → A : {Na, Nb}pub(A)

A → B : {Nb}pub(B)
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Man in the Middle Attack

Agent A Intrus I Agent B

{A, Na}pub(I ) {A, Na}pub(B)

{Na, Nb}pub(A){Na, Nb}pub(A)

{Nb}pub(I ) {Nb}pub(B)

Attack

the intruder knows Nb,

When B finishes his session
(apparently with A), A has
never talked with B.

A → B : {A, Na}pub(B)

B → A : {Na, Nb}pub(A)

A → B : {Nb}pub(B)
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Tatebayashi, Matsuzaki, Newman (TMN)

Protocol Desciption

A, B, S : principal
Ka, Kb : fresh symkey

pub, priv : principal → key (keypair)

A → S : B, {Ka}pub(S)
S → B : A
B → S : A, {Kb}pub(S)
S → A : B, Kb ⊕ Ka
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Ka, Kb : fresh symkey

pub, priv : principal → key (keypair)

A → S : B, {Ka}pub(S)
S → B : A
B → S : A, {Kb}pub(S)
S → A : B, Kb ⊕ Ka

RSA Encryption:

m c = me mod n cd mod n = m
encryption decryption

public key: (n, e) private key: (n, d)
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Tatebayashi, Matsuzaki, Newman (TMN)

Protocol Desciption

A, B, S : principal
Ka, Kb : fresh symkey

pub, priv : principal → key (keypair)

A → S : B, {Ka}pub(S)
S → B : A
B → S : A, {Kb}pub(S)
S → A : B, Kb ⊕ Ka

RSA Encryption:

m c = me mod n cd mod n = m
encryption decryption

public key: (n, e) private key: (n, d)

Homomorphism property : {x × y}pub(S) = {x}pub(S) × {y}pub(S)
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Some Interesting Equational Theories

homomorphism axiom (h): h(x + y) = h(x) + h(y)

1 Associativity, Commutativity (AC):

(x + y) + z = x + (y + z),
x + y = y + x

2 Exclusive or (ACUN):

x + 0 = x (U), x + x = 0 (N)

3 Abelian groups (AG):

x + 0 = x (U), x + I(x) = 0 (Inv)
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Outline of the talk

1 Introduction

2 Passive Intruder (may read every messages sent on the network)
Intruder Deduction Problem
Some Existing Results
How to deal with Homomorphisms?

3 Active Intruder (may intercept and send new messages)
Trace Reachability Problem
Some Existing Results
Equational Theories ACUNh and AGh

4 Conclusion and Future Works

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 11 / 39



Outline of the talk

1 Introduction

2 Passive Intruder (may read every messages sent on the network)
Intruder Deduction Problem
Some Existing Results
How to deal with Homomorphisms?

3 Active Intruder (may intercept and send new messages)
Trace Reachability Problem
Some Existing Results
Equational Theories ACUNh and AGh

4 Conclusion and Future Works
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Intruder Deduction Problem

Intruder Deduction Capabilities

(A)
u ∈ T

T ⊢E u
(C)

T ⊢E u1 . . . T ⊢E un
with f ∈ F

T ⊢E f (u1, . . . , un)

(UL)
T ⊢E 〈u, v〉

T ⊢E u
(D)

T ⊢E {u}v T ⊢E v

T ⊢E u

(UR)
T ⊢E 〈u, v〉

T ⊢E v
(Eq)

T ⊢E u u =E v

T ⊢E v

Intruder deduction problem (ID)

INPUT: a finite set of terms T , a term s (the secret).

OUTPUT: Does there exist an E-proof of T ⊢E s?
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Intruder Deduction Problem

Example: T = {a + b, {h(a)}k , k}

s = h(b)

E = ACUNh
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Intruder Deduction Problem

Example: T = {a + b, {h(a)}k , k}

s = h(b)

E = ACUNh

P =























a + b ∈ T
(A)

T ⊢E a + b
(C)

T ⊢E h(a + b)

{h(a)}k ∈ T
(A)

T ⊢E {h(a)}k

k ∈ T
(A)

T ⊢E k
(D)

T ⊢E h(a)
(C)

T ⊢E h(a + b) + h(a)
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Intruder Deduction Problem

Example: T = {a + b, {h(a)}k , k}

s = h(b)

E = ACUNh

P =























a + b ∈ T
(A)

T ⊢E a + b
(C)

T ⊢E h(a + b)

{h(a)}k ∈ T
(A)

T ⊢E {h(a)}k

k ∈ T
(A)

T ⊢E k
(D)

T ⊢E h(a)
(C)

T ⊢E h(a + b) + h(a)

P h(a + b) + h(a) =E h(b)
(Eq)

T ⊢E h(b)

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 14 / 39



Some Existing Results

Complexity of the Intruder Deduction Problem

without any equational theory (Dolev-Yao model): PTIME-complete

with an equational theory

Results of Chevalier et al. 2003

AC ACUN AG
NP PTIME

Results of Lafourcade, Lugiez and Treinen 2005

ACh ACUNh AGh
NP-complete EXPTIME

→ PTIME in the binary case
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Sketch of Proof

Let T be a set of terms and u a term (in normal forms)

1 An effective inference system (⊢) such that:

T ⊢ u is derivable ⇔ T ⊢E u is derivable

2 A locality result (notion due to Mc Allester, 1993), i.e.:
A minimal proof P of T ⊢ u only contains terms in StE(T ∪ {u}).

3 A one-step deducibility result:
→ to ensure that we can test that a deduction step is valid
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Exclusive Or Example

1 Inference System:
T ⊢ u1 . . . T ⊢ un

(ME)
T ⊢ u1 + . . . + un ↓
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Exclusive Or Example

1 Inference System:
T ⊢ u1 . . . T ⊢ un

(ME)
T ⊢ u1 + . . . + un ↓

2 Notion of Subterms: (no partial sum)
Example: t = {a1 + a2 + a3}b

StE(t) = {t, a1 + a2 + a3, b, a1, a2, a3}
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Exclusive Or Example

1 Inference System:
T ⊢ u1 . . . T ⊢ un

(ME)
T ⊢ u1 + . . . + un ↓

2 Notion of Subterms: (no partial sum)
Example: t = {a1 + a2 + a3}b

StE(t) = {t, a1 + a2 + a3, b, a1, a2, a3}

3 One-Step Deducibility of (ME):
→ solvability of a system of linear equations over Z/2Z: A · Y = b.
Example: T = {a1 + a2, a2 + a3 + a4} and s = a1 + a3 + a4

A =









1 0
1 1
0 1
0 1









b =









1
0
1
1
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How to Deal with Homomorphism ?

h(x + y) → h(x) + h(y)

Approach of Lafourcade et al. 2005

T ⊢ u

T ⊢ h(u)↓

T ⊢ u1 . . . T ⊢ un

T ⊢ u1 + . . . + un↓
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T ⊢ u1 . . . T ⊢ un

T ⊢ u1 + . . . + un↓

advantage: one-step deducibilty, easy to prove
drawback: locality, hard to prove for a “good” notion of subterms

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 18 / 39



How to Deal with Homomorphism ?

h(x + y) → h(x) + h(y)

Approach of Lafourcade et al. 2005

T ⊢ u

T ⊢ h(u)↓

T ⊢ u1 . . . T ⊢ un

T ⊢ u1 + . . . + un↓

advantage: one-step deducibilty, easy to prove
drawback: locality, hard to prove for a “good” notion of subterms

My approach

T ⊢ u1 . . . T ⊢ un
with C an E-context

T ⊢ C [u1, . . . , un]↓
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How to Deal with Homomorphism ?

h(x + y) → h(x) + h(y)

Approach of Lafourcade et al. 2005

T ⊢ u

T ⊢ h(u)↓

T ⊢ u1 . . . T ⊢ un

T ⊢ u1 + . . . + un↓

advantage: one-step deducibilty, easy to prove
drawback: locality, hard to prove for a “good” notion of subterms

My approach

T ⊢ u1 . . . T ⊢ un
with C an E-context

T ⊢ C [u1, . . . , un]↓

advantage: locality, easy to prove
drawback: one-step deducibility seems difficult to prove
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My Inference System

Intruder Deduction Capabilities

(A)
u ∈ T

T ⊢ u
(C−)

T ⊢ u1 . . . T ⊢ un
with f ∈ F \ sig(E )

T ⊢ f (u1, . . . , un)

(UL)
T ⊢ 〈u, v〉

T ⊢ u
(D)

T ⊢ {u}v T ⊢ v

T ⊢ u

(UR)
T ⊢ 〈u, v〉

T ⊢ v
(ME)

T ⊢ u1 . . . T ⊢ un
with C an E-context

T ⊢ C [u1, . . . , un] ↓
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My Inference System

Intruder Deduction Capabilities

(A)
u ∈ T

T ⊢ u
(C−)

T ⊢ u1 . . . T ⊢ un
with f ∈ F \ sig(E )

T ⊢ f (u1, . . . , un)

(UL)
T ⊢ 〈u, v〉

T ⊢ u
(D)

T ⊢ {u}v T ⊢ v

T ⊢ u

(UR)
T ⊢ 〈u, v〉

T ⊢ v
(ME)

T ⊢ u1 . . . T ⊢ un
with C an E-context

T ⊢ C [u1, . . . , un] ↓

Theorem

Let T be a set of terms and u a term (in normal forms). We have:

T ⊢ u is derivable ⇔ T ⊢E u is derivable
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Locality

Notion of Subterms
→ Generalization of the notion used in the Exclusive Or case

Examples:

Let t1 = h2(a) + b + c . StE(t1) = {t1, a, b, c}

Let t2 = h(〈a, b〉) + c . StE(t2) = {t2, 〈a, b〉, a, b, c}
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Locality

Notion of Subterms
→ Generalization of the notion used in the Exclusive Or case

Examples:

Let t1 = h2(a) + b + c . StE(t1) = {t1, a, b, c}

Let t2 = h(〈a, b〉) + c . StE(t2) = {t2, 〈a, b〉, a, b, c}

Locality Result

Lemma

A minimal proof P of T ⊢ u only contains terms in StE(T ∪ {u}).
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One-Step-Deducibility (1/2)

The only critical rule is (ME).
→ solvability of a system of linear equations over N[h], Z/2Z[h] or Z[h]
(depending on E).
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One-Step-Deducibility (1/2)

The only critical rule is (ME).
→ solvability of a system of linear equations over N[h], Z/2Z[h] or Z[h]
(depending on E).

Example: (ACUNh)
T = {t1, t2, t3} and s = a1 + h2(a1).

t1 = a1 + h(a1) + h2(a1), t2 = a2 + h2(a1), t3 = h(a2) + h2(a1).

A =

(

1 + h + h2 h2 h2

0 1 h

)

b =

(

1 + h2

0

)

The equation A · Y = b has a solution over Z/2Z[h] : Y = (1 + h, h, 1).

C = x1 + h(x1) + h(x2) + x3
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One-Step-Deducibility (2/2)

Complexity of solving linear equations:

over N[h]: NP-complete

over Z/2Z[h]: PTIME [Kaltofen et al., 1987]

over Z[h]: PTIME

1 thanks to [Aschenbrenner, 2004], A · Y = b has a solution iff there is
one such that each component of Y has a degree polynomially
bounded by the degrees and the coefficients which appear in A and b.

2 reduce the problem to the solvability of an enormous (but polynomial)
system of linear equations over Z (PTIME).
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Complexity of solving linear equations:

over N[h]: NP-complete

over Z/2Z[h]: PTIME [Kaltofen et al., 1987]

over Z[h]: PTIME

1 thanks to [Aschenbrenner, 2004], A · Y = b has a solution iff there is
one such that each component of Y has a degree polynomially
bounded by the degrees and the coefficients which appear in A and b.

2 reduce the problem to the solvability of an enormous (but polynomial)
system of linear equations over Z (PTIME).

Result [Delaune’05]

(ID) is PTIME-complete for ACUNh and AGh.
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Trace Reachability Problem

Trace Reachability Problem

Given a protocol P, an intruder theory I, an equational theory E,
a secret data s and an initial intruder’s knowledge T0,
does there exist a running sequence of protocol rules such that:

at the end, the intruder’s knowledge is T ,

s is deducible from T

Results in the Dolev-Yao Intruder Model

unbounded number of sessions: undecidable

bounded number of sessions: NP-complete [RT01]
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Symbolic Constraint Solving Approach

Definition

A constraint is a sequent of the form T  u where T is a finite set of
terms and u is a term (T and u are not necessarily ground).

A system of constraints is a sequence of constraints. A solution to a
system C of constraints is a substitution σ such that:

for every T  u ∈ C there exists a proof of Tσ ⊢ uσ
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Symbolic Constraint Solving Approach

Definition

A constraint is a sequent of the form T  u where T is a finite set of
terms and u is a term (T and u are not necessarily ground).

A system of constraints is a sequence of constraints. A solution to a
system C of constraints is a substitution σ such that:

for every T  u ∈ C there exists a proof of Tσ ⊢ uσ

Which constraint systems are particularly interesting for us?
→ Well-defined constraint systems:

monotonicity

origination property (satisfies by the class of deterministic protocols)
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Needham-Schroeder’s Example (1)

Protocol
RoleA (xa, xb): νna. → {xa, na}pub(xb)

{na, xnb
}pub(xa) → {xnb

}pub(xb)

RoleB (yb): νnb. {ya, yna}pub(yb) → {yna , nb}pub(ya)
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Protocol
RoleA (xa, xb): νna. → {xa, na}pub(xb)

{na, xnb
}pub(xa) → {xnb

}pub(xb)

RoleB (yb): νnb. {ya, yna}pub(yb) → {yna , nb}pub(ya)

We consider RoleA(a, I ) and RoleB(b) (running in parallel).

Instanciation

→ {a, na}pub(I )

{na, xnb
}pub(a) → {xnb

}pub(I )

{ya, yna}pub(b) → {yna , nb}pub(ya)
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Needham-Schroeder’s Example (1)

Protocol
RoleA (xa, xb): νna. → {xa, na}pub(xb)

{na, xnb
}pub(xa) → {xnb

}pub(xb)

RoleB (yb): νnb. {ya, yna}pub(yb) → {yna , nb}pub(ya)

We consider RoleA(a, I ) and RoleB(b) (running in parallel).

Instanciation

→ {a, na}pub(I )

{na, xnb
}pub(a) → {xnb

}pub(I )

{ya, yna}pub(b) → {yna , nb}pub(ya)

Initial intruder’s knowledge: T0 = {a, b, I , pub(a), pub(b), pub(I ), priv(I )}
Secret: nb
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Needham-Schroeder’s Example (1)

Protocol
RoleA (xa, xb): νna. → {xa, na}pub(xb)

{na, xnb
}pub(xa) → {xnb

}pub(xb)

RoleB (yb): νnb. {ya, yna}pub(yb) → {yna , nb}pub(ya)

We consider RoleA(a, I ) and RoleB(b) (running in parallel).

Instanciation

1 → {a, na}pub(I )

3 {na, xnb
}pub(a) → {xnb

}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

Initial intruder’s knowledge: T0 = {a, b, I , pub(a), pub(b), pub(I ), priv(I )}
Secret: nb
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )  {ya, yna}pub(b)
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )  {ya, yna}pub(b)

T0, {a, na}pub(I ), {yna , nb}pub(ya)
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )  {ya, yna}pub(b)

T0, {a, na}pub(I ), {yna , nb}pub(ya)  {na, xnb
}pub(a)
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )  {ya, yna}pub(b)

T0, {a, na}pub(I ), {yna , nb}pub(ya)  {na, xnb
}pub(a)

T0, {a, na}pub(I ), {yna , nb}pub(ya), {xnb
}pub(I )

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 27 / 39



Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )  {ya, yna}pub(b)

T0, {a, na}pub(I ), {yna , nb}pub(ya)  {na, xnb
}pub(a)

T0, {a, na}pub(I ), {yna , nb}pub(ya), {xnb
}pub(I )  nb
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Needham-Schroeder’s Example (2)

Instanciation

1 → {a, na}pub(I )

2 {ya, yna}pub(b) → {yna , nb}pub(ya)

3 {na, xnb
}pub(a) → {xnb

}pub(I )

Constraints System (well-defined)

T0, {a, na}pub(I )  {ya, yna}pub(b)

T0, {a, na}pub(I ), {yna , nb}pub(ya)  {na, xnb
}pub(a)

T0, {a, na}pub(I ), {yna , nb}pub(ya), {xnb
}pub(I )  nb

Solution
σ = {yna 7→ na, xnb

7→ nb, ya 7→ a}
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What Happens by Adding an Equational Theory E ?

Unification Problem modulo E

INPUT: Given 2 terms u[x1, . . . , xn] and v [x1, . . . , xn]

OUTPUT: Yes iff there exists a substitution
σ = {x1 7→ M1, . . . , xn 7→ Mn} such that uσ =E vσ.
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What Happens by Adding an Equational Theory E ?

Unification Problem modulo E

INPUT: Given 2 terms u[x1, . . . , xn] and v [x1, . . . , xn]

OUTPUT: Yes iff there exists a substitution
σ = {x1 7→ M1, . . . , xn 7→ Mn} such that uσ =E vσ.

Protocol

1. x1, . . . , xn → {u[x1, . . . , xn], v [x1, . . . , xn]}Kab

2. {x , x}Kab → secret

secret is secret ⇐⇒ u and v have no E -unifier
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What Happens by Adding an Equational Theory E ?

Unification Problem modulo E

INPUT: Given 2 terms u[x1, . . . , xn] and v [x1, . . . , xn]

OUTPUT: Yes iff there exists a substitution
σ = {x1 7→ M1, . . . , xn 7→ Mn} such that uσ =E vσ.

Protocol

1. x1, . . . , xn → {u[x1, . . . , xn], v [x1, . . . , xn]}Kab

2. {x , x}Kab → secret

secret is secret ⇐⇒ u and v have no E -unifier

Undecidability Result

Unification Problem undecidable in E
⇓

Trace Reachability Problem undecidable in E (bounded nb of sessions)
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Some Existing Results

Trace Reachability Problem (bounded number of sessions)

without any equational theory (Dolev-Yao model): NP-complete

with an equational theory

AC-like theories

AC ACUN AG

?
NP [CKRT03]

Decidable [Shm04]
Decidable [CLS03]

with homomorphism

ACh ACUNh AGh

Undecidable ? ?
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New Results

Theorem [Delaune, Lafourcade, Lugiez and Treinen’05]

The trace reachability problem is decidable for the theory ACUNh.

Details
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New Results

Theorem [Delaune, Lafourcade, Lugiez and Treinen’05]

The trace reachability problem is decidable for the theory ACUNh.

Details

Theorem [Delaune’06]

The trace reachability problem is undecidable for the theory AGh.

Details
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Outline of the talk

1 Introduction

2 Passive Intruder (may read every messages sent on the network)
Intruder Deduction Problem
Some Existing Results
How to deal with Homomorphisms?

3 Active Intruder (may intercept and send new messages)
Trace Reachability Problem
Some Existing Results
Equational Theories ACUNh and AGh

4 Conclusion and Future Works
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Conclusion

A new approach to deal with Homomorphism allowing to:

improve some existing complexity results

obtain new decidability and undecidability results

Passive Intruder [Delaune’05]

ACh ACUNh AGh

NP-complete PTIME-(complete)

Active Intruder
[Delaune,Lafourcade,Lugiez and Treinen’05] & [Delaune’06]

ACh ACUNh AGh

Undecidable Decidable Undecidable
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Future Works

Others kind of homomorphisms Lafourcade, Lugiez & Treinen

homomorphic encryption

commutating homomorphic encryption
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Future Works

Others kind of homomorphisms Lafourcade, Lugiez & Treinen

homomorphic encryption

commutating homomorphic encryption

Towards a generic result Bernat, Comon-Lundh & Delaune
Our problem is the satisfaisability of a constraint system C in (I, E)

1 Reduce the equational theory to a simpler one, i.e. ∅ or AC.
→ Finite Variant Property

C solvable in (I,E) ⇔ ∃ C′ ∈ var(C). C′ solvable in (var(I), E ′)

2 Find sufficient conditions on the inference system to ensure
decidability of the problem in (var(I), E ′).
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Procedure in the case of ACUNh (1)

First Part:
Reduce the problem to the solvability of a (well-defined) system of ME

constraints on the reduced signature ({0, h,⊕} and constants).

1 From  constraints to 1 (one-step) constraints
→ Generalisation of the locality result to non-groun terms

2 From 1 constraints to ME
constraints

→ ACUNh-unification is decidable and finitary

3 Abstract subterms by constants
→ this abstraction preserves the well-definedness of the system
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Procedure in the case of ACUNh (1)

First Part:
Reduce the problem to the solvability of a (well-defined) system of ME

constraints on the reduced signature ({0, h,⊕} and constants).

1 From  constraints to 1 (one-step) constraints
→ Generalisation of the locality result to non-groun terms

2 From 1 constraints to ME
constraints

→ ACUNh-unification is decidable and finitary

3 Abstract subterms by constants
→ this abstraction preserves the well-definedness of the system

Now, we have to solve ME
constraint systems on a reduced signature:

Example : C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)
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Procedure in the case of ACUNh (2)

Second Part:

C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)
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Procedure in the case of ACUNh (2)

Second Part:

C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)

A Solution is: X1 7→ h4(a)
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Procedure in the case of ACUNh (2)

Second Part:

C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)

A Solution is: X1 7→ h4(a)

Indeed,
a + h(a) h(a) + h2(a) . . . h6(a) + h7(a)

a + h7(a)
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Procedure in the case of ACUNh (2)

Second Part:

C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)

A Solution is: X1 7→ h4(a)

Contexts used to solve the both intruder deduction problems:

1 z [1, 1] = 1 + h + h2 + . . . + h6

2 z [2, 1] = 0 and z [2, 2] = 1
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Procedure in the case of ACUNh (2)

Second Part:

C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)

A Solution is: X1 7→ h4(a)

Contexts used to solve the both intruder deduction problems:

1 z [1, 1] = 1 + h + h2 + . . . + h6

2 z [2, 1] = 0 and z [2, 2] = 1

Lemma

If such a constraint system has a solution, then there is one where defining
context variables (in this example z [1, 1]) are bounded by Qmax .

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 35 / 39



Procedure in the case of ACUNh (2)

Second Part:

C =

{

a + h(a) ME
a + h3(X1)

a + h(a); b + X1 ME
b + h4(a)

A Solution is: X1 7→ h4(a)

Contexts used to solve the both intruder deduction problems:

1 z [1, 1] = 1 + h + h2 + . . . + h6

2 z [2, 1] = 0 and z [2, 2] = 1

Lemma

If such a constraint system has a solution, then there is one where defining
context variables (in this example z [1, 1]) are bounded by Qmax .

Example: Qmax = h3

Another solution is: z [1, 1] = 1 + h + h2 and X1 7→ a.
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Procedure in the case of ACUNh (2)

Second Part:
Reduce the problem to the satisfaisability of a set of intruder deduction
problems (ground constraints)

4 From ME
constaints to ground ME

constraints

solvable system admits small (< Qmax ) defining contexts variables
determine value of the variables (X1, . . .Xn) from the values of the
defining contexts variables

5 Check satisfaisability of ground ME
constaints: PTIME.

Back
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Trace Reachability Problem for AGh

Abelian groups + homomorphism (AGh):

h(x + y) = h(x) + h(y)

(x + y) + z = x + (y + z) x + 0 = x
x + y = y + x x + −(x) = 0

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 37 / 39



Trace Reachability Problem for AGh

Abelian groups + homomorphism (AGh):

h(x + y) = h(x) + h(y)

(x + y) + z = x + (y + z) x + 0 = x
x + y = y + x x + −(x) = 0

1 First Part: As in the ACUNh case, we can reduce the problem to the
solvability of a (well-defined) system of ME

constraints on the
reduced signature.
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Trace Reachability Problem for AGh

Abelian groups + homomorphism (AGh):

h(x + y) = h(x) + h(y)

(x + y) + z = x + (y + z) x + 0 = x
x + y = y + x x + −(x) = 0

1 First Part: As in the ACUNh case, we can reduce the problem to the
solvability of a (well-defined) system of ME

constraints on the
reduced signature.

2 Second Part: Contrary to the ACUNh case, satisfaisability of
(well-defined) ME

constraints on the reduced signature is
undecidable for AGh.
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Reduction of the Hilbert’s 10th problem

Hilbert’s 10th problem
Input: a set S of equations of the form: xi = m, xi + xi ′ = xj , or x2

i = xj .
Output: Does S have a solution over Z?
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Reduction of the Hilbert’s 10th problem

Hilbert’s 10th problem
Input: a set S of equations of the form: xi = m, xi + xi ′ = xj , or x2

i = xj .
Output: Does S have a solution over Z?

Example: Let t = 4a + 3h2(a) − 3b. N (a, t) = 4 and N (b, t) = −3.
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Reduction of the Hilbert’s 10th problem

Hilbert’s 10th problem
Input: a set S of equations of the form: xi = m, xi + xi ′ = xj , or x2

i = xj .
Output: Does S have a solution over Z?

Example: Let t = 4a + 3h2(a) − 3b. N (a, t) = 4 and N (b, t) = −3.

Let n is the number of variables and p the number of equations.

1 A first part C1 ensures that:

σ solution of C1 ⇒ N (a, X ′

i σ) = N (a, Xiσ)2

All the terms in C1 are of the form hk(..) with k ≥ p.

Stéphanie Delaune (FT R&D, LSV) Verification of Security Protocols February, 13, 2006 38 / 39



Reduction of the Hilbert’s 10th problem

Hilbert’s 10th problem
Input: a set S of equations of the form: xi = m, xi + xi ′ = xj , or x2

i = xj .
Output: Does S have a solution over Z?

Example: Let t = 4a + 3h2(a) − 3b. N (a, t) = 4 and N (b, t) = −3.

Let n is the number of variables and p the number of equations.

1 A first part C1 ensures that:

σ solution of C1 ⇒ N (a, X ′

i σ) = N (a, Xiσ)2

All the terms in C1 are of the form hk(..) with k ≥ p.

2 A second part C2 (one constraint per equation) is built as follows:

1. xi = m  ..; hp−1(Xi ) + c1  hp−1(ma) + c1

2. xi + xj = xk  .. ; hp−2(Xi + Xj) + c2  hp−2(Xk) + c2

3. xi = x2
j =  .. ; hp−3(Xi ) + c3  hp−3(X ′

j ) + c3
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Encoding Product

X1, X ′

1 and Y1 are variables.

C1 :=























h3(a)  h3(X1)
h3(a)  h3(X ′

1)
h2(b); h3(a)  h2(Y1)

h(a + b); h2(b); h3(a)  h(X1 + Y1)
X1 + b; h(a + b); h2(b); h3(a)  X ′

1 + Y1

Let σ be a solution of C1. We have:
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Encoding Product

X1, X ′

1 and Y1 are variables.

C1 :=























h3(a)  h3(X1)
h3(a)  h3(X ′

1)
h2(b); h3(a)  h2(Y1)

h(a + b); h2(b); h3(a)  h(X1 + Y1)
X1 + b; h(a + b); h2(b); h3(a)  X ′

1 + Y1

Let σ be a solution of C1. We have:

X1σ and X ′

1σ contains no occurences of b, h(b), h2(b), ...
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Encoding Product

X1, X ′

1 and Y1 are variables.

C1 :=























h3(a)  h3(X1)
h3(a)  h3(X ′

1)
h2(b); h3(a)  h2(Y1)

h(a + b); h2(b); h3(a)  h(X1 + Y1)
X1 + b; h(a + b); h2(b); h3(a)  X ′

1 + Y1

Let σ be a solution of C1. We have:

X1σ and X ′

1σ contains no occurences of b, h(b), h2(b), ...

N (a, Y1σ) = 0,
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Encoding Product

X1, X ′

1 and Y1 are variables.

C1 :=























h3(a)  h3(X1)
h3(a)  h3(X ′

1)
h2(b); h3(a)  h2(Y1)

h(a + b); h2(b); h3(a)  h(X1 + Y1)
X1 + b; h(a + b); h2(b); h3(a)  X ′

1 + Y1

Let σ be a solution of C1. We have:

X1σ and X ′

1σ contains no occurences of b, h(b), h2(b), ...

N (a, Y1σ) = 0,

N (a, X1σ) = N (b, Y1σ)
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Encoding Product

X1, X ′

1 and Y1 are variables.

C1 :=























h3(a)  h3(X1)
h3(a)  h3(X ′

1)
h2(b); h3(a)  h2(Y1)

h(a + b); h2(b); h3(a)  h(X1 + Y1)
X1 + b; h(a + b); h2(b); h3(a)  X ′

1 + Y1

Let σ be a solution of C1. We have:

X1σ and X ′

1σ contains no occurences of b, h(b), h2(b), ...

N (a, Y1σ) = 0,

N (a, X1σ) = N (b, Y1σ)

N (a, X ′

1σ) = N (a, X1σ) ×N (b, Y1σ)
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Encoding Product

X1, X ′

1 and Y1 are variables.

C1 :=























h3(a)  h3(X1)
h3(a)  h3(X ′

1)
h2(b); h3(a)  h2(Y1)

h(a + b); h2(b); h3(a)  h(X1 + Y1)
X1 + b; h(a + b); h2(b); h3(a)  X ′

1 + Y1

Let σ be a solution of C1. We have:

X1σ and X ′

1σ contains no occurences of b, h(b), h2(b), ...

N (a, Y1σ) = 0,

N (a, X1σ) = N (b, Y1σ)

N (a, X ′

1σ) = N (a, X1σ) ×N (b, Y1σ)

Hence, we have N (a, X ′

1σ) = N (a, X1σ) ×N (a, X1σ) Back
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