
TP Programmation

L3

23 November 2010

We will implement the unification algorithm and try to implement a term rewriting system
if time permits.

We will first define the data types we need.

1. Define a suitable type vname for variables

2. Define a suitable type term for terms

3. Define a suitable type subst for substitutions (possibly a (vname * term) list)

We need a few functions to aid us.

4. Define a function contains which checks if a variable x is present in the domain of a
substitution. (type: vname -> subst -> bool)

5. Define a function substitute which return the correct substitute for a variable x.
(type: subst -> vname -> term)

6. Define a function lift subst which return the correct substitute for a term t . (type:
subst -> term -> term)

7. Define a function occurs which checks if a variable occurs in a term t. (type: vname

-> term -> bool)

We will now go on to implement the unifier. An instance to the problem will be a
list of pairs of terms {(s1, t1), . . . , (sn, tn)}. The output will be a substitution φ such that
φ(si) = φ(ti). Given a unification problem C consisting of a head (s, t) and tail C ′, there are
some cases to consider

• Delete rule: If s and t are are equal, discard the pair, and unify C ′.

• Eliminate rule: If s is a variable, and s does not occur in t, substitute s with t in C ′ to
get C ′′. Let φ be the substitution resulting from unifying C ′′. Output φ updated with
s→ φ(t).

• Orient rule: If t is a variable and s is not, then discard (s, t), add (t, s) to C ′ , and
unify the result.

• Decompose rule: If s and t are non variable terms, assert that the roots are the
same, discard this pair and insert the pairs coming from the successors. that is:
(f(t1 . . . tn), f(u1..un)) :: C ′ → (t1, u1) :: . . . :: (tn, un) :: C ′.

1



• If C is empty, then we return the identity substitution.

• If none of the above cases apply, it is a unification error (your unify function should
return bottom (⊥) or raise an exception in this case).

8. Implement the algorithm to unify.

We will consider the matching problem now. The input is again a list of pairs of terms
as for unification. However the φ we compute need to satisfy φ(si) = ti.

9. Modify the transformation rules for unify to suit matching. Implement a direct algo-
rithm for matching.

Now we will implement a term rewrite system. Let R be a set of rewrite rules (given as
(term * term) list).

10. Implement a function rewrite R t which will perform a single →R step at the root
of t. (You will need to the match the left hand side of rule with t using the matching
algorithm in question 9.) Write a function norm R t which will compute an R-normal
form for t.

2


