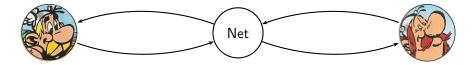
Verification of Security Protocols in presence of Equational Theories with Homomorphism

Stéphanie Delaune

France Télécom, division R&D, LSV CNRS & ENS Cachan

February, 13, 2006

Cryptographic Protocols (1)



- Protocol: rules of message exchanges
- Goal: secure communications

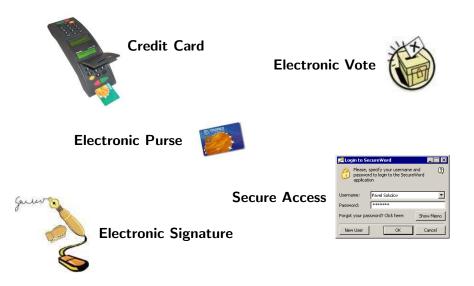
Cryptographic Protocols (1)

- Protocol: rules of message exchanges
- Goal: secure communications

Presence of an attacker

- may read every messages sent on the network
- may intercept and send new messages

Cryptographic Protocols (2)



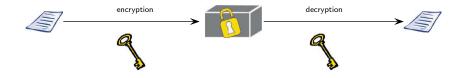
- ∢ ≣ →

- ∢ /⊐) - ∢

- Secrecy: May an intruder learn some secret message between two honest participants ?
- Authentication: Is the agent Alice really talking to Bob ?

- Secrecy: May an intruder learn some secret message between two honest participants ?
- Authentication: Is the agent Alice really talking to Bob ?
- Fairness: Alice and Bob want to sign a contract. Alice initiates the protocol. May Bob obtain some advantage ?
- Privacy: Alice participate to an election. May a participant learn something about the vote of Alice ?
- Receipt-Freeness: Alice participate to an election. Does Alice gain any information (a receipt) which can be used to prove to a coercer that she voted in a certain way ?

Symmetric Encryption



э

Image: A mathematical states and a mathem

Symmetric Encryption

Asymmetric Encryption

Dolev-Yao Intruder Model

u, v terms T a finite set of terms (intruder's knowledge)

Axiom (A)	$\frac{u \in T}{T \vdash u}$	Pairing (P)	$\frac{T\vdash u T\vdash v}{T\vdash \langle u,v\rangle}$
Unpairing (UL)	$\frac{T \vdash \langle u, v \rangle}{T \vdash u}$	Unpairing (UR)	$\frac{T \vdash \langle u, v \rangle}{T \vdash v}$
Encryption (E)	$\frac{T\vdash u T\vdash v}{T\vdash \{u\}_v}$	Decryption (D)	$\frac{T \vdash \{u\}_{v} T \vdash v^{-1}}{T \vdash u}$

Perfect Cryptography Assumption

No way to obtain knowledge about u from $\{u\}_v$ without knowing v^{-1}

Stéphanie Delaune (FT R&D, LSV)

Verification of Security Protocols

•
$$A \rightarrow B: \{A, N_a\}_{pub(B)}$$

 $B \rightarrow A: \{N_a, N_b\}_{pub(A)}$
 $A \rightarrow B: \{N_b\}_{pub(B)}$

Α	\rightarrow	B :	$\{A, N_a\}_{pub(B)}$
В	\rightarrow	<i>A</i> :	$\{N_a, N_b\}_{\text{pub}(A)}$
Α	\rightarrow	B :	$\{N_b\}_{pub(B)}$

$$\begin{array}{rcl} A & \rightarrow & B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow & B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

$$\begin{array}{rcl} A & \rightarrow & B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow & B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Questions

- Is N_b secret between A and B?
- When B receives $\{N_b\}_{pub(B)}$, does this message really comes from A?

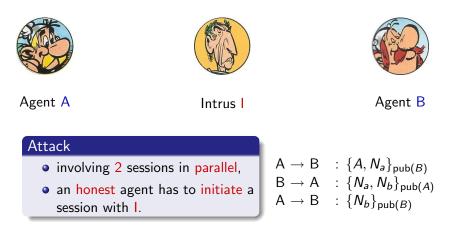
$$\begin{array}{rcl} A & \rightarrow & B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \rightarrow & B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

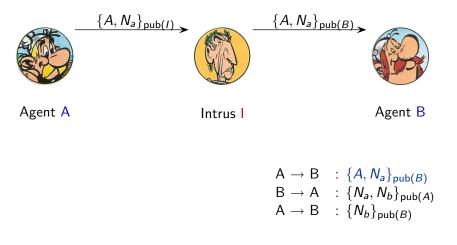
Questions

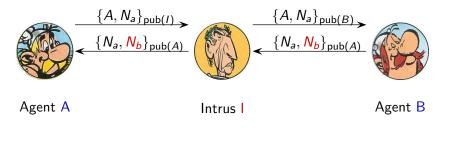
- Is N_b secret between A and B?
- When B receives $\{N_b\}_{pub(B)}$, does this message really comes from A?

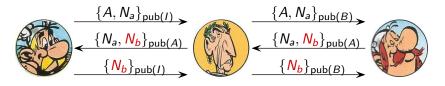
Attack

An attack was found 17 years after its publication! [Lowe 96]







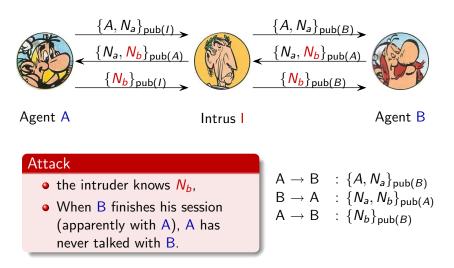


Agent A

Intrus |

Agent B

 $\begin{array}{lll} \mathsf{A} \to \mathsf{B} & : \; \{A, N_a\}_{\mathsf{pub}(B)} \\ \mathsf{B} \to \mathsf{A} & : \; \{N_a, N_b\}_{\mathsf{pub}(A)} \\ \mathsf{A} \to \mathsf{B} & : \; \{N_b\}_{\mathsf{pub}(B)} \end{array}$



Protocol Desciption

A, B, S	,	: principal
Ka, <mark>Kb</mark>)	: fresh symkey
pub, priv	,	: principal \rightarrow key (keypair)
$A\toS$:	B, {Ka}pub(S)
$S\toB$:	A
$B\toS$:	A, { <mark>Kb</mark> }pub(S)
$S\toA$:	B, <mark>Kb</mark> ⊕ Ka

Protocol Desciption

Ka, <mark>Kb</mark>	:	principal fresh symkey principal → key (keypair)
		B, $\{Ka\}pub(S)$
$S \rightarrow B$		A
		A, { <mark>Kb</mark> }pub(S) B, Kb ⊕ Ka

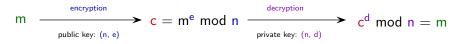
RSA Encryption:



Protocol Desciption

A, B, S	: principal	
Ka, <mark>Kb</mark>	: fresh symkey	
pub, priv	: principal \rightarrow key (keypair	.)
$A \rightarrow S$:	B, {Ka}pub(S)	
$S \rightarrow B$:	A	
$B \rightarrow S$:	A, { <mark>Kb</mark> }pub(S)	
$S \rightarrow A$:	B, <mark>Kb</mark> ⊕ Ka	

RSA Encryption:



homomorphism axiom (h): h(x + y) = h(x) + h(y)

Associativity, Commutativity (AC):

$$(x + y) + z = x + (y + z),$$

 $x + y = y + x$

Exclusive or (ACUN):

$$x + 0 = x$$
 (U), $x + x = 0$ (N)

Abelian groups (AG):

$$x + 0 = x$$
 (U), $x + I(x) = 0$ (Inv)

Stéphanie Delaune (FT R&D, LSV)

Outline of the talk

Introduction

- 2 Passive Intruder (may read every messages sent on the network)
 - Intruder Deduction Problem
 - Some Existing Results
 - How to deal with Homomorphisms?

3 Active Intruder (may intercept and send new messages)

- Trace Reachability Problem
- Some Existing Results
- Equational Theories ACUNh and AGh

Conclusion and Future Works

Introduction

Passive Intruder (may read every messages sent on the network)

- Intruder Deduction Problem
- Some Existing Results
- How to deal with Homomorphisms?

3) Active Intruder (may intercept and send new messages)

- Trace Reachability Problem
- Some Existing Results
- Equational Theories ACUNh and AGh

Conclusion and Future Works

Intruder Deduction Capabilities

(A)
$$\frac{u \in T}{T \vdash_{\mathsf{E}} u}$$
 (C) $\frac{T \vdash_{\mathsf{E}} u_1 \dots T \vdash_{\mathsf{E}} u_n}{T \vdash_{\mathsf{E}} f(u_1, \dots, u_n)}$ with $f \in \mathcal{F}$
(UL) $\frac{T \vdash_{\mathsf{E}} \langle u, v \rangle}{T \vdash_{\mathsf{E}} u}$ (D) $\frac{T \vdash_{\mathsf{E}} \{u\}_v \quad T \vdash_{\mathsf{E}} v}{T \vdash_{\mathsf{E}} u}$
(UR) $\frac{T \vdash_{\mathsf{E}} \langle u, v \rangle}{T \vdash_{\mathsf{E}} v}$ (Eq) $\frac{T \vdash_{\mathsf{E}} u \quad u = v}{T \vdash_{\mathsf{E}} v}$

Intruder deduction problem (ID)

INPUT: a finite set of terms T, a term s (the secret). **OUTPUT**: Does there exist an E-proof of $T \vdash_{\mathsf{F}} s$?

Stéphanie Delaune (FT R&D, LSV)

Verification of Security Protocols

Example:

•
$$T = \{a + b, \{h(a)\}_k, k\}$$

•
$$s = h(b)$$

Example:

•
$$T = \{a + b, \{h(a)\}_k, k\}$$

•
$$s = h(b)$$

$$\mathbf{P} = \begin{cases} \frac{a+b\in T}{T\vdash_{\mathsf{E}} a+b}(A) & \frac{\{h(a)\}_{k}\in T}{T\vdash_{\mathsf{E}} \{h(a)\}_{k}}(A) & \frac{k\in T}{T\vdash_{\mathsf{E}} k}(A) \\ \frac{T\vdash_{\mathsf{E}} h(a+b)}{T\vdash_{\mathsf{E}} h(a+b)}(C) & \frac{T\vdash_{\mathsf{E}} h(a)}{T\vdash_{\mathsf{E}} h(a)}(D) \\ T\vdash_{\mathsf{E}} h(a+b)+h(a) \end{cases}$$
(C)

Example:

•
$$T = \{a + b, \{h(a)\}_k, k\}$$

•
$$s = h(b)$$

$$\mathbf{P} = \begin{cases} \frac{a+b\in T}{T\vdash_{\mathsf{E}} a+b}(A) & \frac{\{h(a)\}_{k}\in T}{T\vdash_{\mathsf{E}} \{h(a)\}_{k}}(A) & \frac{k\in T}{T\vdash_{\mathsf{E}} k}(A) \\ \frac{T\vdash_{\mathsf{E}} h(a+b)}{T\vdash_{\mathsf{E}} h(a+b)+h(a)}(D) & T\vdash_{\mathsf{E}} h(a+b)+h(a) \end{cases}$$
(C)

$$\frac{\mathbf{P} \qquad h(a+b) + h(a) =_{\mathbf{E}} h(b)}{T \vdash_{\mathbf{E}} h(b)} (\mathbf{Eq})$$

Complexity of the Intruder Deduction Problem

- without any equational theory (Dolev-Yao model): **PTIME-complete**
- with an equational theory
 - Results of Chevalier et al. 2003

AC	ACUN	AG
NP	PTIME	

• Results of Lafourcade, Lugiez and Treinen 2005

ACh	ACUNh	AGh
NP-complete	EXP ⁻	ΓΙΜΕ

 \rightarrow PTIME in the binary case

Let T be a set of terms and u a term (in normal forms)

• An effective inference system (\vdash) such that:

 $T \vdash u$ is derivable $\Leftrightarrow T \vdash_{\mathsf{E}} u$ is derivable

- A locality result (notion due to Mc Allester, 1993), *i.e.*:
 A minimal proof P of T ⊢ u only contains terms in St_E(T ∪ {u}).
- A one-step deducibility result:
 - \rightarrow to ensure that we can test that a deduction step is valid

Exclusive Or Example

Inference System:

$$\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash u_1 + \dots + u_n \downarrow} (\mathsf{M}_\mathsf{E})$$

Exclusive Or Example

- Inference System: $\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash u_1 + \dots + u_n \downarrow} (M_E)$
- Notion of Subterms: (no partial sum) Example: $t = \{a_1 + a_2 + a_3\}_b$

$$St_{\mathsf{E}}(t) = \{t, a_1 + a_2 + a_3, b, a_1, a_2, a_3\}$$

Exclusive Or Example

Inference System:

$$\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash u_1 + \dots + u_n \downarrow} (\mathsf{M}_\mathsf{E})$$

Notion of Subterms: (no partial sum) **Example**: $t = \{a_1 + a_2 + a_3\}_b$

$$St_{\mathsf{E}}(t) = \{t, a_1 + a_2 + a_3, b, a_1, a_2, a_3\}$$

One-Step Deducibility of (M_E):

 \rightarrow solvability of a system of linear equations over $\mathbb{Z}/2\mathbb{Z}$: $A \cdot Y = b$. **Example**: $T = \{a_1 + a_2, a_2 + a_3 + a_4\}$ and $s = a_1 + a_3 + a_4$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

How to Deal with Homomorphism ?

$$h(x+y) \rightarrow h(x) + h(y)$$

• Approach of Lafourcade et al. 2005

$$\frac{T \vdash u}{T \vdash h(u) \downarrow} \qquad \frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash u_1 + \dots + u_n \downarrow}$$

How to Deal with Homomorphism ?

$$h(x+y) \rightarrow h(x) + h(y)$$

• Approach of Lafourcade et al. 2005

$$\frac{T \vdash u}{T \vdash h(u) \downarrow} \qquad \frac{T \vdash u_1 \ \dots \ T \vdash u_n}{T \vdash u_1 + \dots + u_n \downarrow}$$

- advantage: one-step deducibilty, easy to prove
- drawback: locality, hard to prove for a "good" notion of subterms

How to Deal with Homomorphism ?

$$h(x+y) \rightarrow h(x) + h(y)$$

• Approach of Lafourcade et al. 2005

$$\frac{T \vdash u}{T \vdash h(u)\downarrow} \qquad \frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash u_1 + \dots + u_n\downarrow}$$

- advantage: one-step deducibilty, easy to prove
- drawback: locality, hard to prove for a "good" notion of subterms

• My approach

$$\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash C[u_1, \dots, u_n]}$$
 with C an E-context

How to Deal with Homomorphism ?

$$h(x+y) \rightarrow h(x) + h(y)$$

• Approach of Lafourcade et al. 2005

$$\frac{T \vdash u}{T \vdash h(u) \downarrow} \qquad \frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash u_1 + \dots + u_n \downarrow}$$

- advantage: one-step deducibilty, easy to prove
- drawback: locality, hard to prove for a "good" notion of subterms

• My approach

$$\frac{T \vdash u_1 \ \dots \ T \vdash u_n}{T \vdash C[u_1, \dots, u_n]}$$
 with C an E-context

- advantage: locality, easy to prove
- drawback: one-step deducibility seems difficult to prove

My Inference System

Intruder Deduction Capabilities

(A)
$$\frac{u \in T}{T \vdash u}$$
 (C⁻) $\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash f(u_1, \dots, u_n)}$ with $f \in \mathcal{F} \setminus sig(E)$
(UL) $\frac{T \vdash \langle u, v \rangle}{T \vdash u}$ (D) $\frac{T \vdash \{u\}_v \quad T \vdash v}{T \vdash u}$
(UR) $\frac{T \vdash \langle u, v \rangle}{T \vdash v}$ (M_E) $\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash C[u_1, \dots, u_n]}$ with C an E-context

э

My Inference System

Intruder Deduction Capabilities

(A)
$$\frac{u \in T}{T \vdash u}$$
 (C⁻) $\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash f(u_1, \dots, u_n)}$ with $f \in \mathcal{F} \setminus sig(E)$
(UL) $\frac{T \vdash \langle u, v \rangle}{T \vdash u}$ (D) $\frac{T \vdash \{u\}_v \quad T \vdash v}{T \vdash u}$
(UR) $\frac{T \vdash \langle u, v \rangle}{T \vdash v}$ (M_E) $\frac{T \vdash u_1 \dots T \vdash u_n}{T \vdash C[u_1, \dots, u_n] \downarrow}$ with C an E-context

Theorem

Let T be a set of terms and u a term (in normal forms). We have:

 $T \vdash u$ is derivable $\Leftrightarrow T \vdash_{\mathsf{E}} u$ is derivable

Locality

Notion of Subterms

 \rightarrow Generalization of the notion used in the Exclusive Or case

Examples:

Let
$$t_1 = h^2(a) + b + c$$
. $St_E(t_1) = \{t_1, a, b, c\}$
Let $t_2 = h(\langle a, b \rangle) + c$. $St_E(t_2) = \{t_2, \langle a, b \rangle, a, b, c\}$

< 一型

3

Locality

Notion of Subterms

 \rightarrow Generalization of the notion used in the Exclusive Or case

Examples:

Let
$$t_1 = h^2(a) + b + c$$
. $St_{\mathsf{E}}(t_1) = \{t_1, a, b, c\}$
Let $t_2 = h(\langle a, b \rangle) + c$. $St_{\mathsf{E}}(t_2) = \{t_2, \langle a, b \rangle, a, b\}$.

et
$$t_2 = h(\langle a, b \rangle) + c$$
. $St_E(t_2) = \{t_2, \langle a, b \rangle, a, b, c\}$

Locality Result

Lemma

A minimal proof P of $T \vdash u$ only contains terms in $St_F(T \cup \{u\})$.

3

B → < B →

< 4 ∰ > <

One-Step-Deducibility (1/2)

The only critical rule is (M_E) .

 \rightarrow solvability of a system of linear equations over $\mathbb{N}[h], \, \mathbb{Z}/2\mathbb{Z}[h] \text{ or } \mathbb{Z}[h]$ (depending on E).

One-Step-Deducibility (1/2)

The only critical rule is (M_E) .

 \rightarrow solvability of a system of linear equations over $\mathbb{N}[h],\,\mathbb{Z}/2\mathbb{Z}[h]$ or $\mathbb{Z}[h]$ (depending on E).

Example: (ACUNh) $T = \{t_1, t_2, t_3\}$ and $s = a_1 + h^2(a_1)$. $t_1 = a_1 + h(a_1) + h^2(a_1)$, $t_2 = a_2 + h^2(a_1)$, $t_3 = h(a_2) + h^2(a_1)$. $A = \begin{pmatrix} 1+h+h^2 & h^2 & h^2 \\ 0 & 1 & h \end{pmatrix}$ $b = \begin{pmatrix} 1+h^2 \\ 0 \end{pmatrix}$

The equation $A \cdot Y = b$ has a solution over $\mathbb{Z}/2\mathbb{Z}[h]$: Y = (1 + h, h, 1).

$$C = x_1 + h(x_1) + h(x_2) + x_3$$

Complexity of solving linear equations:

- over $\mathbb{N}[h]$: NP-complete
- over Z/2Z[h]: PTIME [Kaltofen et al., 1987]
- over $\mathbb{Z}[h]$: PTIME
 - thanks to [Aschenbrenner, 2004], A · Y = b has a solution iff there is one such that each component of Y has a degree polynomially bounded by the degrees and the coefficients which appear in A and b.
 - reduce the problem to the solvability of an enormous (but polynomial) system of linear equations over Z (PTIME).

Complexity of solving linear equations:

- over $\mathbb{N}[h]$: NP-complete
- over Z/2Z[h]: PTIME [Kaltofen et al., 1987]
- over **Z[h]**: PTIME
 - thanks to [Aschenbrenner, 2004], A · Y = b has a solution iff there is one such that each component of Y has a degree polynomially bounded by the degrees and the coefficients which appear in A and b.
 - reduce the problem to the solvability of an enormous (but polynomial) system of linear equations over Z (PTIME).

Result [Delaune'05]

(ID) is **PTIME-complete** for ACUNh and AGh.

3

(日) (同) (三) (三)

Outline of the talk

Introduction

- Passive Intruder (may read every messages sent on the network)
 Intruder Deduction Problem
 - Some Existing Results
 - How to deal with Homomorphisms?

Active Intruder (may intercept and send new messages)

- Trace Reachability Problem
- Some Existing Results
- Equational Theories ACUNh and AGh

Conclusion and Future Works

Trace Reachability Problem

Given a protocol \mathcal{P} , an intruder theory \mathcal{I} , an equational theory \mathbf{E} , a secret data \mathbf{s} and an initial intruder's knowledge \mathcal{T}_0 , does there exist a running sequence of protocol rules such that:

- $\bullet\,$ at the end, the intruder's knowledge is ${\cal T}$,
- s is deducible from T

Results in the Dolev-Yao Intruder Model

- unbounded number of sessions: undecidable
- bounded number of sessions: NP-complete [RT01]

Definition

- A constraint is a sequent of the form T ⊨ u where T is a finite set of terms and u is a term (T and u are not necessarily ground).
- A system of constraints is a sequence of constraints. A solution to a system C of constraints is a substitution σ such that:

for every $T \Vdash u \in C$ there exists a proof of $T\sigma \vdash u\sigma$

Definition

- A constraint is a sequent of the form T ⊨ u where T is a finite set of terms and u is a term (T and u are not necessarily ground).
- A system of constraints is a sequence of constraints. A solution to a system C of constraints is a substitution σ such that:

for every $T \Vdash u \in C$ there exists a proof of $T\sigma \vdash u\sigma$

Which constraint systems are particularly interesting for us?

- \rightarrow Well-defined constraint systems:
- monotonicity
- origination property (satisfies by the class of deterministic protocols)

Protocol

$$\begin{array}{rcl} \operatorname{Role}_{A}(x_{a}, x_{b}) & \nu n_{a} & \rightarrow & \{x_{a}, n_{a}\}_{\operatorname{pub}(x_{b})} \\ & & \{n_{a}, x_{n_{b}}\}_{\operatorname{pub}(x_{a})} & \rightarrow & \{x_{n_{b}}\}_{\operatorname{pub}(x_{b})} \end{array}$$
$$\operatorname{Role}_{B}(y_{b}) & \nu n_{b} & \{y_{a}, y_{n_{a}}\}_{\operatorname{pub}(y_{b})} & \rightarrow & \{y_{n_{a}}, n_{b}\}_{\operatorname{pub}(y_{a})} \end{array}$$

Protocol

$$\begin{aligned} \text{Role}_{\mathcal{A}} (x_a, x_b) &: \quad \nu n_a. & \to \quad \{x_a, n_a\}_{\text{pub}(x_b)} \\ & \{n_a, x_{n_b}\}_{\text{pub}(x_a)} & \to \quad \{x_{n_b}\}_{\text{pub}(x_b)} \end{aligned}$$

$$Role_B(y_b): \qquad \nu n_b. \{y_a, y_{n_a}\}_{pub(y_b)} \rightarrow \{y_{n_a}, n_b\}_{pub(y_a)}$$

We consider $Role_A(a, l)$ and $Role_B(b)$ (running in parallel).

Instanciation

$$\begin{array}{rcl} & \to & \{a, n_a\}_{\text{pub}(I)} \\ \{n_a, x_{n_b}\}_{\text{pub}(a)} & \to & \{x_{n_b}\}_{\text{pub}(I)} \\ \{y_a, y_{n_a}\}_{\text{pub}(b)} & \to & \{y_{n_a}, n_b\}_{\text{pub}(y_a)} \end{array}$$

Stéphanie Delaune (FT R&D, LSV)

_ ► ∢

3

Protocol

$$\begin{aligned} \text{Role}_{\mathcal{A}} (x_a, x_b): & \nu n_a. & \rightarrow \{x_a, n_a\}_{\text{pub}(x_b)} \\ & \{n_a, x_{n_b}\}_{\text{pub}(x_a)} & \rightarrow \{x_{n_b}\}_{\text{pub}(x_b)} \end{aligned}$$

$$Role_B(y_b): \qquad \nu n_b. \{y_a, y_{n_a}\}_{pub(y_b)} \rightarrow \{y_{n_a}, n_b\}_{pub(y_a)}$$

We consider $Role_A(a, l)$ and $Role_B(b)$ (running in parallel).

Instanciation

$$\begin{array}{rcl} & \to & \{a, n_a\}_{\mathsf{pub}(I)} \\ \{n_a, x_{n_b}\}_{\mathsf{pub}(a)} & \to & \{x_{n_b}\}_{\mathsf{pub}(I)} \end{array}$$

$$\{y_a, y_{n_a}\}_{pub(b)} \rightarrow \{y_{n_a}, n_b\}_{pub(y_a)}$$

Initial intruder's knowledge: $T_0 = \{a, b, l, pub(a), pub(b), pub(l), priv(l)\}$ Secret: n_b

Protocol

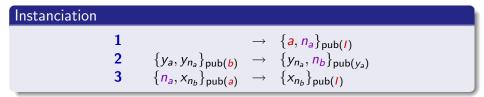
$$\begin{aligned} \text{Role}_A(x_a, x_b): & \nu n_a. & \rightarrow \{x_a, n_a\}_{\text{pub}(x_b)} \\ & \{n_a, x_{n_b}\}_{\text{pub}(x_a)} & \rightarrow \{x_{n_b}\}_{\text{pub}(x_b)} \end{aligned}$$

 $Role_B(y_b): \qquad \nu n_b. \quad \{y_a, y_{n_a}\}_{pub(y_b)} \rightarrow \{y_{n_a}, n_b\}_{pub(y_a)}$

We consider $Role_A(a, l)$ and $Role_B(b)$ (running in parallel).

Instanciation				
	1 3	$\{n_a, x_{n_b}\}_{pub(a)}$	\rightarrow \rightarrow	$ \{a, n_a\}_{pub(I)} \\ \{x_{n_b}\}_{pub(I)} $
	2	$\{y_a, y_{n_a}\}_{pub(\mathbf{b})}$	\rightarrow	$\{y_{n_a}, n_b\}_{pub(y_a)}$

Initial intruder's knowledge: $T_0 = \{a, b, l, pub(a), pub(b), pub(l), priv(l)\}$ Secret: n_b



Constraints System (well-defined)

Constraints System (well-defined)

 $T_0, \{a, n_a\}_{\mathsf{pub}(I)}$

Constraints System (well-defined)

 $T_0, \{a, n_a\}_{\mathsf{pub}(I)} \Vdash \{y_a, y_{n_a}\}_{\mathsf{pub}(b)}$

Stéphanie Delaune (FT R&D, LSV)

Verification of Security Protocols

Constraints System (well-defined)

$$T_{0}, \{a, n_{a}\}_{pub(I)} \Vdash \{y_{a}, y_{n_{a}}\}_{pub(b)}$$
$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})}$$

Stéphanie Delaune (FT R&D, LSV)

Verification of Security Protocols

Constraints System (well-defined)

$$T_0, \{a, n_a\}_{pub(I)} \Vdash \{y_a, y_{n_a}\}_{pub(b)}$$
$$T_0, \{a, n_a\}_{pub(I)}, \{y_{n_a}, n_b\}_{pub(y_a)} \Vdash \{n_a, x_{n_b}\}_{pub(a)}$$

Constraints System (well-defined)

$$T_{0}, \{a, n_{a}\}_{pub(I)} \Vdash \{y_{a}, y_{n_{a}}\}_{pub(b)}$$

$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})} \Vdash \{n_{a}, x_{n_{b}}\}_{pub(a)}$$

$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})}, \{x_{n_{b}}\}_{pub(I)}$$

Constraints System (well-defined)

$$T_{0}, \{a, n_{a}\}_{pub(I)} \Vdash \{y_{a}, y_{n_{a}}\}_{pub(b)}$$

$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})} \Vdash \{n_{a}, x_{n_{b}}\}_{pub(a)}$$

$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})}, \{x_{n_{b}}\}_{pub(I)} \Vdash n_{b}$$

Instanciation1 $\rightarrow \{a, n_a\}_{pub(l)}$ 2 $\{y_a, y_{n_a}\}_{pub(b)} \rightarrow \{y_{n_a}, n_b\}_{pub(y_a)}$ 3 $\{n_a, x_{n_b}\}_{pub(a)} \rightarrow \{x_{n_b}\}_{pub(l)}$

Constraints System (well-defined)

$$T_{0}, \{a, n_{a}\}_{pub(I)} \Vdash \{y_{a}, y_{n_{a}}\}_{pub(b)}$$

$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})} \Vdash \{n_{a}, x_{n_{b}}\}_{pub(a)}$$

$$T_{0}, \{a, n_{a}\}_{pub(I)}, \{y_{n_{a}}, n_{b}\}_{pub(y_{a})}, \{x_{n_{b}}\}_{pub(I)} \Vdash n_{b}$$

Solution

$$\sigma = \{ y_{n_a} \mapsto n_a, \ x_{n_b} \mapsto n_b, \ y_a \mapsto a \}$$

What Happens by Adding an Equational Theory E ?

Unification Problem modulo E

INPUT: Given 2 terms $u[x_1, \ldots, x_n]$ and $v[x_1, \ldots, x_n]$

OUTPUT: Yes iff there exists a substitution

 $\sigma = \{x_1 \mapsto M_1, \dots, x_n \mapsto M_n\} \text{ such that } u\sigma =_E v\sigma.$

What Happens by Adding an Equational Theory E ?

Unification Problem modulo E

INPUT: Given 2 terms $u[x_1, \ldots, x_n]$ and $v[x_1, \ldots, x_n]$

OUTPUT: Yes iff there exists a substitution $\sigma = \{x_1 \mapsto M_1, \dots, x_n \mapsto M_n\} \text{ such that } u\sigma =_E v\sigma.$

Protocol

1.
$$x_1, \ldots, x_n \rightarrow \{u[x_1, \ldots, x_n], v[x_1, \ldots, x_n]\}_{Kab}$$

2. $\{x, x\}_{Kab} \rightarrow secret$

secret is secret $\iff u$ and v have no E-unifier

What Happens by Adding an Equational Theory E ?

Unification Problem modulo E

INPUT: Given 2 terms $u[x_1, \ldots, x_n]$ and $v[x_1, \ldots, x_n]$

OUTPUT: Yes iff there exists a substitution $\sigma = \{x_1 \mapsto M_1, \dots, x_n \mapsto M_n\} \text{ such that } u\sigma =_E v\sigma.$

Protocol

1.
$$x_1, \ldots, x_n \rightarrow \{u[x_1, \ldots, x_n], v[x_1, \ldots, x_n]\}_{Kab}$$

2. $\{x, x\}_{Kab} \rightarrow secret$

secret is secret $\iff u$ and v have no E-unifier

Undecidability Result

Unification Problem undecidable in E

Trace Reachability Problem undecidable in E (bounded nb of sessions)

Some Existing Results

Trace Reachability Problem (bounded number of sessions)

- without any equational theory (Dolev-Yao model): NP-complete
- with an equational theory
 - AC-like theories

AC	ACUN	AG
?	NP [CKRT03] Decidable [CLS03]	Decidable [Shm04]

• with homomorphism

ACh	ACUN h	AGh
Undecidable	?	?

29 / 39

Theorem [Delaune, Lafourcade, Lugiez and Treinen'05]

The trace reachability problem is decidable for the theory ACUNh.

Theorem [Delaune, Lafourcade, Lugiez and Treinen'05]

The trace reachability problem is decidable for the theory ACUNh.

Theorem [Delaune'06]

The trace reachability problem is undecidable for the theory AGh.

▶ Details

Introduction

- 2 Passive Intruder (may read every messages sent on the network)
 - Intruder Deduction Problem
 - Some Existing Results
 - How to deal with Homomorphisms?

3 Active Intruder (may intercept and send new messages)

- Trace Reachability Problem
- Some Existing Results
- Equational Theories ACUNh and AGh

Conclusion and Future Works

Conclusion

A new approach to deal with Homomorphism allowing to:

- improve some existing complexity results
- obtain new decidability and undecidability results

Passive Intruder [Delaune'05]

ACh	ACUNh	AGh
NP-complete	PTIME-(complete)	

Active Intruder

[Delaune,Lafourcade,Lugiez and Treinen'05] & [Delaune'06]

ACh	ACUNh	AGh
Undecidable	Decidable	Undecidable

Future Works

Others kind of homomorphisms Lafourcade, Lugiez & Treinen

- homomorphic encryption
- commutating homomorphic encryption

Others kind of homomorphisms Lafourcade, Lugiez & Treinen

- homomorphic encryption
- commutating homomorphic encryption

Towards a generic result Bernat, Comon-Lundh & Delaune Our problem is the satisfaisability of a constraint system C in $(\mathcal{I}, \mathcal{E})$

Q Reduce the equational theory to a simpler one, *i.e.* Ø or AC.
 → Finite Variant Property

 \mathcal{C} solvable in $(\mathcal{I}, \mathcal{E}) \iff \exists \mathcal{C}' \in var(\mathcal{C}). \ \mathcal{C}'$ solvable in $(var(\mathcal{I}), \mathcal{E}')$

Find sufficient conditions on the inference system to ensure decidability of the problem in (var(I), E').

First Part:

Reduce the problem to the solvability of a (well-defined) system of \Vdash_{M_E} constraints on the reduced signature ({0, h, \oplus } and constants).

- 1 From \Vdash constraints to \Vdash_1 (one-step) constraints
 - \rightarrow Generalisation of the locality result to non-groun terms
- 2 From \Vdash_1 constraints to \Vdash_{M_E} constraints
 - \rightarrow ACUNh-unification is decidable and finitary
- 3 Abstract subterms by constants
 - \rightarrow this abstraction preserves the well-definedness of the system

First Part:

Reduce the problem to the solvability of a (well-defined) system of \Vdash_{M_E} constraints on the reduced signature ({0, h, \oplus } and constants).

- 1 From \Vdash constraints to \Vdash_1 (one-step) constraints
 - \rightarrow Generalisation of the locality result to non-groun terms
- 2 From \Vdash_1 constraints to \Vdash_{M_E} constraints
 - \rightarrow ACUNh-unification is decidable and finitary
- 3 Abstract subterms by constants
 - \rightarrow this abstraction preserves the well-definedness of the system

Now, we have to solve \Vdash_{M_E} constraint systems on a reduced signature:

Example :
$$C = \begin{cases} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} a+h^3(X_1) \\ a+h(a); b+X_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} b+h^4(a) \end{cases}$$

Procedure in the case of ACUNh (2)

Second Part:

$$\mathcal{C} = \left\{ \begin{array}{ll} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} a+h^3(X_1) \\ a+h(a); b+X_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} b+h^4(a) \end{array} \right.$$

Image: Image:

3

Procedure in the case of ACUNh (2)

Second Part:

$$\mathcal{C} = \left\{ \begin{array}{ll} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} & a+h^3(X_1) \\ a+h(a); b+X_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} & b+h^4(a) \end{array} \right.$$

A Solution is: $X_1 \mapsto h^4(a)$

Procedure in the case of ACUNh (2)

Second Part:

$$\mathcal{C} = \left\{ \begin{array}{ll} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} & a+h^3(X_1) \\ a+h(a); \ b+X_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} & b+h^4(a) \end{array} \right.$$

A Solution is: $X_1 \mapsto h^4(a)$

Indeed,
$$\frac{a + h(a) \quad h(a) + h^2(a) \quad \dots \quad h^6(a) + h^7(a)}{a + h^7(a)}$$

$$\mathcal{C} = \left\{ \begin{array}{ll} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} & a+h^3(X_1) \\ a+h(a); b+X_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} & b+h^4(a) \end{array} \right.$$

A Solution is: $X_1 \mapsto h^4(a)$

Contexts used to solve the both intruder deduction problems:

•
$$z[1,1] = 1 + h + h^2 + ... + h^6$$

• $z[2,1] = 0$ and $z[2,2] = 1$

$$\mathcal{C} = \left\{ \begin{array}{ll} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} & a+h^3(X_1) \\ a+h(a); b+X_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} & b+h^4(a) \end{array} \right.$$

A Solution is: $X_1 \mapsto h^4(a)$

Contexts used to solve the both intruder deduction problems:

•
$$z[1,1] = 1 + h + h^2 + \ldots + h^6$$

• $z[2,1] = 0$ and $z[2,2] = 1$

Lemma

If such a constraint system has a solution, then there is one where defining context variables (in this example z[1,1]) are bounded by Q_{max} .

$$\mathcal{C} = \left\{ \begin{array}{ll} a+h(a) & \Vdash_{\mathsf{M}_{\mathsf{E}}} & a+h^3(\pmb{X}_1) \\ a+h(a); \ b+\pmb{X}_1 & \Vdash_{\mathsf{M}_{\mathsf{E}}} & b+h^4(a) \end{array} \right.$$

A Solution is: $X_1 \mapsto h^4(a)$

Contexts used to solve the both intruder deduction problems:

•
$$z[1,1] = 1 + h + h^2 + \ldots + h^6$$

• $z[2,1] = 0$ and $z[2,2] = 1$

Lemma

If such a constraint system has a solution, then there is one where defining context variables (in this example z[1,1]) are bounded by Q_{max} .

Example: $Q_{max} = h^3$ Another solution is: $z[1, 1] = 1 + h + h^2$ and $X_1 \mapsto a$.

Reduce the problem to the satisfaisability of a set of intruder deduction problems (ground constraints)

- 4 From \Vdash_{M_E} constaints to ground \Vdash_{M_E} constraints
 - solvable system admits small (< Q_{max}) defining contexts variables
 - determine value of the variables (X_1, \ldots, X_n) from the values of the defining contexts variables
- 5 Check satisfaisability of ground \Vdash_{M_E} constaints: PTIME.

▶ Back

Trace Reachability Problem for AGh

Abelian groups + homomorphism (AGh):

$$h(x + y) = h(x) + h(y)$$

(x + y) + z = x + (y + z) x + 0 = x
x + y = y + x x + -(x) = 0

Abelian groups + homomorphism (AGh):

h(x+y) = h(x) + h(y)

$$(x+y)+z = x+(y+z)$$
 $x+0 = x$
 $x+y = y+x$ $x+-(x) = 0$

● First Part: As in the ACUNh case, we can reduce the problem to the solvability of a (well-defined) system of I⊢_{ME} constraints on the reduced signature.

Abelian groups + homomorphism (AGh):

h(x+y) = h(x) + h(y)

$$(x + y) + z = x + (y + z)$$
 $x + 0 = x$
 $x + y = y + x$ $x + -(x) = 0$

- First Part: As in the ACUNh case, we can reduce the problem to the solvability of a (well-defined) system of I⊢_{ME} constraints on the reduced signature.
- Second Part: Contrary to the ACUNh case, satisfaisability of (well-defined) ⊩_{ME} constraints on the reduced signature is undecidable for AGh.

Hilbert's 10th problem

Input: a set *S* of equations of the form: $x_i = m$, $x_i + x_{i'} = x_j$, or $x_i^2 = x_j$. **Output:** Does *S* have a solution over \mathbb{Z} ?

Hilbert's 10th problem

Input: a set *S* of equations of the form: $x_i = m$, $x_i + x_{i'} = x_j$, or $x_i^2 = x_j$. **Output:** Does *S* have a solution over \mathbb{Z} ?

Example: Let $t = 4a + 3h^2(a) - 3b$. $\mathcal{N}(a, t) = 4$ and $\mathcal{N}(b, t) = -3$.

Hilbert's 10th problem

Input: a set *S* of equations of the form: $x_i = m$, $x_i + x_{i'} = x_j$, or $x_i^2 = x_j$. **Output:** Does *S* have a solution over \mathbb{Z} ?

Example: Let $t = 4a + 3h^2(a) - 3b$. $\mathcal{N}(a, t) = 4$ and $\mathcal{N}(b, t) = -3$.

Let n is the number of variables and p the number of equations.

(1) A first part C_1 ensures that:

 σ solution of $C_1 \Rightarrow \mathcal{N}(a, X'_i \sigma) = \mathcal{N}(a, X_i \sigma)^2$ All the terms in C_1 are of the form $h^k(..)$ with $k \ge p$.

Hilbert's 10th problem

Input: a set *S* of equations of the form: $x_i = m$, $x_i + x_{i'} = x_j$, or $x_i^2 = x_j$. **Output:** Does *S* have a solution over \mathbb{Z} ?

Example: Let $t = 4a + 3h^2(a) - 3b$. $\mathcal{N}(a, t) = 4$ and $\mathcal{N}(b, t) = -3$.

Let n is the number of variables and p the number of equations.

() A first part C_1 ensures that:

 σ solution of $C_1 \Rightarrow \mathcal{N}(a, X'_i \sigma) = \mathcal{N}(a, X_i \sigma)^2$ All the terms in C_1 are of the form $h^k(...)$ with $k \ge p$.

2 A second part C_2 (one constraint per equation) is built as follows:

1.
$$x_i = m$$
 \rightsquigarrow ..; $h^{p-1}(X_i) + c_1 \Vdash h^{p-1}(ma) + c_1$
2. $x_i + x_j = x_k \rightsquigarrow$..; $h^{p-2}(X_i + X_j) + c_2 \Vdash h^{p-2}(X_k) + c_2$
3. $x_i = x_j^2 = \cdots$..; $h^{p-3}(X_i) + c_3 \Vdash h^{p-3}(X_j') + c_3$

$$C_{1} := \begin{cases} h^{3}(a) \Vdash h^{3}(X_{1}) \\ h^{3}(a) \Vdash h^{3}(X_{1}') \\ h^{2}(b); h^{3}(a) \Vdash h^{2}(Y_{1}) \\ h(a+b); h^{2}(b); h^{3}(a) \Vdash h(X_{1}+Y_{1}) \\ X_{1}+b; h(a+b); h^{2}(b); h^{3}(a) \Vdash X_{1}'+Y_{1} \end{cases}$$

Let σ be a solution of C_1 . We have:

$$\mathcal{C}_{1} := \begin{cases} h^{3}(a) \Vdash h^{3}(X_{1}) \\ h^{3}(a) \Vdash h^{3}(X_{1}') \\ h^{2}(b); h^{3}(a) \Vdash h^{2}(Y_{1}) \\ h(a+b); h^{2}(b); h^{3}(a) \Vdash h(X_{1}+Y_{1}) \\ X_{1}+b; h(a+b); h^{2}(b); h^{3}(a) \Vdash X_{1}'+Y_{1} \end{cases}$$

Let σ be a solution of C_1 . We have:

• $X_1\sigma$ and $X'_1\sigma$ contains no occurences of b, h(b), $h^2(b)$, ...

$$\mathcal{C}_{1} := \begin{cases} h^{3}(a) \Vdash h^{3}(X_{1}) \\ h^{3}(a) \Vdash h^{3}(X_{1}') \\ h^{2}(b); h^{3}(a) \Vdash h^{2}(Y_{1}) \\ h(a+b); h^{2}(b); h^{3}(a) \Vdash h(X_{1}+Y_{1}) \\ X_{1}+b; h(a+b); h^{2}(b); h^{3}(a) \Vdash X_{1}'+Y_{1} \end{cases}$$

Let σ be a solution of C_1 . We have:

X₁σ and X'₁σ contains no occurences of b, h(b), h²(b), ...
N(a, Y₁σ) = 0,

$$\mathcal{C}_{1} := \begin{cases} h^{3}(a) \Vdash h^{3}(X_{1}) \\ h^{3}(a) \Vdash h^{3}(X_{1}') \\ h^{2}(b); h^{3}(a) \Vdash h^{2}(Y_{1}) \\ h(a+b); h^{2}(b); h^{3}(a) \Vdash h(X_{1}+Y_{1}) \\ X_{1}+b; h(a+b); h^{2}(b); h^{3}(a) \Vdash X_{1}'+Y_{1} \end{cases}$$

Let σ be a solution of C_1 . We have:

- $X_1\sigma$ and $X'_1\sigma$ contains no occurences of b, h(b), $h^2(b)$, ...
- $\mathcal{N}(a, \mathbf{Y}_1 \sigma) = 0$,
- $\mathcal{N}(a, X_1\sigma) = \mathcal{N}(b, Y_1\sigma)$

$$\mathcal{C}_{1} := \begin{cases} h^{3}(a) \Vdash h^{3}(X_{1}) \\ h^{3}(a) \Vdash h^{3}(X_{1}') \\ h^{2}(b); h^{3}(a) \Vdash h^{2}(Y_{1}) \\ h(a+b); h^{2}(b); h^{3}(a) \Vdash h(X_{1}+Y_{1}) \\ X_{1}+b; h(a+b); h^{2}(b); h^{3}(a) \Vdash X_{1}'+Y_{1} \end{cases}$$

Let σ be a solution of C_1 . We have:

• $X_1\sigma$ and $X'_1\sigma$ contains no occurences of b, h(b), $h^2(b)$, ...

•
$$\mathcal{N}(a, Y_1\sigma) = 0$$
,

•
$$\mathcal{N}(a, X_1\sigma) = \mathcal{N}(b, Y_1\sigma)$$

•
$$\mathcal{N}(a, X'_1 \sigma) = \mathcal{N}(a, X_1 \sigma) \times \mathcal{N}(b, Y_1 \sigma)$$

$$\mathcal{C}_{1} := \begin{cases} h^{3}(a) \Vdash h^{3}(X_{1}) \\ h^{3}(a) \Vdash h^{3}(X_{1}') \\ h^{2}(b); h^{3}(a) \Vdash h^{2}(Y_{1}) \\ h(a+b); h^{2}(b); h^{3}(a) \Vdash h(X_{1}+Y_{1}) \\ X_{1}+b; h(a+b); h^{2}(b); h^{3}(a) \Vdash X_{1}'+Y_{1} \end{cases}$$

Let σ be a solution of C_1 . We have:

• $X_1\sigma$ and $X'_1\sigma$ contains no occurences of b, h(b), $h^2(b)$, ...

Hence, we have $\mathcal{N}(a, X'_1\sigma) = \mathcal{N}(a, X_1\sigma) \times \mathcal{N}(a, X_1\sigma)$

