
TP Programmation

L3

11 January 2011

In this session we will implement the type inference algorithm for the simply typed λ-
calculus. We need to define the abstract syntax of λ-calculus by an ocaml type like
Term = Var of String | Apl of Term * Term | Fun of String * Term

Given a λ-term, we need to find the most general type of it. We will achieve this by
reducing it to the unification problem. We will generate a set of equations E such that the
most general type of the λ-term is given by the most general unifier of E. Let us recall what
we saw in class.

• A goal is a finite set G of triples (Γ,M, τ) where Γ is a context, M a λ-term, and τ a
simple type.

• We assume that all bound variables in M are distinct, that all free variables occur in
the context Γ, and that for every variable x we have a type variable tx.

• We define a reduction relation on pairs (G,E).

• Assuming G = {g} ∪ G′ and g ≡ (Γ,M, τ) /∈ G′ all the rules produce a pair (G′ ∪
Gg, E ∪ Eg) where Gg and Eg are defined as follows:

g Gg Eg

(Γ, x, τ) ∅ {tx = τ}
(Γ,M1M2, τ) {(Γ,M1, t1 → τ), (Γ,M2, t1)} ∅ t1 fresh
(Γ, λx.M1, τ) {(Γ, x : tx,M1, t)} {τ = tx → t} t fresh

• Given a term M0 with free variables x1, . . . , xn we set the initial pair to (G0, ∅) with
G0 = {(Γ0,M0, t0)} and Γ0 = x1 : tx1 , . . . , xn : txn .

• Let Ef be the set of equations we derived from the initial goal. If we take the most
general unifier S of Ef and we apply it to t0, we obtain the most general type of M0.

You need to include this TP also in the report which is to be submitted on 14th. Please
include the documented code of this TP and the input and output to find the most general
type of λk.(k(λx.λh.hx)).

1

