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Cryptographic Protocols

Protocol
— rules of message exchanges
Goal
< secure communications: secrecy, authentication ...

Applications
— mobile phone, e-voting, e-commerce, ...
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Goals

® Secrecy: May an intruder learn some secret message between
two honest participants ?

® Authentication: Is the agent Alice really talking to Bob ?

® Privacy: Alice participate to an election. May a participant
learn something about the vote of Alice ?

® Fairness: Alice and Bob want to sign a contract. Alice initiates
the protocol. May Bob obtain some advantage ?
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Encryption

e Symmetric Encryption
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Dolev-Yao Intruder Model

u, v terms
T a finite set of terms (intruder’s knowledge)

_ ueT o THFu TkFv
Axiom (A) Pairing (P)
Thu T'Hu, v)
TH(u, v - Ty v
Unpairing (UL) W, v Unpairing (UR) W, vy
Thu Tkv
Thu Tkv -1
Encryption (E) Decryption (D) D
TH{u}yv THuU

— Perfect Cryptography Assumption
no way to obtain knowledge about u from {u}y without knowing v~1
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Needham-Schroeder’s Protocol (1978)

A — B: {A, Na}pub(B)
B — A: {Ng Nb}pub(A)
A — B: {Nb }pub(B)

Questions
® |Is Np secret between Aand B ?

® When B receives {Np }pup(B), does this message really comes
from A ?

An attack was found 17 years after its publication ! [Lowe 96]
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Roadmap of the Talk

) Secrecy Problem
® Results in the Dolev-Yao Intruder Model
® Relaxing the Perfect Cryptographic Assumption

Il) My Contribution: How to Get Rid of Algebraic Properties?
® Motivations
® Finite Variant Property, Boundedness Property
® Proving Boundedness
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) Secrecy Problem
® Results in the Dolev-Yao Intruder Model
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Secrecy Problem (Example)

Protocol rules P

enc(x, k2) = enc(dec(x, k1), k2)
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Secrecy Problem (Example)

Equational theory E
dec(enc(x,y),y) = X

Protocol rules P Intruder theory 7
u v u v
enc(u, v) dec(u, v)

+ initial knowledge: enc(s, k1), k2

Description of the attack on P with 7, E:

enc(s, k1) k2
enc(enc(s, k1), k2) =p enc(dec(enc(s, k1), kl), k2)

=E
enc(s, k2) k2
dec(enc(s, k2), k2)

—E
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Secrecy Problem

Secrecy Problem

Given a protocol P, an intruder theory 7, an equational theory E,
a secret data s and an initial intruder’s knowledge Ty,
does there exist a running sequence of protocol rules such that:

® at the end, the intruder’s knowledge is T,
® s isdeducible from T

Results in the Dolev-Yao Intruder Model

® infinite number of sessions: undecidable
® finite number of sessions: NP-complete [RTO1]
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Roadmap of the Talk

) Secrecy Problem
9
® Relaxing the Perfect Cryptographic Assumption

L I N
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New Kind of Intruder Model

Intruder = Inference System Z + Equational Theory E

Example:

® Inference System 7

Dolev-Yao Intruder Model

® Equational Theory E

xo0
X ® X
X®(yo2z)
X®y

xey)®dz
y®X

+ (Xor)

THuU TFv
THFuev

Unit
Nilpotence
Associtivity
Commutativity
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Some Existing Results

Secrecy Problem

(finite number of sessions)

Exclusive or theory
xex=0
X®0=Xx

+ Assoc. and Commut. of &

Decidable / NP-complete
[CLSO03] / [CKRTO3]

Abelian group theory
xxI(x)=1
Xx1l=x

+ Assoc. and Commut. of X

Decidable
[ShmO04]

Diffie-Hellman theory
exp(x,1)=x

exp(exp(x,y), z) =exp(X,y x z2)
+ Abelian group for X

Decidable / NP-complete
[ShmO04] /[CKRTO3]
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Roadmap of the Talk
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Il) My Contribution: How to Get Rid of Algebraic Properties?
® Motivations
9
9
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Motivation

Goal:
Investigate the finite variant property for equational theories, which
are relevant to cryptographic protocols verification.

Application:
Reduce the decidability of a problem in E into a (supposedly)
simpler theory E’:

® secrecy problem
® disunification problem
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Motivation: Example

Equational theory E
dec(enc(x,y)y) = X

u v u v

P: enc(x, k2) = enc(dec(x, k1), k2) 7.
enc(u, v) dec(u, v)
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Motivation: Example

Equational theory E
dec(enc(x,y),y) — X

P: enc(x,k2) = enc(dec(x, k1), k2) 7. €4 Vv €4 v

enc(u, v) dec(u, v)

P1: enc(x, k2) = enc(dec(x, k1), k2) I enc(u,v) Vv
var-

Pr: enc(enc(x,kl), k2) = enc(x, k2) u

Attackon PwithZ, E < 3i. Attack on P; with ZUZ, 4/, 0
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® Finite Variant Property, Boundedness Property
9
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Finite Variant Property

Let R be an E’-convergent rewrite system for E.

Variant
t” is a variant of a term t iff 36 such that t’ =t6 | (w.r.t. E’/\R)

S Is a complete set of variants of t iff
Vo.3t’ € S.306 such that to| =g t/6.
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Let R be an E’-convergent rewrite system for E.

Variant
t” is a variant of a term t iff 36 such that t’ =t6 | (w.r.t. E’/\R)

S Is a complete set of variants of t iff
Vo.3t’ € S.306 such that to| =g t/6.

Example:
R ={ dec(enc(x,y),y) — x } E'=40
Let t =dec(x, k1) and o= {x—enc(z,k1)}.

® to=dec(enc(z, k1), k1) —=rz = =zisavariantoft,
® Vo, tol=z0forsome @ = {z} iscomplete.

My Contribution: How to Get Rid of Algebraic Properties? — p.18



Boundedness Property

Finite Variant Property — (R, E’) has the finite variant property if:
For every term t, there exists a finite and complete set of variants
of t
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Boundedness Property

Finite Variant Property — (R, E’) has the finite variant property if:
For every term t, there exists a finite and complete set of variants
of t

H when E’ is regular (typically AC)

Boundedness Property — (R, E’) has the boundedness property if:
For every term t, there is an integer n such that

Vo. t(ol) oenr (to)!
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Boundedness Property

Finite Variant Property — (R, E’) has the finite variant property if:
For every term t, there exists a finite and complete set of variants
of t

H when E’ is regular (typically AC)

Boundedness Property — (R, E’) has the boundedness property if:
For every term t, there is an integer n such that

Vo. t(ol) Zoeng (o)l
Example:
R ={ dec(enc(x,y),y) — x} E'=40
t =dec(x, k1)
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® Proving Boundedness
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Sufficient Criteria (1)

Proposition:
If (basic) narrowing terminates for R then (R, 0) satisfies the
boundedness property.
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Proposition:
If (basic) narrowing terminates for R then (R, 0) satisfies the
boundedness property.

Axiomatized Dolev-Yao Theory (DYT)
The classical Dolev-Yao model with explicit destructors.

mi({X1,x2)) = x; fori=1,2
dec(enc(x,y),y™1) = x
x~17t = x
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Sufficient Criteria (1)

Proposition:
If (basic) narrowing terminates for R then (R, 0) satisfies the
boundedness property.

Axiomatized Dolev-Yao Theory (DYT)
The classical Dolev-Yao model with explicit destructors.

mi({X1,x2)) = x; fori=1,2
dec(enc(x,y),y™1) = x
x~17t = x

Key Inverse Theory (KIT)
The equations of DYT extending by:

enc(dec(x,y),y) = X

My Contribution: How to Get Rid of Algebraic Properties? — p.21



Abelian Group Theory (1)

|
=

x x x~1 X x(yx2) (X Xy) X Z
xx1l = Xx XXy = yXxXX
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Abelian Group Theory (1)

Classical presentation of AG:

f xxx 1 — 1 xx(yxz) = (Xxy)xz
XXl — X XXy = yXxXX
~1
x1 — X
Rx = 1-1 o 1
(xxy) 1 — x1lxyl
| xx(yxx1) - vy
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Abelian Group Theory (1)

Classical presentation of AG:

f xxx 1 — 1 xx(yxz) = (Xxy)xz
XXl — X XXy = yXxXX
-1
x~1 — X
R =1 1-1 - 1
(xxy) ! — x1xyl
| xx(yxx1) — vy

Problem
This presentation does not satisify the boundedness property.
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Abelian Group Theory (1)

Classical presentation of AG:

f xxx 1 — 1 xx(yxz) = (xxy)xz
XXl — X XXy = yxX
~1-1
X — X

Ry =
= 11 - 1
(xxy)™t - x"txy!
| xx(yxx1) — vy

Problem
This presentation does not satisify the boundedness property.

Counter-Example
lett=x"lando={x—apx...xan}.
-1 —
Saox... X An) T AC\Rx -+ TPAC\Rx - - - —>a01 X...xa

4
~" ~~ (. /

to at least n steps to|
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Abelian Group Theory (2)

Unusual Presentation of AG: R; [Lankford]

—1-1

Xx1l — X X — X
171 = 1 (x I1xy)l - xxyl
xxx 1 — 1 xx(xIxy) — vy
xIxy 1l o (xxy)! xIx(ylxz) - (xxy)ylxz
(xxy) Ixy — x71 (xxy) Ix(yxz) - x1xz
Proposition:

R’ is an AC-convergent rewrite system for AG
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Abelian Group Theory (2)

Unusual Presentation of AG: R; [Lankford]

—1-1

Xx1l — X X — X
171 = 1 (x I1xy)l - xxyl
xxx 1 — 1 xx(xIxy) — vy
xIxy 1l o (xxy)! xIx(ylxz) - (xxy)ylxz
(xxy) Ixy — x71 (xxy) Ix(yxz) - x1xz
Proposition:

R’ is an AC-convergent rewrite system for AG

= (R}, AC) satisfies the boundedness property
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Sufficient Criteria (2)

Lemma:
If for each function symbol f, there is an integer ¢ such that

t1,...,tn iIn normal forms = f(t1,...,ts) ﬁg/\R f(t1,..., th)l
then (R, E’) satisfies the boundedness property.
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Sufficient Criteria (2)

Lemma:
If for each function symbol f, there is an integer ¢ such that

t1,...,tnh in normal forms = f(t1,...,ty) ﬂ»g/\n f(t1,..., th)l
then (R, E’) satisfies the boundedness property.

Example: Abelian Group Theory

Let t; and t> terms in normal forms (w.r.t AC\R;), we have:
o 7135 (7))

® {1 x0b S—2>(t'1 X t2)]
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Others Equational Theories

Presentation of the Diffie-Hellman Theory DH

exp(x,1) — x }

Iy
RDH_R"U{ exp(exp(x, y),z) — exp(x,y x z)

= (Rpn, AC) satisfies the boundedness property
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Others Equational Theories

Presentation of the Diffie-Hellman Theory DH

, 1) —
RDH=R;U{ exp(x, 1) X }

exp(exp(x,y),z) — exp(x,yx2z)

= (Rpn, AC) satisfies the boundedness property

Presentation of the Xor Theory ACUN

( X+0 — x|
Ry = 1 X+x — 0 ;
\x+(x+y) = Y

= (R4, AC) satisfies the boundedness property
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Conclusion & Future Works

Conclusion

Reduce the decidability of the secrecy problem in E to a smaller
theory:

® Sufficient Criteria 1: termination of (basic) narrowing

= solve the secrecy problem by going back to the free algebra
® Sufficient Criteria 2: it is satisfied by ACUN, AG and DH

= solve the secrecy problem by reducing it to AC
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Conclusion & Future Works

Conclusion

Reduce the decidability of the secrecy problem in E to a smaller
theory:

® Sufficient Criteria 1: termination of (basic) narrowing

= solve the secrecy problem by going back to the free algebra
® Sufficient Criteria 2: it is satisfied by ACUN, AG and DH

= solve the secrecy problem by reducing it to AC

Future Works

® Find a decidable criteria for establishing automatically the
boundedness property of a theory,

® Find sufficient conditions on the intruder theory to ensure the
decidability of the secrecy problem.
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