Verification of Cryptographic Protocols in Presence of Algebraic Properties

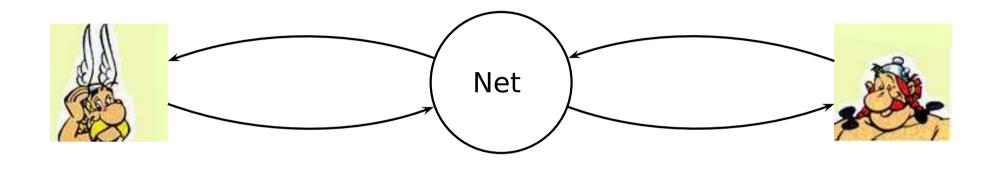
Stéphanie Delaune

LSV, CNRS UMR 8643, ENS de Cachan

France Télécom R&D

Verification of Cryptographic Protocols in Presence of Algebraic Properties - p.1

Cryptographic Protocols



Protocol

 \hookrightarrow rules of message exchanges

Goal

↔ secure communications: *secrecy, authentication* ...

Applications

 \hookrightarrow mobile phone, e-voting, e-commerce, ...

Cryptographic Protocols

Protocol

 \hookrightarrow rules of message exchanges

Goal

↔ secure communications: *secrecy, authentication* ...

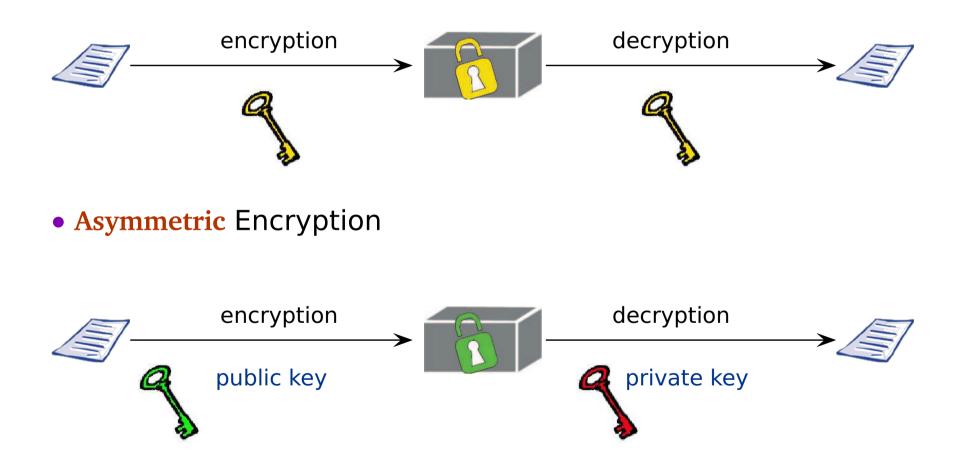
Applications

 \hookrightarrow mobile phone, e-voting, e-commerce, ...

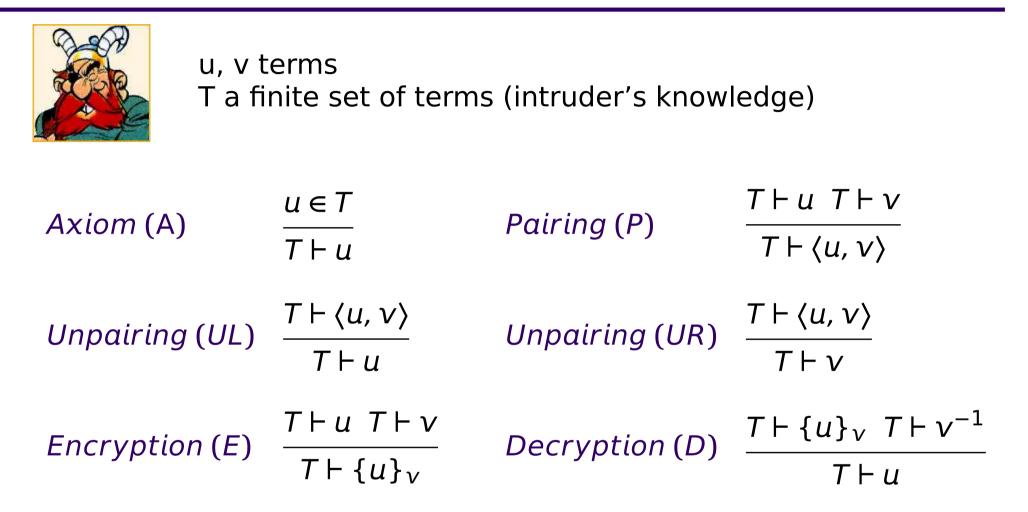
- Secrecy: May an intruder learn some secret message between two honest participants ?
- Authentication: Is the agent Alice really talking to Bob ?
- Privacy: Alice participate to an election. May a participant learn something about the vote of Alice ?
- Fairness: Alice and Bob want to sign a contract. Alice initiates the protocol. May Bob obtain some advantage ?

Encryption

• Symmetric Encryption



Dolev-Yao Intruder Model



← Perfect Cryptography Assumption

no way to obtain knowledge about u from $\{u\}_v$ without knowing v^{-1}

- $A \rightarrow B$: $\{A, N_a\}_{pub(B)}$
 - $B \rightarrow A : \{N_a, N_b\}_{pub(A)}$
 - $A \rightarrow B: \{N_b\}_{pub(B)}$

- $A \rightarrow B: \{A, N_a\}_{pub(B)}$
- $B \rightarrow A : \{N_a, N_b\}_{pub(A)}$
 - $A \rightarrow B: \{N_b\}_{pub(B)}$

 $A \rightarrow B: \{A, N_a\}_{pub(B)}$ $B \rightarrow A: \{N_a, N_b\}_{pub(A)}$ $\bullet A \rightarrow B: \{N_b\}_{pub(B)}$

 $A \rightarrow B: \{A, N_a\}_{pub(B)}$ $B \rightarrow A: \{N_a, N_b\}_{pub(A)}$ $A \rightarrow B: \{N_b\}_{pub(B)}$

Questions

- Is N_b secret between A and B ?
- When B receives {N_b}_{pub(B)}, does this message really comes from A ?

 $A \rightarrow B: \{A, N_a\}_{pub(B)}$ $B \rightarrow A: \{N_a, N_b\}_{pub(A)}$ $A \rightarrow B: \{N_b\}_{pub(B)}$

Questions

- Is N_b secret between A and B ?
- When B receives {N_b}_{pub(B)}, does this message really comes from A ?

An attack was found 17 years after its publication ! [Lowe 96]

Roadmap of the Talk

I) Secrecy Problem

- Results in the Dolev-Yao Intruder Model
- Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

- Motivations
- Finite Variant Property, Boundedness Property
- Proving Boundedness

Roadmap of the Talk

I) Secrecy Problem

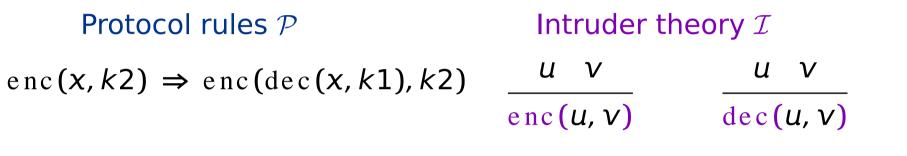
- Results in the Dolev-Yao Intruder Model
- Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

- Motivations
- Finite Variant Property, Boundedness Property
- Proving Boundedness

Protocol rules \mathcal{P}

 $\operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)$



+ initial knowledge: enc(s, k1), k2

Equational theory E
dec(enc(x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} enc(x, k2) \Rightarrow enc(dec(x, k1), k2) $\frac{u \ v}{enc(u, v)}$ $\frac{u \ v}{dec(u, v)}$

+ initial knowledge: enc(s, k1), k2

Equational theory E
dec (enc (x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} enc (x, k2) \Rightarrow enc (dec (x, k1), k2) $\frac{u \ v}{enc(u, v)}$ $\frac{u \ v}{dec(u, v)}$ + initial knowledge: enc (s, k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

Equational theory E
dec(enc(x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} enc(x, k2) \Rightarrow enc(dec(x, k1), k2) $\frac{u \ v}{enc(u, v)}$ $\frac{u \ v}{dec(u, v)}$

+ initial knowledge: enc(s, k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

enc(*s*, *k*1) *k*2

Equational theory E
dec (enc (x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} enc (x, k2) \Rightarrow enc (dec (x, k1), k2) $\frac{u \ v}{enc(u, v)}$ $\frac{u \ v}{dec(u, v)}$ + initial knowledge: enc (s, k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

enc(s, k1) k2 enc(enc(s, k1), k2)

Equational theory E
dec (enc (x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} enc (x, k2) \Rightarrow enc (dec (x, k1), k2) $\frac{u \ v}{enc(u, v)}$ $\frac{u \ v}{dec(u, v)}$ + initial knowledge: enc (s, k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

 $\frac{\operatorname{enc}(s,k1) \quad k2}{\operatorname{enc}(\operatorname{enc}(s,k1),k2)} \Rightarrow_{\mathcal{P}} \operatorname{enc}(\operatorname{dec}(\operatorname{enc}(s,k1),k1),k2)$

Equational theory E dec(enc(x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} $enc(x,k2) \Rightarrow enc(dec(x,k1),k2) = \frac{u \cdot v}{enc(u,v)} = \frac{u \cdot v}{dec(u,v)}$ + initial knowledge: enc(s,k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

 $\frac{\operatorname{enc}(s,k1) \quad k2}{\operatorname{enc}(\operatorname{enc}(s,k1),k2)} \Rightarrow_{\mathcal{P}} \operatorname{enc}(\operatorname{dec}(\operatorname{enc}(s,k1),k1),k2) = \underset{E}{=}_{E}$

Equational theory E
dec (enc (x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} enc (x, k2) \Rightarrow enc (dec (x, k1), k2) $\frac{u \ v}{enc(u, v)}$ $\frac{u \ v}{dec(u, v)}$ + initial knowledge: enc (s, k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

 $\frac{\operatorname{enc}(s,k1) \quad k2}{\operatorname{enc}(\operatorname{enc}(s,k1),k2)} \Rightarrow_{\mathcal{P}} \operatorname{enc}(\operatorname{dec}(\operatorname{enc}(s,k1),k1),k2) = \underset{E}{=_{E}} \operatorname{enc}(s,k2) \qquad k2 \\ \operatorname{dec}(\operatorname{enc}(s,k2),k2)$

Equational theory E dec(enc(x,y),y) = xProtocol rules \mathcal{P} Intruder theory \mathcal{I} $enc(x,k2) \Rightarrow enc(dec(x,k1),k2) \qquad \frac{u \ v}{enc(u,v)} \qquad \frac{u \ v}{dec(u,v)}$

+ initial knowledge: enc(s, k1), k2

Description of the attack on \mathcal{P} with \mathcal{I} , \boldsymbol{E} :

 $\frac{\operatorname{enc}(s,k1) \quad k2}{\operatorname{enc}(\operatorname{enc}(s,k1),k2)} \Rightarrow_{\mathcal{P}} \operatorname{enc}(\operatorname{dec}(\operatorname{enc}(s,k1),k1),k2) = \underset{E}{=_{E}} \\ \frac{\operatorname{enc}(s,k2) \quad k2}{\operatorname{dec}(\operatorname{enc}(s,k2),k2)} = \underset{E}{=_{E}} \\ s \quad \text{Screey Problem - p.9}$

Secrecy Problem

Given a protocol \mathcal{P} , an intruder theory \mathcal{I} , an equational theory E, a secret data s and an initial intruder's knowledge T_0 , does there exist a running sequence of protocol rules such that:

- In at the end, the intruder's knowledge is T,
- s is deducible from T

Results in the Dolev-Yao Intruder Model

- infinite number of sessions: undecidable
- finite number of sessions: NP-complete [RT01]

Roadmap of the Talk

I) Secrecy Problem

- Results in the Dolev-Yao Intruder Model
- Relaxing the Perfect Cryptographic Assumption

- II) My Contribution: How to Get Rid of Algebraic Properties?
 - Motivations
 - Finite Variant Property, Boundedness Property
 - Proving Boundedness

New Kind of Intruder Model

Intruder = Inference System \mathcal{I} + Equational Theory *E*

Example:

J Inference System \mathcal{I}

Dolev-Yao Intruder Model + (Xor) $\frac{T \vdash u \ T \vdash v}{T \vdash u \oplus v}$

Equational Theory E

$$x \oplus 0 = x$$
 Unit
 $x \oplus x = 0$ Nilpotence
 $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ Associtivity
 $x \oplus y = y \oplus x$ Commutativity

Some Existing Results

	Secrecy Problem
	(finite number of sessions)
Exclusive or theory	
$x \oplus x = 0$ $x \oplus 0 = x$ + Assoc. and Commut. of \oplus	Decidable / NP-complete [CLS03] / [CKRT03]
Abelian group theory	
$x \times I(x) = 1$ $x \times 1 = x$ + Assoc. and Commut. of ×	Decidable [Shm04]
Diffie-Hellman theory exp(x, 1) = x $exp(exp(x, y), z) = exp(x, y \times z)$ + Abelian group for \times	Decidable / NP-complete [Shm04] /[CKRT03]

Roadmap of the Talk

I) Secrecy Problem

- Results in the Dolev-Yao Intruder Model
- Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

- Motivations
- Finite Variant Property, Boundedness Property
- Proving Boundedness

Goal:

Investigate the finite variant property for equational theories, which are relevant to cryptographic protocols verification.

Application:

Reduce the decidability of a problem in E into a (supposedly) simpler theory E':

- secrecy problem
- disunification problem

Motivation: Example

Equational theory E dec(enc(x,y),y) = x

 $\mathcal{P}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)_{\mathcal{I}:} \frac{u v}{\operatorname{enc}(u, v)} \quad \frac{u v}{\operatorname{dec}(u, v)}$

Motivation: Example

Equational theory E dec(enc(x,y),y) $\rightarrow x$

 $\mathcal{P}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)_{\mathcal{I}}: \frac{u v}{\operatorname{enc}(u, v)} \qquad \frac{u v}{\operatorname{dec}(u, v)}$

Motivation: Example

Equational theory E dec(enc(x,y),y) $\rightarrow x$

 $\mathcal{P}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)_{\mathcal{I}}: \frac{u v}{\operatorname{enc}(u, v)} \qquad \frac{u v}{\operatorname{dec}(u, v)}$

 $\mathcal{P}_1: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)$

Equational theory E dec(enc(x,y),y) $\rightarrow x$

 $\mathcal{P}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)_{\mathcal{I}:} \frac{u v}{\operatorname{enc}(u, v)} \quad \frac{u v}{\operatorname{dec}(u, v)}$

- $\mathcal{P}_1: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)$
- \mathcal{P}_2 : enc(enc(x, k1), k2) \Rightarrow enc(x, k2)

Equational theory E dec(enc(x,y),y) $\rightarrow x$

 $\mathcal{P}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)_{\mathcal{I}:} \frac{u v}{\operatorname{enc}(u, v)} \quad \frac{u v}{\operatorname{dec}(u, v)}$

 $\begin{array}{ll} \mathcal{P}_1: & \operatorname{enc}(x,k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x,k1),k2) \\ \mathcal{P}_2: & \operatorname{enc}(\operatorname{enc}(x,k1),k2) \Rightarrow \operatorname{enc}(x,k2) \end{array} \qquad \qquad \mathcal{I}_{var}: \frac{\operatorname{enc}(u,v) \quad v}{u} \\ \end{array}$

Equational theory E dec(enc(x,y),y) $\rightarrow x$

 $\mathcal{P}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2)_{\mathcal{I}}: \frac{u v}{\operatorname{enc}(u, v)} \qquad \frac{u v}{\operatorname{dec}(u, v)}$

 $\mathcal{P}_{1}: \operatorname{enc}(x, k2) \Rightarrow \operatorname{enc}(\operatorname{dec}(x, k1), k2) \\ \mathcal{P}_{2}: \operatorname{enc}(\operatorname{enc}(x, k1), k2) \Rightarrow \operatorname{enc}(x, k2)$ $\mathcal{I}_{var}: \frac{\operatorname{enc}(u, v) \quad v}{u}$

Attack on \mathcal{P} with $\mathcal{I}, E \iff \exists i$. Attack on \mathcal{P}_i with $\mathcal{I} \cup \mathcal{I}_{var}, \emptyset$

Roadmap of the Talk

I) Secrecy Problem

- Results in the Dolev-Yao Intruder Model
- Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

- Motivations
- Finite Variant Property, Boundedness Property
- Proving Boundedness

Finite Variant Property

Let \mathcal{R} be an E'-convergent rewrite system for E.

Variant

t' is a variant of a term *t* iff $\exists \theta$ such that $t' = t\theta \downarrow$ (w.r.t. $E' \setminus \mathcal{R}$)

S is a complete set of variants of *t* iff $\forall \sigma. \exists t' \in S. \exists \theta$ such that $t\sigma \downarrow =_{E'} t' \theta$.

Finite Variant Property

Let \mathcal{R} be an E'-convergent rewrite system for E.

Variant

t' is a variant of a term *t* iff $\exists \theta$ such that $t' = t\theta \downarrow$ (w.r.t. $E' \setminus \mathcal{R}$)

S is a complete set of variants of *t* iff $\forall \sigma. \exists t' \in S. \exists \theta$ such that $t\sigma \downarrow =_{E'} t' \theta$.

Example:

$$\mathcal{R} = \{ \operatorname{dec}(\operatorname{enc}(x, y), y) \rightarrow x \} \qquad E' = \emptyset$$

Let $t = dec(x, k_1)$ and $\sigma = \{x \mapsto enc(z, k_1)\}$.

- $t\sigma = dec(enc(z, k_1), k_1) \rightarrow_{\mathcal{R}} z \Rightarrow z$ is a variant of t,
- $\forall \sigma, t\sigma \downarrow = z\theta$ for some $\theta \Rightarrow \{z\}$ is complete.

Finite Variant Property – (\mathcal{R} , E') has the finite variant property if: For every term t, there exists a finite and complete set of variants of t **Finite Variant Property** – (\mathcal{R} , E') has the finite variant property if: For every term t, there exists a finite and complete set of variants of t

when E' is regular (typically AC)

Boundedness Property – (\mathcal{R} , E') has the **boundedness property** if: For every term t, there is an integer n such that

$$\forall \sigma. t(\sigma \downarrow) \xrightarrow{\leq n}_{E' \setminus \mathcal{R}} (t\sigma) \downarrow$$

Finite Variant Property – (\mathcal{R} , E') has the finite variant property if: For every term t, there exists a finite and complete set of variants of t

when E' is regular (typically AC)

Boundedness Property – (\mathcal{R}, E') has the **boundedness property** if: For every term *t*, there is an integer *n* such that

$$\forall \sigma. t(\sigma \downarrow) \xrightarrow{\leq n}_{E' \setminus \mathcal{R}} (t\sigma) \downarrow$$

Example:

$$\mathcal{R} = \{ \operatorname{dec}(\operatorname{enc}(x, y), y) \rightarrow x \} \qquad \qquad E' = \emptyset$$

 $t = \operatorname{dec}(x, k_1)$

Roadmap of the Talk

I) Secrecy Problem

- Results in the Dolev-Yao Intruder Model
- Relaxing the Perfect Cryptographic Assumption

II) My Contribution: How to Get Rid of Algebraic Properties?

- Motivations
- Finite Variant Property, Boundedness Property
- Proving Boundedness

Sufficient Criteria (1)

Proposition:

If (basic) narrowing terminates for \mathcal{R} then (\mathcal{R}, \emptyset) satisfies the boundedness property.

Proposition:

If (basic) narrowing terminates for \mathcal{R} then (\mathcal{R} , \emptyset) satisfies the boundedness property.

Axiomatized Dolev-Yao Theory (DYT) The classical Dolev-Yao model with explicit destructors.

$$\pi_i(\langle x_1, x_2 \rangle) = x_i \quad \text{for } i = 1, 2$$

$$\det(\operatorname{enc}(x, y), y^{-1}) = x$$

$$x^{-1^{-1}} = x$$

Proposition:

If (basic) narrowing terminates for \mathcal{R} then (\mathcal{R} , \emptyset) satisfies the boundedness property.

Axiomatized Dolev-Yao Theory (DYT) The classical Dolev-Yao model with explicit destructors.

$$\pi_i(\langle x_1, x_2 \rangle) = x_i \quad \text{for } i = 1, 2$$

$$\det(\operatorname{enc}(x, y), y^{-1}) = x$$

$$x^{-1^{-1}} = x$$

Key Inverse Theory (KIT) The equations of DYT extending by:

$$\operatorname{enc}(\operatorname{dec}(x, y), y) = x$$

$$\begin{array}{rcl} x \times x^{-1} &=& 1 \\ x \times 1 &=& x \end{array}$$

 $\begin{array}{rcl} x \times (y \times z) &=& (x \times y) \times z \\ & x \times y &=& y \times x \end{array}$

Classical presentation of \mathcal{AG} **:**

$$\mathcal{R}_{\times} = \begin{cases} \begin{array}{cccc} x \times x^{-1} & \to & 1 \\ & x \times 1 & \to & x \\ & x^{-1^{-1}} & \to & x \\ & 1^{-1} & \to & 1 \\ & (x \times y)^{-1} & \to & x^{-1} \times y^{-1} \\ & x \times (y \times x^{-1}) & \to & y \end{array}$$

$$\begin{array}{rcl} x \times (y \times z) &=& (x \times y) \times z \\ x \times y &=& y \times x \end{array}$$

Classical presentation of \mathcal{AG} :

$$\mathcal{R}_{\times} = \begin{cases} \begin{array}{cccc} x \times x^{-1} & \to & 1 & & x \times (y \times z) & = & (x \times y) \times z \\ x \times 1 & \to & x & & x \times y & = & y \times x \\ x^{-1^{-1}} & \to & x & & \\ 1^{-1} & \to & 1 & & \\ (x \times y)^{-1} & \to & x^{-1} \times y^{-1} \\ x \times (y \times x^{-1}) & \to & y \end{array}$$

Problem

This presentation does not satisify the boundedness property.

Classical presentation of AG:

$$\mathcal{R}_{\times} = \begin{cases} x \times x^{-1} \rightarrow 1 & x \times (y \times z) = (x \times y) \times z \\ x \times 1 \rightarrow x & x \times y = y \times x \\ x^{-1^{-1}} \rightarrow x \\ 1^{-1} \rightarrow 1 \\ (x \times y)^{-1} \rightarrow x^{-1} \times y^{-1} \\ x \times (y \times x^{-1}) \rightarrow y \end{cases}$$

Problem

This presentation does not satisify the boundedness property.

Counter-Example Let $t = x^{-1}$ and $\sigma = \{x \mapsto a_0 \times \ldots \times a_n\}$. $\underbrace{(a_0 \times \ldots \times a_n)^{-1}}_{t\sigma} \xrightarrow{\rightarrow}_{AC \setminus \mathcal{R}_{\times}} \ldots \xrightarrow{\rightarrow}_{AC \setminus \mathcal{R}_{\times}} \ldots \xrightarrow{\rightarrow}_{a_0^{-1}} \underbrace{a_0^{-1} \times \ldots \times a_n^{-1}}_{t\sigma}$ at least *n* steps $t\sigma$

Unusual Presentation of $\mathcal{AG}: \mathcal{R}'_{x}$ [Lankford]

Proposition:

 $\mathcal{R}'_{\mathbf{x}}$ is an AC-convergent rewrite system for \mathcal{AG}

Unusual Presentation of $\mathcal{AG}: \mathcal{R}'_{x}$ [Lankford]

Proposition:

 \mathcal{R}'_{\star} is an AC-convergent rewrite system for \mathcal{AG}

 \Rightarrow (\mathcal{R}'_{\times} , AC) satisfies the boundedness property

Lemma:

If for each function symbol f, there is an integer c_f such that t_1, \ldots, t_n in normal forms $\Rightarrow f(t_1, \ldots, t_n) \xrightarrow{\leq c_f} f(t_1, \ldots, t_n)$, then (\mathcal{R}, E') satisfies the boundedness property.

Lemma:

If for each function symbol f, there is an integer c_f such that t_1, \ldots, t_n in normal forms $\Rightarrow f(t_1, \ldots, t_n) \xrightarrow{\leq c_f} f(t_1, \ldots, t_n) \downarrow$ then (\mathcal{R}, E') satisfies the boundedness property.

Example: Abelian Group Theory

Let t_1 and t_2 terms in normal forms (w.r.t $AC \setminus \mathcal{R}'_{x}$), we have:

Others Equational Theories

Presentation of the Diffie-Hellman Theory \mathcal{DH}

$$\mathcal{R}_{\mathcal{DH}} = \mathcal{R}'_{\times} \cup \left\{ \begin{array}{ccc} \exp(x, 1) & \to & x \\ \exp(\exp(x, y), z) & \to & \exp(x, y \times z) \end{array} \right\}$$

 \Rightarrow (\mathcal{R}_{DH} , AC) satisfies the boundedness property

Others Equational Theories

Presentation of the Diffie-Hellman Theory \mathcal{DH}

$$\mathcal{R}_{\mathcal{DH}} = \mathcal{R}'_{\times} \cup \left\{ \begin{array}{ccc} \exp(x, 1) & \to & x \\ \exp(\exp(x, y), z) & \to & \exp(x, y \times z) \end{array} \right\}$$

 \Rightarrow (\mathcal{R}_{DH} , AC) satisfies the boundedness property

Presentation of the Xor Theory ACUN

$$\mathcal{R}_{+} = \left\{ \begin{array}{ccc} x+0 & \rightarrow & x \\ x+x & \rightarrow & 0 \\ x+(x+y) & \rightarrow & y \end{array} \right\}$$

 \Rightarrow (\mathcal{R}_+ , AC) satisfies the **boundedness property**

Conclusion & Future Works

Conclusion

Reduce the decidability of the secrecy problem in *E* to a smaller theory:

- Sufficient Criteria 1: termination of (basic) narrowing
 - ⇒ solve the secrecy problem by going back to the free algebra
- **Sufficient Criteria 2**: it is satisfied by ACUN, AG and DH
 - \Rightarrow solve the secrecy problem by reducing it to AC

Conclusion & Future Works

Conclusion

Reduce the decidability of the secrecy problem in *E* to a smaller theory:

- Sufficient Criteria 1: termination of (basic) narrowing
 - ⇒ solve the secrecy problem by going back to the free algebra
- **Sufficient Criteria 2**: it is satisfied by ACUN, AG and DH
 - \Rightarrow solve the secrecy problem by reducing it to AC

Future Works

- Find a decidable criteria for establishing automatically the boundedness property of a theory,
- Find sufficient conditions on the intruder theory to ensure the decidability of the secrecy problem.