TP Programmation

L3

23 November 2010

We will implement the unification algorithm and try to implement a term rewriting system
if time permits.
We will first define the data types we need.

1. Define a suitable type vname for variables
2. Define a suitable type term for terms
3. Define a suitable type subst for substitutions (possibly a (vname * term) list)

We need a few functions to aid us.

4. Define a function contains which checks if a variable x is present in the domain of a
substitution. (type: vname -> subst -> bool)

5. Define a function substitute which return the correct substitute for a variable x.
(type: subst -> vname -> term)

6. Define a function 1ift_subst which return the correct substitute for a term ¢ . (type:
subst -> term -> term)

7. Define a function occurs which checks if a variable occurs in a term ¢. (type: vname
-> term —> bool)

We will now go on to implement the unifier. An instance to the problem will be a
list of pairs of terms {(s1,t1),...,(Sn,tn)}. The output will be a substitution ¢ such that
®(si) = ¢(t;). Given a unification problem C' consisting of a head (s, t) and tail C’, there are
some cases to consider

e Delete rule: If s and ¢ are are equal, discard the pair, and unify C’.

e Eliminate rule: If s is a variable, and s does not occur in ¢, substitute s with ¢ in C’ to
get C”. Let ¢ be the substitution resulting from unifying C”. Output ¢ updated with

s — ¢(t).
e Orient rule: If ¢ is a variable and s is not, then discard (s,t), add (¢,s) to C’ , and
unify the result.

e Decompose rule: If s and t are non variable terms, assert that the roots are the
same, discard this pair and insert the pairs coming from the successors. that is:
(f(t1.. tn), fur.up)) 2 C" = (t1,u1) = oo (B, up) =2 CL



o If C is empty, then we return the identity substitution.

e If none of the above cases apply, it is a unification error (your unify function should
return bottom (L) or raise an exception in this case).

8. Implement the algorithm to unify.

We will consider the matching problem now. The input is again a list of pairs of terms
as for unification. However the ¢ we compute need to satisfy ¢(s;) = t;.

9. Modify the transformation rules for unify to suit matching. Implement a direct algo-
rithm for matching.

Now we will implement a term rewrite system. Let R be a set of rewrite rules (given as
(term * term) list).

10. Implement a function rewrite R t which will perform a single —r step at the root
of t. (You will need to the match the left hand side of rule with ¢ using the matching
algorithm in question 9.) Write a function norm R t which will compute an R-normal
form for t.



