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Cryptographic protocols

Cryptographic protocols
@Palemm__ @ small programs designed to secure

Internet communication

@ use cryptographic primitives (e.g.
encryption, hash function, ...)

cliquer ici pour accéder a la

signature de votre déclaration
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Goals

@ Secrecy: May an intruder learn some secret message between two
honest participants ?

@ Authentication: Is the agent Alice really talking to Bob 7
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Goals

@ Secrecy: May an intruder learn some secret message between two
honest participants ?

@ Authentication: Is the agent Alice really talking to Bob 7

@ Fairness: Alice and Bob want to sign a contract. Alice initiates the
protocol. May Bob obtain some advantage ?

@ Privacy: Alice participate to an election. May a participant learn
something about the vote of Alice ?

@ Receipt-Freeness: Alice participate to an election. Does Alice gain any
information (a receipt) which can be used to prove to a coercer that
she voted in a certain way 7
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Needham-Schroeder’s Protocol (1978)

o A — B . {A, Na}pub(B)
B — A . {Na7 Nb}pub(A)
A — B: {Nb}pub(B)
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Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Nav Nb}pub(A)
B: {Nb}pub(B)
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Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Nav Nb}pub(A)
B: {Nb}pub(B)

> W >
L

Questions
o Is N, secret between A and B 7

@ When B receives { N }pun(8), does this message really comes from A ?
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Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Nav Nb}pub(A)
B: {Nb}pub(B)

> W >
L

Questions
o Is N, secret between A and B 7

@ When B receives { N }pun(8), does this message really comes from A ?

An attack was found 17 years after its publication! [Lowe 96] l
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Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption

Yy
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Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption Logical attack
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Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption Logical attack

Logical attacks

@ can be mounted even assuming perfect cryptography,
— replay attack, man-in-the middle attack, ...

@ are numerous, see SPORE, Security Protocols Open REpository
— http://www.lsv.ens-cachan.fr/spore/

@ subtle and hard to detect by “eyeballing” the protocol
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Example: Man in the Middle Attack

Intrus |

@ involving 2 sessions in parallel, A—B : {A Na}tpub()
B — At {Na Np}pub(a)
A — B {Np}pun(B)

@ an honest agent has to initiate a
session with .
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Example: Man in the Middle Attack

{A, Na}toub(r) v {A, Na}pub(s)

Intrus |

A—B : {A Natpun()
B—A : {Naa Nb}pub(A)
A — B {Np}pun(B)
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Example: Man in the Middle Attack

{A, Na}toub(r) v {A, Na}pub(s)
§ 5 AN
5~ < {Nay NbJpun(a) < {Na Nt pub(ay

Intrus |

A—B : {A Natpub()
B — A {Na Nbtpup(a)
A — B {Np}pun(B)
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Example: Man in the Middle Attack

{A, Na}toub(r) v {A, Na}pub(s)
§ 5 AN

5~ < {Nay NbJpun(a) < {Na Nt pub(ay
7 {Nb}pub(r) {Nb }pub(e)

Intrus |

A—B : {A Natpub()
B—A : {Naa Nb}pub(A)
A— B : {Np}pun(s)
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Example: Man in the Middle Attack

{A, Na}toub(r) _ {A, Na}pub(s)
5 o {Na, Nobounga) (%70 )< {Na: No}tpun(a)
7 {Nb}pub(r) {Nb }pub(e)

Intrus |

A—B : {A Natpub()
B—A : {Naa Nb}pub(A)
A — B {Np}pun(B)

o the intruder knows N,

@ When B finishes his session
(apparently with A), A has never
talked with B.
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Logical attacks - How to detect them?

Symbolic approach

@ messages are represented by terms rather than bit-strings
< {m}y encryption of the message m with key k,
— (my, my) pairing of messages my and my, ...

@ attacker controls the network and can perform specific actions

Stéphanie Delaune () Security via constraint solving October 30, 2006



Logical attacks - How to detect them?

Symbolic approach

@ messages are represented by terms rather than bit-strings
< {m}y encryption of the message m with key k,
— (my, my) pairing of messages my and my, ...

@ attacker controls the network and can perform specific actions

Relevance of the approach
@ numerous attacks have already been obtained,
@ allows us to perform automatic verification, e.g. AVISPA, Proverif, ...

@ soundness results already exist, e.g. [Micciancio & Warinschi'04]
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Difficulties of the verification

Presence of an attacker ...
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Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages
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Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

who has deduction capabilities (e.g. the standard Dolev-Yao model)

@ encryption, decryption if he knows the decryption key,

@ pairing, projection
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Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

who has deduction capabilities (e.g. the standard Dolev-Yao model)

@ encryption, decryption if he knows the decryption key,

@ pairing, projection

Security problem for an unbounded number of sessions is undecidable. )
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Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

who has deduction capabilities (e.g. the standard Dolev-Yao model)

@ encryption, decryption if he knows the decryption key,

@ pairing, projection

Security problem for a fixed number of sessions is decidable. )
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Outline of the talk

© Introduction
© How to deal with trace properties? (e.g. secrecy, authentication)

© Work in progress: Equivalence based security properties (e.g. anonymity)
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Outline of the talk

© How to deal with trace properties? (e.g. secrecy, authentication)
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Dolev-Yao Intruder Model

my, my and A are messages (terms)
T a finite set of messages (intruder’s knowledge)

TH mi TH myp
Ax. (A) my € T Pair (P)
Tl—ml T+ <m1,m2>
TEmp Tt pub(A) _ ) TH <m1, my)
Enc. (E) Proj. (Prjg) —
TH {ml}pub(A) T+ m
THE{m}o T F priv(A TF{(m,m
Dec. (D) {mly b(4) priv(A) Proj. (Prj1) —< 1, m2)
T+ ma T+ m
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Deducibility problem

Deducibility problem

INPUT: an intruder inference system Z, a finite set of terms T, a term s
(the secret).

OUTPUT: Does there exist a proof of T I s?
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Deducibility problem

Deducibility problem

INPUT: an intruder inference system Z, a finite set of terms T, a term s
(the secret).

OUTPUT: Does there exist a proof of T I s?

Example: Is (s1, s2) deducible from the set of terms T which contains s,
{52}1( and k7
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Deducibility problem

Deducibility problem

INPUT: an intruder inference system Z, a finite set of terms T, a term s
(the secret).

OUTPUT: Does there exist a proof of T I s?

Example: Is (s1, s2) deducible from the set of terms T which contains s,
{52}1( and k7

{2}k €T A keT
51€TA TH{s2}k Tk
TEHst THEH s

T (s1,5)

(D)

(P)
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Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.
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Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

TF {<m1? m2>}pub(A)
T = {m1}pub(a)

Prefix Intruder (e.g. Cipher Block Chaining)
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Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

TF {<m1? m2>}pub(A)
T = {m1}pub(a)

Taking into account algebraic properties of the cryptographic primitives
(e.g. RSA encrytpion)

Prefix Intruder (e.g. Cipher Block Chaining)

. dec(enc(x, pub(y)), priv(y)) = x
" | enc(dec(x, priv(y)), pub(y)) = x
TEm THEK TEm
———— f € {dec,enc} my =g my
T+ f(m, k) TEFm
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In presence of an active attacker

Insecurity problem (bounded number of sessions)
Let 7 be an inference system modelling the attacker.
INPUT: a finite set Ry,..., Ry of instances of roles,

a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

Stéphanie Delaune () Security via constraint solving October 30, 2006 14 / 25



In presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,
a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

OUTPUT: Does there exist an interleaving of Ry,..., Rm
runnable from Ty w.r.t. 7 at the end of which
@ the intruder knowledge is T, and

@ s is deducible from T in Z7
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In presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,
a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

OUTPUT: Does there exist an interleaving of Ry,..., Rm
runnable from Ty w.r.t. 7 at the end of which
@ the intruder knowledge is T, and

@ s is deducible from T in Z7

Security properties (trace properties): e.g. secrecy, some kinds of
authentication properties,
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Running example: Needham-Schroeder’s protocol

A—B {Av Na}pub(B)
B—A : {Naa Nb}pub(A)
A—B : {Nb}puns)

Roles composing the protocol

Ra(xa,xp) 1 vna. out({Xa, Na}pub(xy)):
in({na’ an}pub(xa)); OUt({an}pub(xb))

Re(ys)  : vnp. in({Ya, ¥Yn, }pub(ys))i OUt({¥n.: M6 tpub(ya))
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Running example: Needham-Schroeder’s protocol

A—B {Av Na}pub(B)
B—A : {Naa Nb}pub(A)
A—B : {Nb}puns)

Roles composing the protocol

Ra(xa,xp) 1 vna. out({Xa, Na}pub(xy)):
in({na’ an}pub(xa)); OUt({an}pub(xb))

Re(ys)  : vnp. in({Ya, ¥Yn, }pub(ys))i OUt({¥n.: M6 tpub(ya))

To retrieve the well-known man-in-the-middle attack, we consider
® Ra(a,!) and Rg(b) (running in parallel).
o Top={a,b,l,pub(a),pub(b),pub(/),priv(/)}
@ Is ny, deducible by the intruder?
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Insecurity problem via constraint solving

Protocol rules Constraint System
in(uy); out(vq) To IF

in(UQ); Out(Vz) C— To,vilF up
in(up); out(v,) To,vi,.,vnlFs
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Insecurity problem via constraint solving

Protocol rules Constraint System
in(uy); out(vq) To IF

in(U2); Out(Vz) C— To,vilF up
in(up); out(v,) To,vi,.,vnlFs

Solution of a constraint system in 7

A substitution o such that
for every T |- u € C, uo is deducible from To in T.
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

) OUt({a7 na}pub(l))
'n({na7xnb}pub(a)) ; OUt({an}pub(l))

in({¥a; ¥n, }pub(p)) 5 OUt({¥n., Mb}pub(ys))
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {2, Na}pub()
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {2, na}pub(ry & {¥as Yn, }pub(b)
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {2, na}pub(ry & {¥as Yn, }pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya)
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’nb}pub(ya) I {na?xnb}pub(a)
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)
1 _ OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ; OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {aa na}pub(l) I {yaayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’ nb}pub(ya)7 {an}pub(l)
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)
1 _ OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ; OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution a:{ya'—> sy Yna /™ 5 Xnp }
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution o ={yar>a, ¥n, = Na, Xp, — }
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Running example: Needham-Schroeder’s protocols

Ra(a, ) and Rg(b) (running in parallel)

1 ) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution o ={yat>a, Yn, — Na, Xp, — Np}
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Existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
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Existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
Few generic results

@ procedure to solve constraint systems for a class of intruder
< e.g. any intruder who can be described by a subterm convergent
rewiting system

@ combination result for disjoint intruder models.
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Existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
Few generic results

@ procedure to solve constraint systems for a class of intruder

< e.g. any intruder who can be described by a subterm convergent
rewiting system

@ combination result for disjoint intruder models.

Some tools
@ AVISPA tool (Atse, OFMC)
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Outline of the talk

© Work in progress: Equivalence based security properties (e.g. anonymity)
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Motivation: Electronic voting

Advantages:

. '\ LY
o Convenient, v

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

Possible issue: formal methods
abstract analysis of the protocol against formally-stated properties
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Expected properties

Privacy: the fact that a particular voter voted in a particular way is not
revealed to anyone

Receipt-freeness: a voter cannot prove that she
voted in a certain way (this is important to pro-
tect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts
with the voter during the protocol, e.g. by preparing messages
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How to model such security properties?

[Kremer & Ryan, 2005] — Formalisation of Privacy
— consider 2 honest voters and swap their votes

A voting protocol respects privacy if

S[Va{?/v} | Ve{®/}] = SIVa{®/} | VB{?/ }]-

[Delaune, Kremer & Ryan, 2006]

Formalisation of Receipt-freeness and Coercion-resistance in term of
equivalence.
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Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy?
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Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK
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Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Naive vote protocol (version 2)

V - S /d, {V}pub(S)

What about privacy?
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Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Naive vote protocol (version 2)

V - S /d, {V}pub(S)

What about privacy?

@ deterministic encryption: NOT OK
@ probabilistic encryption: OK
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More formally

Labeled bisimilarity (=)

The largest symmetric relation R on processes, such that A R B implies
Q ¢(A) =~ ¢(B) (depends on E),
Q if A— A, then B —* B’ and A’ R B’ for some B,
Q ifAS A, then B—*%—* B and A’ R B’ for some B'.

This relation is in genral undecidable. Why?
@ unfolding tree is infinite in depth
@ unfolding tree is infinititely branching (because of inputs)

@ equational theories may be complex

Tool: Proverif
—— Obuviously, the procedure is not complete. Proverif is not able to
conclude for privacy even for naive voting protocols (version 1)
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Work in Progress

Our Goal:
to do better than Proverif in the context of a bounded number of sessions

@ Infinite depth:
< we restrict to consider processes without replication (finite
processes),

@ Infinite branching:
— we define a notion of symbolic processes and symbolic bisimulation

Concrete in(x).out({x}x) inm), out({mz}«)

Symbolic  (in(x).out({x}4); €) "% (out({x}4); C U $(P) IF x)

October 30, 2006 25 / 25
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Work in Progress

Our Goal:
to do better than Proverif in the context of a bounded number of sessions

@ Infinite depth:
< we restrict to consider processes without replication (finite

processes),

@ Infinite branching:
— we define a notion of symbolic processes and symbolic bisimulation

Concrete in(x).out({x}x) inm), out({mz}«)

Symbolic  (in(x).out({x}4); €) "% (out({x}4); C U $(P) IF x)

Then, we plan:
@ to design a procedure to solve our constaint systems for a class of

equational theory as larger as possible

@ to implement a tool
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