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Goals

Secrecy: May an intruder learn some secret message between
two honest participants ?

Authentication: Is the agent Alice really talking to Bob ?

Privacy: Alice participate to an election. May a participant
learn something about the vote of Alice ?

Fairness: Alice and Bob want to sign a contract. Alice initiates
the protocol. May Bob obtain some advantage ?
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Encryption

• Symmetric Encryption

encryption decryption

• Asymmetric Encryption

encryption decryption

public key private key

Introduction – p.4



Dolev-Yao Intruder Model

u, v terms
T a finite set of terms (intruder’s knowledge)

Aom (A)
 ∈ T

T ` 
Prng (P)

T `  T ` 

T ` 〈, 〉

Unprng (UL)
T ` 〈, 〉

T ` 
Unprng (UR)

T ` 〈, 〉

T ` 

Encrypton (E)
T `  T ` 

T ` {}
Decrypton (D)

T ` {} T ` −1

T ` 

,→ Perfect Cryptography Assumption

no way to obtain knowledge about  from {} without knowing −1
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Needham-Schroeder’s Protocol (1978)

• A → B : {A,N}pb(B)

•

B → A : {N, Nb}pb(A)

•

A → B : {Nb}pb(B)

Questions

Is Nb secret between A and B ?

When B receives {Nb}pb(B), does this message really comes

from A ?

An attack was found 17 years after its publication ! [Lowe 96]
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Roadmap of the Talk

I) Secrecy Problem

Results in the Dolev-Yao Intruder Model

Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

Motivations

Finite Variant Property, Boundedness Property

Proving Boundedness
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Secrecy Problem (Example)

Equational theory E

dec(enc(,y),y) = 

Protocol rules P

Intruder theory I

enc(, k2) ⇒ enc(dec(, k1), k2)

 

enc(, )

 

dec(, )

+ initial knowledge: enc(s, k1), k2

Description of the attack on P with I, E:

enc(s, k1) k2

enc(enc(s, k1), k2) ⇒P enc(dec(enc(s, k1), k1), k2)

=E

enc(s, k2) k2

dec(enc(s, k2), k2)

=E

s
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Secrecy Problem

Secrecy Problem

Given a protocol P, an intruder theory I, an equational theory E,
a secret data s and an initial intruder’s knowledge T0,
does there exist a running sequence of protocol rules such that:

at the end, the intruder’s knowledge is T,

s is deducible from T

Results in the Dolev-Yao Intruder Model

infinite number of sessions: undecidable

finite number of sessions: NP-complete [RT01]

Secrecy Problem – p.10



Roadmap of the Talk

I) Secrecy Problem

Results in the Dolev-Yao Intruder Model

Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

Motivations

Finite Variant Property, Boundedness Property

Proving Boundedness
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New Kind of Intruder Model

Intruder = Inference System I + Equational Theory E

Example:

Inference System I

Dolev-Yao Intruder Model + (Xor)
T `  T ` 

T ` ⊕ 

Equational Theory E

⊕ 0 =  Unit

⊕  = 0 Nilpotence

⊕ (y⊕ z) = (⊕ y)⊕ z Associtivity

⊕ y = y⊕  Commutativity

Secrecy Problem – p.12



Some Existing Results

Secrecy Problem

(finite number of sessions)

Exclusive or theory

⊕  = 0

⊕ 0 = 

+ Assoc. and Commut. of ⊕

Decidable / NP-complete

[CLS03] / [CKRT03]

Abelian group theory

× () = 1

× 1 = 

+ Assoc. and Commut. of ×

Decidable

[Shm04]

Diffie-Hellman theory

ep(,1) = 

ep(ep(, y), z) = ep(, y× z)

+ Abelian group for ×

Decidable / NP-complete

[Shm04] /[CKRT03]

Secrecy Problem – p.13
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Motivation

Goal:
Investigate the finite variant property for equational theories, which
are relevant to cryptographic protocols verification.

Application:

Reduce the decidability of a problem in E into a (supposedly)

simpler theory E′:

secrecy problem

disunification problem

My Contribution: How to Get Rid of Algebraic Properties? – p.15



Motivation: Example

Equational theory E

dec(enc(,y),y) = 

P : enc(, k2) ⇒ enc(dec(, k1), k2)

P1 : enc(, k2) ⇒ enc(dec(, k1), k2)

P2: enc(enc(, k1), k2) ⇒ enc(, k2)

I:
 

enc(, )

 

dec(, )

Ir :
enc(, ) 



Attack on P with I, E ⇔ ∃ . Attack on P with I ∪ Ir , ;

My Contribution: How to Get Rid of Algebraic Properties? – p.16
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Finite Variant Property

Let R be an E′-convergent rewrite system for E.

Variant
t′ is a variant of a term t iff ∃θ such that t′ = tθ ↓ (w.r.t. E′\R)

S is a complete set of variants of t iff

∀σ.∃t′ ∈ S.∃θ such that tσ↓ =E′ t
′θ.

Example:

R = { dec(enc(, y), y) →  } E′ = ;

Let t = dec(, k1) and σ = { 7→ enc(z, k1)}.

tσ = dec(enc(z, k1), k1)→R z ⇒ z is a variant of t,

∀σ, tσ↓ = zθ for some θ ⇒ {z} is complete.
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Boundedness Property

Finite Variant Property – (R, E′) has the finite variant property if:
For every term t, there exists a finite and complete set of variants
of t

~
w
� when E′ is regular (typically AC)

Example:

R = { dec(enc(, y), y) →  } E′ = ;

t = dec(, k1)
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Sufficient Criteria (1)

Proposition:

If (basic) narrowing terminates for R then (R, ;) satisfies the
boundedness property.

Axiomatized Dolev-Yao Theory (DYT)

The classical Dolev-Yao model with explicit destructors.

π(〈1, 2〉) =  for  = 1,2

dec(enc(, y), y−1) = 

−1
−1

= 

Key Inverse Theory (KIT)

The equations of DYT extending by:

enc(dec(, y), y) = 

My Contribution: How to Get Rid of Algebraic Properties? – p.21
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Abelian Group Theory (1)

Classical presentation of AG:

× −1 = 1 × (y× z) = (× y)× z

× 1 =  × y = y× 

−1
−1
→ 

1−1 → 1

(× y)−1 → −1 × y−1

× (y× −1) → y

Problem
This presentation does not satisify the boundedness property.

Counter-Example

Let t = −1 and σ = { 7→ 0 × . . .× n}.

(0 × . . .× n)
−1

︸ ︷︷ ︸
−→AC\R× . . . −→AC\R× . . . −→
︸ ︷︷ ︸

−1
0
× . . .× −1

n
︸ ︷︷ ︸

tσ at least n steps tσ↓

My Contribution: How to Get Rid of Algebraic Properties? – p.22
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Abelian Group Theory (2)

Unusual Presentation of AG: R′
×
[Lankford]

× 1 →  −1
−1
→ 

1−1 → 1 (−1 × y)−1 → × y−1

× −1 → 1 × (−1 × y) → y

−1 × y−1 → (× y)−1 −1 × (y−1 × z) → (× y)−1 × z

(× y)−1 × y → −1 (× y)−1 × (y× z) → −1 × z

Proposition:

R′
×
is an AC-convergent rewrite system for AG

⇒ (R′
×
, AC) satisfies the boundedness property

My Contribution: How to Get Rid of Algebraic Properties? – p.23
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Sufficient Criteria (2)

Lemma:
If for each function symbol f , there is an integer cf such that

t1, . . ., tn in normal forms ⇒ f (t1, . . ., tn)
≤cf
−−→E′\R f (t1, . . ., tn)↓

then (R, E′) satisfies the boundedness property.

Example: Abelian Group Theory

Let t1 and t2 terms in normal forms (w.r.t AC\R′
×
), we have:

t1
−1 ≤1−→ (t1

−1)↓

t1 × t2
≤2
−→ (t1 × t2)↓
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Others Equational Theories

Presentation of the Diffie-Hellman Theory DH

RDH = R′
×
∪

¨

exp(,1) → 

exp(exp(, y), z) → exp(, y× z)

«

⇒ (RDH, AC) satisfies the boundedness property

Presentation of the Xor Theory ACUN

R+ =







+ 0 → 

+  → 0

+ (+ y) → y







⇒ (R+, AC) satisfies the boundedness property
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Conclusion & Future Works

Conclusion

Reduce the decidability of the secrecy problem in E to a smaller
theory:

Sufficient Criteria 1: termination of (basic) narrowing

⇒ solve the secrecy problem by going back to the free algebra

Sufficient Criteria 2: it is satisfied by ACUN, AG and DH

⇒ solve the secrecy problem by reducing it to AC

Future Works

Find a decidable criteria for establishing automatically the
boundedness property of a theory,

Find sufficient conditions on the intruder theory to ensure the
decidability of the secrecy problem.
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