We will implement the unification algorithm and try to implement a term rewriting system if time permits.

We will first define the data types we need.

1. Define a suitable type `vname` for variables
2. Define a suitable type `term` for terms
3. Define a suitable type `subst` for substitutions (possibly a `(vname * term)` list)

We need a few functions to aid us.

4. Define a function `contains` which checks if a variable `x` is present in the domain of a substitution. (type: `vname -> subst -> bool`)
5. Define a function `substitute` which return the correct substitute for a variable `x`. (type: `subst -> vname -> term`)
6. Define a function `lift_subst` which return the correct substitute for a term `t`. (type: `subst -> term -> term`)
7. Define a function `occurs` which checks if a variable occurs in a term `t`. (type: `vname -> term -> bool`)

We will now go on to implement the unifier. An instance to the problem will be a list of pairs of terms `{(s_1, t_1), ..., (s_n, t_n)}`. The output will be a substitution \(\phi \) such that \(\phi(s_i) = \phi(t_i) \). Given a unification problem \(C \) consisting of a head \((s, t)\) and tail \(C'\), there are some cases to consider

- **Delete rule:** If \(s \) and \(t \) are are equal, discard the pair, and unify \(C' \).
- **Eliminate rule:** If \(s \) is a variable, and \(s \) does not occur in \(t \), substitute \(s \) with \(t \) in \(C' \) to get \(C'' \). Let \(\phi \) be the substitution resulting from unifying \(C'' \). Output \(\phi \) updated with \(s \rightarrow \phi(t) \).
- **Orient rule:** If \(t \) is a variable and \(s \) is not, then discard \((s, t)\), add \((t, s)\) to \(C'\), and unify the result.
- **Decompose rule:** If \(s \) and \(t \) are non variable terms, assert that the roots are the same, discard this pair and insert the pairs coming from the successors. that is: \((f(t_1 \ldots t_n), f(u_1 \ldots u_n)) :: C' \rightarrow (t_1, u_1) :: \ldots :: (t_n, u_n) :: C'\).
• If C is empty, then we return the identity substitution.

• If none of the above cases apply, it is a unification error (your unify function should return bottom (\bot) or raise an exception in this case).

8. Implement the algorithm to unify.

We will consider the matching problem now. The input is again a list of pairs of terms as for unification. However the ϕ we compute need to satisfy $\phi(s_i) = t_i$.

Now we will implement a term rewrite system. Let R be a set of rewrite rules (given as (term * term) list).

10. Implement a function \texttt{rewrite} R t which will perform a single \rightarrow_R step at the root of t. (You will need to the match the left hand side of rule with t using the matching algorithm in question 9.) Write a function \texttt{norm} R t which will compute an R-normal form for t.