Security via constraint solving

Stéphanie Delaune

October 30, 2006

Stéphanie Delaune () Security via constraint solving October 30, 2006 1/25

Cryptographic protocols

Cryptographic protocols
@Palemm__ @ small programs designed to secure

Internet communication

@ use cryptographic primitives (e.g.
encryption, hash function, ...)

cliquer ici pour accéder a la

signature de votre déclaration

Stéphanie Delaune () Security via constraint solving October 30, 2006 2/25

Goals

@ Secrecy: May an intruder learn some secret message between two
honest participants ?

@ Authentication: Is the agent Alice really talking to Bob 7

Stéphanie Delaune () Security via constraint solving October 30, 2006 3/25

Goals

@ Secrecy: May an intruder learn some secret message between two
honest participants ?

@ Authentication: Is the agent Alice really talking to Bob 7

@ Fairness: Alice and Bob want to sign a contract. Alice initiates the
protocol. May Bob obtain some advantage ?

@ Privacy: Alice participate to an election. May a participant learn
something about the vote of Alice ?

@ Receipt-Freeness: Alice participate to an election. Does Alice gain any
information (a receipt) which can be used to prove to a coercer that
she voted in a certain way 7

Stéphanie Delaune () Security via constraint solving October 30, 2006 3/25

Needham-Schroeder’s Protocol (1978)

o A — B . {A, Na}pub(B)
B — A . {Na7 Nb}pub(A)
A — B: {Nb}pub(B)

Stéphanie Delaune () Security via constraint solving October 30, 2006 4 /25

Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Nav Nb}pub(A)
B: {Nb}pub(B)

Stéphanie Delaune () Security via constraint solving October 30, 2006 4 /25

Needham-Schroeder’s Protocol (1978)

A — B: {A, Na}pub(B)
B — A . {Na7 Nb}pub(A)
e A — B: {Nb}pub(B)

Stéphanie Delaune () Security via constraint solving October 30, 2006 4 /25

Needham-Schroeder’s Protocol (1978)

A — B: {A, Na}pub(B)
B — A . {Na, Nb}pub(A)
A — B: {Nb}pub(B)

Stéphanie Delaune () Security via constraint solving October 30, 2006 4 /25

Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Nav Nb}pub(A)
B: {Nb}pub(B)

> W >
L

Questions
o Is N, secret between A and B 7

@ When B receives { N }pun(8), does this message really comes from A ?

Stéphanie Delaune () Security via constraint solving October 30, 2006 4 /25

Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Nav Nb}pub(A)
B: {Nb}pub(B)

> W >
L

Questions
o Is N, secret between A and B 7

@ When B receives { N }pun(8), does this message really comes from A ?

An attack was found 17 years after its publication! [Lowe 96] l

Stéphanie Delaune () Security via constraint solving October 30, 2006 4 /25

Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption

Yy

Stéphanie Delaune () Security via constraint solving October 30, 2006 5/ 25

Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption Logical attack

Stéphanie Delaune () Security via constraint solving October 30, 2006

Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption Logical attack

Logical attacks

@ can be mounted even assuming perfect cryptography,
— replay attack, man-in-the middle attack, ...

@ are numerous, see SPORE, Security Protocols Open REpository
— http://www.lsv.ens-cachan.fr/spore/

@ subtle and hard to detect by “eyeballing” the protocol

Stéphanie Delaune () Security via constraint solving October 30, 2006

http://www.lsv.ens-cachan.fr/spore/

Example: Man in the Middle Attack

Intrus |

@ involving 2 sessions in parallel, A—B : {A Na}tpub()
B — At {Na Np}pub(a)
A — B {Np}pun(B)

@ an honest agent has to initiate a
session with .

Stéphanie Delaune () Security via constraint solving October 30, 2006 6 /25

Example: Man in the Middle Attack

{A, Na}toub(r) v {A, Na}pub(s)

Intrus |

A—B : {A Natpun()
B—A : {Naa Nb}pub(A)
A — B {Np}pun(B)

Stéphanie Delaune () Security via constraint solving October 30, 2006 6 /25

Example: Man in the Middle Attack

{A, Na}toub(r) v {A, Na}pub(s)
§ 5 AN
5~ < {Nay NbJpun(a) < {Na Nt pub(ay

Intrus |

A—B : {A Natpub()
B — A {Na Nbtpup(a)
A — B {Np}pun(B)

Stéphanie Delaune () Security via constraint solving October 30, 2006 6 /25

Example: Man in the Middle Attack

{A, Na}toub(r) v {A, Na}pub(s)
§ 5 AN

5~ < {Nay NbJpun(a) < {Na Nt pub(ay
7 {Nb}pub(r) {Nb }pub(e)

Intrus |

A—B : {A Natpub()
B—A : {Naa Nb}pub(A)
A— B : {Np}pun(s)

Stéphanie Delaune () Security via constraint solving October 30, 2006 6 /25

Example: Man in the Middle Attack

{A, Na}toub(r) _ {A, Na}pub(s)
5 o {Na, Nobounga) (%70)< {Na: No}tpun(a)
7 {Nb}pub(r) {Nb }pub(e)

Intrus |

A—B : {A Natpub()
B—A : {Naa Nb}pub(A)
A — B {Np}pun(B)

o the intruder knows N,

@ When B finishes his session
(apparently with A), A has never
talked with B.

Stéphanie Delaune () Security via constraint solving October 30, 2006 6 /25

Logical attacks - How to detect them?

Symbolic approach

@ messages are represented by terms rather than bit-strings
< {m}y encryption of the message m with key k,
— (my, my) pairing of messages my and my, ...

@ attacker controls the network and can perform specific actions

Stéphanie Delaune () Security via constraint solving October 30, 2006

Logical attacks - How to detect them?

Symbolic approach

@ messages are represented by terms rather than bit-strings
< {m}y encryption of the message m with key k,
— (my, my) pairing of messages my and my, ...

@ attacker controls the network and can perform specific actions

Relevance of the approach
@ numerous attacks have already been obtained,
@ allows us to perform automatic verification, e.g. AVISPA, Proverif, ...

@ soundness results already exist, e.g. [Micciancio & Warinschi'04]

Stéphanie Delaune () Security via constraint solving October 30, 2006 7/ 25

Difficulties of the verification

Presence of an attacker ...

Stéphanie Delaune () Security via constraint solving October 30, 2006 8/ 25

Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

Stéphanie Delaune () Security via constraint solving October 30, 2006 8/ 25

Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

who has deduction capabilities (e.g. the standard Dolev-Yao model)

@ encryption, decryption if he knows the decryption key,

@ pairing, projection

Stéphanie Delaune () Security via constraint solving October 30, 2006 8/ 25

Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

who has deduction capabilities (e.g. the standard Dolev-Yao model)

@ encryption, decryption if he knows the decryption key,

@ pairing, projection

Security problem for an unbounded number of sessions is undecidable.)

Stéphanie Delaune () Security via constraint solving October 30, 2006 8/ 25

Difficulties of the verification

Presence of an attacker ...

who controls the communication network:
@ may read every message sent on the network

@ may intercept and send new messages

who has deduction capabilities (e.g. the standard Dolev-Yao model)

@ encryption, decryption if he knows the decryption key,

@ pairing, projection

Security problem for a fixed number of sessions is decidable.)

Stéphanie Delaune () Security via constraint solving October 30, 2006

Outline of the talk

© Introduction
© How to deal with trace properties? (e.g. secrecy, authentication)

© Work in progress: Equivalence based security properties (e.g. anonymity)

Stéphanie Delaune () Security via constraint solving October 30, 2006 9/25

Outline of the talk

© How to deal with trace properties? (e.g. secrecy, authentication)

Stéphanie Delaune () Security via constraint solving October 30, 2006 10 / 25

Dolev-Yao Intruder Model

my, my and A are messages (terms)
T a finite set of messages (intruder’s knowledge)

TH mi TH myp
Ax. (A) my € T Pair (P)
Tl—ml T+ <m1,m2>
TEmp Tt pub(A) _) TH <m1, my)
Enc. (E) Proj. (Prjg) —
TH {ml}pub(A) T+ m
THE{m}o T F priv(A TF{(m,m
Dec. (D) {mly b(4) priv(A) Proj. (Prj1) —< 1, m2)
T+ ma T+ m

Stéphanie Delaune ()

Security via constraint solving October 30, 2006 11 / 25

Deducibility problem

Deducibility problem

INPUT: an intruder inference system Z, a finite set of terms T, a term s
(the secret).

OUTPUT: Does there exist a proof of T I s?

Stéphanie Delaune () Security via constraint solving October 30, 2006 12 / 25

Deducibility problem

Deducibility problem

INPUT: an intruder inference system Z, a finite set of terms T, a term s
(the secret).

OUTPUT: Does there exist a proof of T I s?

Example: Is (s1, s2) deducible from the set of terms T which contains s,
{52}1(and k7

Stéphanie Delaune () Security via constraint solving October 30, 2006 12 / 25

Deducibility problem

Deducibility problem

INPUT: an intruder inference system Z, a finite set of terms T, a term s
(the secret).

OUTPUT: Does there exist a proof of T I s?

Example: Is (s1, s2) deducible from the set of terms T which contains s,
{52}1(and k7

{2}k €T A keT
51€TA TH{s2}k Tk
TEHst THEH s

T (s1,5)

(D)

(P)

Stéphanie Delaune () Security via constraint solving October 30, 2006

Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

Stéphanie Delaune () Security via constraint solving October 30, 2006 13 / 25

Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

TF {<m1? m2>}pub(A)
T = {m1}pub(a)

Prefix Intruder (e.g. Cipher Block Chaining)

Stéphanie Delaune () Security via constraint solving October 30, 2006 13 / 25

Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

TF {<m1? m2>}pub(A)
T = {m1}pub(a)

Taking into account algebraic properties of the cryptographic primitives
(e.g. RSA encrytpion)

Prefix Intruder (e.g. Cipher Block Chaining)

. dec(enc(x, pub(y)), priv(y)) = x
" | enc(dec(x, priv(y)), pub(y)) = x
TEm THEK TEm
———— f € {dec,enc} my =g my
T+ f(m, k) TEFm

Stéphanie Delaune () Security via constraint solving October 30, 2006

In presence of an active attacker

Insecurity problem (bounded number of sessions)
Let 7 be an inference system modelling the attacker.
INPUT: a finite set Ry,..., Ry of instances of roles,

a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

Stéphanie Delaune () Security via constraint solving October 30, 2006 14 / 25

In presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,
a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

OUTPUT: Does there exist an interleaving of Ry,..., Rm
runnable from Ty w.r.t. 7 at the end of which
@ the intruder knowledge is T, and

@ s is deducible from T in Z7

Stéphanie Delaune ()

Security via constraint solving

October 30, 2006

In presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,
a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

OUTPUT: Does there exist an interleaving of Ry,..., Rm
runnable from Ty w.r.t. 7 at the end of which
@ the intruder knowledge is T, and

@ s is deducible from T in Z7

Security properties (trace properties): e.g. secrecy, some kinds of
authentication properties,

Stéphanie Delaune ()

Security via constraint solving

October 30, 2006

Running example: Needham-Schroeder’s protocol

A—B {Av Na}pub(B)
B—A : {Naa Nb}pub(A)
A—B : {Nb}puns)

Roles composing the protocol

Ra(xa,xp) 1 vna. out({Xa, Na}pub(xy)):
in({na’ an}pub(xa)); OUt({an}pub(xb))

Re(ys) : vnp. in({Ya, ¥Yn, }pub(ys))i OUt({¥n.: M6 tpub(ya))

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocol

A—B {Av Na}pub(B)
B—A : {Naa Nb}pub(A)
A—B : {Nb}puns)

Roles composing the protocol

Ra(xa,xp) 1 vna. out({Xa, Na}pub(xy)):
in({na’ an}pub(xa)); OUt({an}pub(xb))

Re(ys) : vnp. in({Ya, ¥Yn, }pub(ys))i OUt({¥n.: M6 tpub(ya))

To retrieve the well-known man-in-the-middle attack, we consider
® Ra(a,!) and Rg(b) (running in parallel).
o Top={a,b,l,pub(a),pub(b),pub(/),priv(/)}
@ Is ny, deducible by the intruder?

Stéphanie Delaune () Security via constraint solving October 30, 2006

Insecurity problem via constraint solving

Protocol rules Constraint System
in(uy); out(vq) To IF

in(UQ); Out(Vz) C— To,vilF up
in(up); out(v,) To,vi,.,vnlFs

Stéphanie Delaune () Security via constraint solving October 30, 2006

Insecurity problem via constraint solving

Protocol rules Constraint System
in(uy); out(vq) To IF

in(U2); Out(Vz) C— To,vilF up
in(up); out(v,) To,vi,.,vnlFs

Solution of a constraint system in 7

A substitution o such that
for every T |- u € C, uo is deducible from To in T.

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

) OUt({a7 na}pub(l))
'n({na7xnb}pub(a)) ; OUt({an}pub(l))

in({¥a; ¥n, }pub(p)) 5 OUt({¥n., Mb}pub(ys))

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {2, Na}pub()

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {2, na}pub(ry & {¥as Yn, }pub(b)

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {2, na}pub(ry & {¥as Yn, }pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya)

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’nb}pub(ya) I {na?xnb}pub(a)

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)
1 _ OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ; OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {aa na}pub(l) I {yaayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’ nb}pub(ya)7 {an}pub(l)

October 30, 2006

Security via constraint solving

Stéphanie Delaune ()

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)
1 _ OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ; OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

October 30, 2006

Security via constraint solving

Stéphanie Delaune ()

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution a:{ya'—> sy Yna /™ 5 Xnp }

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution o ={yar>a, ¥n, = Na, Xp, — }

Stéphanie Delaune () Security via constraint solving October 30, 2006

Running example: Needham-Schroeder’s protocols

Ra(a,) and Rg(b) (running in parallel)

1) OUt({aa na}pub(l))
3 'n({navxnb}pub(a)) ' OUt({an}pub(I))

2 in({ya7yna}pub(b)) ' OUt({yna7nb}pub(ya))

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution o ={yat>a, Yn, — Na, Xp, — Np}

Stéphanie Delaune () Security via constraint solving October 30, 2006

Existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)

Stéphanie Delaune () Security via constraint solving October 30, 2006 18 / 25

Existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
Few generic results

@ procedure to solve constraint systems for a class of intruder
< e.g. any intruder who can be described by a subterm convergent
rewiting system

@ combination result for disjoint intruder models.

Stéphanie Delaune () Security via constraint solving October 30, 2006 18 / 25

Existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
Few generic results

@ procedure to solve constraint systems for a class of intruder

< e.g. any intruder who can be described by a subterm convergent
rewiting system

@ combination result for disjoint intruder models.

Some tools
@ AVISPA tool (Atse, OFMC)

Stéphanie Delaune () Security via constraint solving October 30, 2006 18 / 25

Outline of the talk

© Work in progress: Equivalence based security properties (e.g. anonymity)

Stéphanie Delaune () Security via constraint solving October 30, 2006 19 / 25

Motivation: Electronic voting

Advantages:

. '\ LY
o Convenient, v

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

Possible issue: formal methods
abstract analysis of the protocol against formally-stated properties

Stéphanie Delaune () Security via constraint solving October 30, 2006

Expected properties

Privacy: the fact that a particular voter voted in a particular way is not
revealed to anyone

Receipt-freeness: a voter cannot prove that she
voted in a certain way (this is important to pro-
tect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts
with the voter during the protocol, e.g. by preparing messages

Stéphanie Delaune () Security via constraint solving October 30, 2006 21 /25

How to model such security properties?

[Kremer & Ryan, 2005] — Formalisation of Privacy
— consider 2 honest voters and swap their votes

A voting protocol respects privacy if

S[Va{?/v} | Ve{®/}] = SIVa{®/} | VB{?/ }]-

[Delaune, Kremer & Ryan, 2006]

Formalisation of Receipt-freeness and Coercion-resistance in term of
equivalence.

Stéphanie Delaune () Security via constraint solving October 30, 2006

Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy?

Stéphanie Delaune () Security via constraint solving October 30, 2006 23 /25

Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Stéphanie Delaune () Security via constraint solving October 30, 2006 23 /25

Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Naive vote protocol (version 2)

V - S /d, {V}pub(S)

What about privacy?

Stéphanie Delaune () Security via constraint solving October 30, 2006

Some examples

SIVa{?/v} | Ve{®/ v} = SIVa{®/v} | VB{?/}]

Naive vote protocol (version 1)

V — S {vlous)

What about privacy? OK

Naive vote protocol (version 2)

V - S /d, {V}pub(S)

What about privacy?

@ deterministic encryption: NOT OK
@ probabilistic encryption: OK

Stéphanie Delaune () Security via constraint solving October 30, 2006

More formally

Labeled bisimilarity (=)

The largest symmetric relation R on processes, such that A R B implies
Q ¢(A) =~ ¢(B) (depends on E),
Q if A— A, then B —* B’ and A’ R B’ for some B,
Q ifAS A, then B—*%—* B and A’ R B’ for some B'.

This relation is in genral undecidable. Why?
@ unfolding tree is infinite in depth
@ unfolding tree is infinititely branching (because of inputs)

@ equational theories may be complex

Tool: Proverif
—— Obuviously, the procedure is not complete. Proverif is not able to
conclude for privacy even for naive voting protocols (version 1)

Stéphanie Delaune () Security via constraint solving October 30, 2006 24 / 25

Work in Progress

Our Goal:
to do better than Proverif in the context of a bounded number of sessions

@ Infinite depth:
< we restrict to consider processes without replication (finite
processes),

@ Infinite branching:
— we define a notion of symbolic processes and symbolic bisimulation

Concrete in(x).out({x}x) inm), out({mz}«)

Symbolic (in(x).out({x}4); €) "% (out({x}4); C U $(P) IF x)

October 30, 2006 25 / 25

Security via constraint solving

Stéphanie Delaune ()

Work in Progress

Our Goal:
to do better than Proverif in the context of a bounded number of sessions

@ Infinite depth:
< we restrict to consider processes without replication (finite

processes),

@ Infinite branching:
— we define a notion of symbolic processes and symbolic bisimulation

Concrete in(x).out({x}x) inm), out({mz}«)

Symbolic (in(x).out({x}4); €) "% (out({x}4); C U $(P) IF x)

Then, we plan:
@ to design a procedure to solve our constaint systems for a class of

equational theory as larger as possible

@ to implement a tool
October 30, 2006 25 / 25

Security via constraint solving

Stéphanie Delaune ()

	Introduction
	How to deal with trace properties? (e.g. secrecy, authentication)
	Work in progress: Equivalence based security properties (e.g. anonymity)

