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The context (I)

> credit cards

» contactless cards

> telephones

» online transactions

» cars, fridges,... Internet of Things
» Big Brother: NSA

» Biomedical applications
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The context (II)

"It's not who votes that counts.

It's who counts the votes.”

s —apocryphally attributed o
Tosef Vissarionovich Statin,
Soviet revolutionary, political

Introduction to protocol security
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feader; party animal and ail-
around scary character:
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The context (lII)

v

Security protocols

v

Testing is not very useful

v

Hiding the code is not a good idea

v

The scope of formal methods
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A simple handshake protocol

A— B: wn,r.aenc((A,n),pk(skg),r)
B — A: wvr'. aenc(n, pk(ska), ')
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The formal verification problem

VA A | P E ¢
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The formal verification problem

VA. A || P ~ A || P

Universal quantification on A: we cannot apply directly
model-checking techniques.
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The formal verification problem

VA. A || P ~ A || P

Universal quantification on A: we cannot apply directly
model-checking techniques.

One important issue: range of A ?
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Attacker models
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Attacker models

The DY-attacker
Messages are terms, the attacker is defined through an equation
theory or an inference system
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Attacker models

The DY-attacker
Messages are terms, the attacker is defined through an equation
theory or an inference system

The computational attacker

Messages are bitstrings, the attacker is a probabilistic polynomial
time Turing machine

Other attackers
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Goals of the lecture

Verification inputs

v

Cryptographic libraries

v

Protocol programs
Attacker model

v

v

Security property

Introduction to protocol security
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Goals of the lecture

Verification inputs

v

Cryptographic libraries

v

Protocol programs
Attacker model

v

v

Security property

Goals of the lecture

Show how to derive the proof obligations in a parametric way,
abstracting from crypto libraries, attacker models.

Focus on the semantics of protocols, for arbitrary libraries and
attacker models.
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Roadmap

4 successive versions of the calculus, by increasing expressiveness
(we could have considered the last case only...)

1.

Simple case

2. Adding events: required for agreement properties
3.
4

Adding replication

. Adding channel generation: required for computational

semantics

Then indistinguishability properties (privacy).

Introduction to protocol security
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Cryptographic libraries

Syntax

> An arbitrary set of cryptographic primitives F : hash,
public-key encryption(s), symmetric encryption(s), zkp,...
represented by (typed) function symbols

> At least one random generation algorithm. Random numbers
are represented by names n, ny,r,... out of a set N

Terms are built over variables, function symbols and names.

A simple version of the process calculus 10/62



Cryptographic libraries

Semantics

M is an interpretation domain. Typically ground or constructor
terms (the DY semantics) or bitstrings (the computational
semantics).

M includes error messages (exceptions) Err.

If o is an environment (mapping from variables to M), u is a term,

M
[ul>
is the interpretation of v in M w.r.t. o: M is a (partial)
JF-algebra.
The interpretation is strict:
. M
ui € Err = [f(u1,...,un)]’” € Err

A simple version of the process calculus 11/62



Cryptographic libraries

A possible set of function symbols

» aenc(u, pk,r) is (supposed to be) the asymmetric encryption
of u with the public key pk and random input r.

» dec(u,sk) is (supposed to be) the decryption of u with the
secret key sk

» pk(sk) is (supposed to be) the public key associated with the
secret key sk

- (u,v)

> m1(u), m2(u)
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Cryptographic libraries
A DY model
Mpy (messages) is the least set of ground terms such that:
» N C Mpy
> if u,v € Mpy then (u,v) € Mpy
» if k € N then pk(k) € Mpy
» if ue Mpy,k,r € N, then aenc(u, pk(k),r) € Mpy.

M py also includes special error terms Err (not messages).

dec(aenc(u, pk(k),r), k) — wu For k,r € N, u a message
m1({u,v)) — u u,v are messages
m({u,v)) — v u,v are messages

[l = uo |

Any irreducible ground term, which is not a message, is an error.

A simple version of the process calculus
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Cryptographic libraries

Computational models

» 1 € N is a security parameter

7 maps N to {0,1}"

Me(7,n) €{0,1}

[ = r(r)

aenc(_, _, -),dec(-, ), pk(-) are interpreted as a public-key
encryption scheme.

v

v

v

v

v

with an interpretation of pairing/projections, M.(7,7) is an
F-algebra

A simple version of the process calculus 14/62



A simple process calculus
Syntax

P = 0
| in(x).P

\ out(t).P

| if EQ(u, v) then P else P
| lety =wuin P
| via.P

| i

All variable occurrences are bound.

A simple version of the process calculus

null process (stalled)
input of x (binds x)
output of t
conditional branching
evaluation (binds y)
random generation
parallel composition
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Example

The simple handshake protocol
A— B: wvn,r.aenc((A,n),pk(skg),r)
B — A: wvr'. aenc(n, pk(ska), )

A(ska, pk(skp)) =

A simple version of the process calculus 16/62
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in(z). let z; = dec(z, sk,) in
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B(Skb) =
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Example

The simple handshake protocol
A— B: wvn,r.aenc((A,n),pk(skg),r)
B — A: wvr'. aenc(n, pk(ska), )

A(ska, pk(skp)) =
vn, r. out(aenc(({pk(sks), n) , pk(skp), r)).
in(z). let z; = dec(z, sk,) in
if EQ(z1, n) then 0(Success) else 0( Fail)

B(Skb) =
vr'.in(x).let y = dec(x,skp) in

let y1 = m1(y) in let yo = ma(y) in
out(aenc(y2, y1, r')). 0.

vsk,, skp. out({pk(ska), pk(skp))). (A(ska, pk(skp)) || B(sks))
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Structural equivalence

o)jrP = P
PIlQ = QP
PI@IR) = (PIQIR
vn.P = v .P{nw n'}
in(x).P = in(x).P{x— x'}
letx=uin P = letx' =uin P{x— x'}
(vn.P)||Q = vi(P|Q) if n ¢ freenames(Q)

A simple version of the process calculus 17/62



Operational semantics

States of the network are tuples (¢, o, ), where
> ¢ is a frame of the form vn.my, ..., my, where 11 is a set of
names (used so far) and my, ..., my is a sequence of values in
M (that have been sent out so far)
> o is an environment: an assignment of the free variables to
values in M
» P is a process
The semantics is a labeled transition system, whose labels are the
inputs provided by the attacker (sometimes, an empty input)

A simple version of the process calculus
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Operational semantics

The transition system (1)

(¢,0,in(x).P) = (¢,0W {x u},P)

A simple version of the process calculus 19/62



Operational semantics

The transition system (1)

(¢,0,in(x).P) = (¢,0W {x u},P)

(¢,0,P) = (¢,0",F)

(¢, 0,if EQ(s, t) then P else Q) = (¢',0, P)

ST = [ ¢ Exr
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Operational semantics
The transition system (1)

(¢,0,in(x).P) = (¢,0W {x u},P)

(6,0,P) = (¢',0',P")

(¢, 0,if EQ(s, t) then P else Q) = (¢',0, P)
if[s];* = [t];" ¢ Exr

(¢7 07 Q) i ((Zs/? OJ? P/)

(¢, 0,if EQ(s, t) then P else Q) = (¢',0, P)

if[sIM # [t]M or [S]M € Exr or [t]M € Err

A simple version of the process calculus
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Operational semantics
The transition system (I1)

if [ulM = w ¢ Err
(¢,0,let x =uin P) = (¢,0 W {x— w},P)
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Operational semantics
The transition system (I1)

if [ulM = w ¢ Err
(¢,0,let x =uin P) = (¢,0 W {x— w},P)

(7.6, 0,0ut(s).P) — (vi.f-[s]M, o, P)

(¢,0,P) = (¢,0',F)
(¢,0,PIQ) = (&,0,P'||Q)

if n ¢ U freename(0)

(vn.0,o,vn.P) — vawn.b, o, P)

A simple version of the process calculus
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Example

On the black board.
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Restricting the feasible transitions

(¢170—17'Dl) i> & (¢kaak7pk)

is possible w.r.t. model M and an attacker A if , for every i,
Al Pr) = [uilld!

Note: could include a state in A.

A simple version of the process calculus 22/62



Example DY

There is a DY attacker A such that A(¢) = [u] o iff

¢ |—/ uo J,
where [ is defined by:

qbl—ul---gbl—u,,
ot flur,...,up)

For every f € F

vn.uy, ..., Up b ou;

va.O - n

if " e N\ 7.

A simple version of the process calculus 23/62



Exercise

In the simple handshake example, describe all feasible transition
sequences in the DY model (assume the name extrusion, let,
conditionals and outputs are always performed before inputs).
Is the nonce n secret ?

A simple version of the process calculus 24 /62



Example computational

A is a Probabilistic Polynomial Time Turing machine (PPT).
Some inputs that were not possible in the DY model might now be
possible.

A typical example

A might be able to compute (with a significant probability)
[aenc(u, pk(k1), rl)]]MC(T’") from [aenc(v, pk(k1), rl)]]MC(Tﬂ7)

A simple version of the process calculus 25/62



Example computational

A is a Probabilistic Polynomial Time Turing machine (PPT).
Some inputs that were not possible in the DY model might now be
possible.

A typical example

A might be able to compute (with a significant probability)
[aenc(u, pk(k1), rl)]]MC(T’") from [aenc(v, pk(k1), rl)]]MC(Tﬂ7)

3A, Prob{r,p: A([aenc(v,pk(ky), r)]Me(=m)) =
[aenc(u, pk(ki), n)JMTDY > €(n)
€ is non-negligible: there is a polynomial Pol such that

liminfe(n) x Pol(n) > 1

n—+00
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Confidentiality

In the DY case
Is there a DY attacker A and a feasible transition sequence

@,0,P) 5 (¢,0,Q)

such that A(¢, Q) =s7?

A simple version of the process calculus 26/62



Confidentiality
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Confidentiality

In the DY case
Is there a DY attacker A and a feasible transition sequence

@,0,P) 5 (¢,0,Q)

such that A(¢, @) = s ? This problem is in NP

In the computational case

Is there a PPT A such that, for every computational model
M (7,7m), the probability that there is a feasible sequence

(0,0,P) = (¢,0,0)

such that A(¢, Q) = s is negligible in 1 ?
This requires in general assumptions on the libraries

A simple version of the process calculus 26/62



Exercises

In the following cases, give reasonable processes A, 5 and either
give an attack on the confidentiality of s or prove that there is no
such attack in the DY model.

1.
A— B: ws,vr. (pk(ska),aenc(s, pk(skg), r))
B — A wvr'.{pk(skg),aenc(s, pk(ska), ')

P = vska, vskp. out({pk(ska), pk(skg))) - (A(ska, pk(skg)) || B(sks))
2.

A— B: ws,r,r. aenc((pk(ska),aenc(s, pk(skg), 1)), pk(skg), r2)
B — A: vrs, ry.aenc({pk(skg),aenc(s, pk(ska), r3)) , pk(ska), r2)

P = vsk,, vskp. out({pk(ska), pk(skg))) - (A(ska, pk(skg)) || B(sks) || B(sks))

A simple version of the process calculus 27/62



Gathering feasability conditions

States of the network are tuples (¢, o, P, ), where
> ¢, 0, P as before

» 0 is a constraint. equalities, disequalities and computational
constraints of the form ¢ u.

Symbolic (Abstract) semantics 28/62
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Gathering feasability conditions

States of the network are tuples (¢, o, P, ), where
> ¢, 0, P as before
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Consequences

Advantages

» A finite transition system (regardless of the model)

» Confidentiality reduces to constraint satisfaction
ONps>s

in NP in the DY model

Symbolic (Abstract) semantics 29/62



Consequences

Computational case
Specify the assumptions on the libraries: impossibility conditions.

£n
S,aenc(n,pk(k),r)>n = Sbon
SipxAS,x>py = 5,%bpy
Sipxi A AS DX, = S1,..., 5> (X1, Xn)

5,51, 5, are finite sets of terms.
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Consequences

Computational case
Specify the assumptions on the libraries: impossibility conditions.

£n
S,aenc(n,pk(k),r)>n = Sbon
SipxAS,x>py = 5,%bpy
Sipxi A AS DX, = S1,..., 5> (X1, Xn)
5,51, 5, are finite sets of terms.

Check the constraint satisfiability, together with ¢ > s and the
above axioms (in PTIME !!)
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Exercise

Back to the simple handshake protocol. Study its security in the
computational model, assuming the properties of the cryptographic
libraries that are described in the lecture.

Symbolic (Abstract) semantics 31/62



Adding events to the process calculus

syntax

Eva, Evb, ... is a set of event symbols.

P = 0 null process (stalled)
| in(x).P input of x (binds x)
| out(t).P output of t
| if EQ(u, v) then P else P conditional branching
| lety =uin P evaluation
| vn.P random generation
| P| P parallel composition
] Eve(u) - P the event Eve is raised

with a sequence of values U

Agreement properties: instrumenting the processes 32/62



Adding events to the process calculus

semantics

The states have now an event component &, a sequence of event
symbols together with values.
& is only modified when an event occurs in the process:

(6,0, Eve(d) - P,E) — (6,0, P, & - Eve([a])

Agreement properties: instrumenting the processes 33/62



Example

A(ska, pk(skp)) =
vn, r. out(aenc(({pk(sk,), n) , pk(skp), r).
in(z). let z; = dec(z, sk,) in
if EQ(z1, n) then Eva(n, pk(skp), pk(ska)) else O

B(Skb) =
vr'.in(x).let y = dec(x,skp) in
let y1 = 71(y) in let yo = mo(y) in
out(aenc(y», y1, r')).Evb(y2, pk(skp), y1) 0.

Agreement properties: instrumenting the processes 34/62



Example

A(ska, pk(skp)) =
vn, r. out(aenc(({pk(sk,), n) , pk(skp), r).
in(z). let z; = dec(z, sk,) in
if EQ(z1, n) then Eva(n, pk(skp), pk(ska)) else O

B(Skb) =
vr'.in(x).let y = dec(x,skp) in

let y1 = 71(y) in let yo = mo(y) in
out(aenc(y2, y1,r')).Evb(y2, pk(skp), y1) 0.

Vx,y,z. Eva(x,y,z) = Evb(x,y,Zz)
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Agreement property

Vx,y,z. Eva(x,y,z) = Evb(x,y,z)

More generally

Vx. Evai(tn),...,Evax(tux) = Eva(u)

For every feasible trace, ending with an event set &, for any
assignment o, if Evai(t10),..., Evay(txo) € £, then Eva(tdo) € £

Agreement properties: instrumenting the processes 35/62



Exercise

In the DY-mode, does the simple handshake protocol satisfy the
agreement property ?
What happens if

1. we move forward the Eva

2. B replies with y» (instead of the encrypted version) 7

Agreement properties: instrumenting the processes 36/62



Adding replication in the calculus

P .= 0 null process
| in(x).P input of x (binds x)
| out(t).P output of t
| if EQ(u, v) then P else P conditional branching
| lety =uin P evaluation
] vn.P random generation
| PP parallel composition
| Eve(u) - P the event Eve is raised

with a sequence of values T

| 1P

Replication 37/62



Adding replication in the calculus

P .= 0 null process
| in(x).P input of x (binds x)
| out(t).P output of t
| if EQ(u, v) then P else P conditional branching
| lety =uin P evaluation
] vn.P random generation
| PP parallel composition
| Eve(u) - P the event Eve is raised

with a sequence of values T
| P
Operational semantics:
P = PP

Replication 37/62



Example
The handshake protocol

I(vska, skp. out({pk(ska), pk(sks))). ('A(ska, pk(skp)) || 'B(skp))
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Verification in the DY-model

» This is undecidable

» Most popular: approximation and translation into Horn
clauses

Replication 39/62



Translation into Horn

Attacker clauses

Att(a)

Att( <X1, X2>)

At (pk(x))
Att(aenc(x1, x2, x3))
Att(Xl)

Att(xy)

Att(Xg)

a is a free name.

Translation into Horn clauses

clauses

<~

< Att(xy), Att(x)

= t(x

<~ tt(x ) Att(x2), Att(x3)

< Att(aenc(xy, pk(x2),x3)), Att(x2)
= t(<X1,X2>)

< Att((xa,x))

40/62



Translation into Horn clauses

Protocol clauses

T(P) = [Plpp where [P],,H is defined as follows

[0 = 0
[PIQlpw = [Pl UIQlpH
|[!P]]p,H = [[’D]]p,H

[vn. Plon = lI'D]]p&J{m—m(H)},H
[inC)-Plpn = [Plo e
[out(s).Plpn = [FPlpn U {Att(sp) < Att(sip),...A
LifEQ(s, t) then Pelse Ql, v = [Plpo,o U LR H
fletx =sin Plon = [Flpoes,Hox.s
lletx=sinPl,n = 0

Translation into Horn clauses 41/62



Examples

B = vr.in(x).let y = dec(x,skp) inlet y; = m1(y) inlet y» =
m2(y) in out(aenc(y2, y1,r))

Translation into Horn clauses 42/62
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Examples
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PROVERIF

A tool available online, whose main developer is Bruno Blanchet.

» Translate the specification of primitives into rewriting system
+ Attacker clauses

» Translate the protocol into clauses
» Negate the security goal

» Check for satisfiability (Ordered resolution strategy).
Three possible outputs:

1. Unsatisfiable: the protocol is secure

2. Satisfiable: there might be an attack (but might also be
secure)

3. Non termination

Very successful tool : works well in practice.

Translation into Horn clauses 43/62



False attacks

Using twice the same protocol clause (rigid variables !)

A— B: wni,nyr,rn.  {(aenc(ni,pk(skg), ), aenc(ny, pk(skg), r2))
B — A: wvn,r3. aenc(n,pk(ska), rs)
A— B: wvs. (n,senc(s,(n,n2)))
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False attacks

Using twice the same protocol clause (rigid variables !)

A— B: wni,nyr,rn.  {(aenc(ni,pk(skg), ), aenc(ny, pk(skg), r2))
B — A: wvn,r. aenc(n,pk(ska),rs)
A— B: wvs. (n,senc(s,(n,n2)))

Approximating names

A — B: wn.aenc(n, pk(skg), r)
B — A: wvn'.aenc(n’, pk(ska), r)
A — B: ws.in(aenc(x, pk(ska), y).if x = n then out(s) else out(n)

Translation into Horn clauses 44 /62



The determinacy issue

Currently the calculus is non-deterministic, while the
computational security is probabilistic.

As security is an asymptotic propery, it is harmless when the
(symbolic) transition sytem is finite (for a fixed attacker).
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The determinacy issue

Currently the calculus is non-deterministic, while the
computational security is probabilistic.

As security is an asymptotic propery, it is harmless when the
(symbolic) transition sytem is finite (for a fixed attacker).

Instead of non-determinism, we let the attacker choose the
transition.

Communications are using different communication channels, that
solve the non-determinism and are chosen by the attacker.
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Extending the calculus with channels

c,ci,... are channel names

P = 0 null process (stalled)
] in(c, x).P input of x (binds x)
| out(c, t).P output of t
| if EQ(u, v) then P else P conditional branching
| lety =uin P evaluation
| vn.P random generation
| PP parallel composition
| Eve(u) - P the event Eve is raised

with a sequence of values U

| P
| ve.P
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Operational semantics

Only known channels can be observed

(¢,0,0ut(c,u) - P,E,0) = (¢ [u]}',0,P,E,0 A d>c)
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Operational semantics

Only known channels can be observed

(¢,0,0ut(c,u) - P,E,0) = (¢ [u]}',0,P,E,0 A d>c)

Inputs are only possible on the designated channels

(¢,0,in(c,x) - P,E,0) = (p,0 W {x — [[u]](/,w}, P,E,0)

If A(¢,7) = [c]™ (v is the global control state).

Properties and transitions in the computational semantics
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Internal synchronizations

(¢, 0,in(c, x) - Pllout(c,u) - Q,&,8) = (¢,0 W {x — [u]M}, P||Q,E,6)
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Restrictions on the processes

We assume that, for any reachable process
in(cl,xl).Pl H cee H in(Ck,Xk).Pk H Q

Ci,...,Ck are pairwise distinct.
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Restrictions on the processes

We assume that, for any reachable process
in(Cl,Xl).:Dl H cee H in(Ck,Xk).Pk H Q

Ci,...,Ck are pairwise distinct.

Lemma

Any process P without channel can be translated into a process P’
such that /' satisfies the above restriction and any P has the same
(DY) operational semantics as forgetting the channels in the
semantics of F'.
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Example

P = in(x).out(t)
@ =in(y).out(uv)
Trans(P|| Q) = in(cp, x).out(cp, t) || in(cq, y)-out(cq, u)
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Example

P = in(x).out(t)
@ =in(y).out(uv)
Trans(P|| Q) = in(cp, x).out(cp, t) || in(cq, y)-out(cq, u)

Trans(!(P[|Q)) = lin(cip|q). 7)-vep, cq-out(c(p|q), (cp: q))-
Trans(P|| Q)
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Indistinguishability

TI’(M,A,P):m]_,"',mk,"'

the (unique) sequence of outputs of /, with attacker .4 in model

M.
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Indistinguishability

TI’(M,A,P) =My, My,
the (unique) sequence of outputs of /, with attacker .4 in model

M.

Informally: P is indistinguishable from P, for a (familly of)
model(s) M, if, for every A;, Ay, As,

Az(TF(M,A1, P1)) = A3(TF(M,A1; Pl))
iff
A2(Tr(M,A1, Pz)) = .A3(TI’(M,.A1, PZ))
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Examples in the DY case (1)

A; gives (deducible) inputs to the process and A5, .43 observe
some identities on the output.
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Examples in the DY case (1)

A; gives (deducible) inputs to the process and A5, .43 observe
some identities on the output.

Example 1
P; = vn.out(c, n) P> =vn'.out(c,n)

P1~ P>
Aj can't input anything and Ax(n) = As(n) iff Ay = A3

Example 2

P1 = out(c, ok) P> = vn.out(c, n)
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Examples in the DY case (1)

A; gives (deducible) inputs to the process and A5, .43 observe
some identities on the output.

Example 1
P; = vn.out(c, n) P> =vn'.out(c,n)
P1~ P>
Aj can't input anything and Ax(n) = As(n) iff Ay = A3
Example 2
P1 = out(c, ok) P> = vn.out(c, n)
P ot Po

Ay is the identity, .43 computes ok.
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Examples in the DY case (Il)

Example 3

P; = vk.out(pk(k)).out(c, aenc(ny, pk(k), r))
P> = vk.out(pk(k)).out(c, aenc(ny, pk(k), r))
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Examples in the DY case (Il)

Example 3

P1 = vk.out(pk(k)).out(c, aenc(n, pk(k),r))
P> = vk.out(pk(k)).out(c, aenc(na, pk(k), r))
P ot P>
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Examples in the DY case (Il)

Example 3

P; = vk.out(pk(k)).out(c, aenc(ny, pk(k), r))
P> = vk.out(pk(k)).out(c, aenc(ny, pk(k), r))
Py 4 P,
Example 4
P1 =in(c, x) - out(c, (x, n))

P> =in(c, x) - out(c, (n, x))
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Examples in the DY case (Il)

Example 3

P1 = vk.out(pk(k)).out(c, aenc(n, pk(k),r))
P> = vk.out(pk(k)).out(c, aenc(ny, pk(k), r))

P1 ot Ps
Example 4
P1 =in(c, x) - out(c, (x, n))
P> =in(c, x) - out(c, (n, x))
Py o P

Equivalence properties
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Results in the DY case

Indistinguishability is decidable in the DY case (for processes
without replication). The complexity is unknown.

Verification tool: APTE.

An approximated equivalence is considered in PROVERIF (works
with replication)
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Computational indistinguishability (I)

For any PPT Ay, A5, As,

PrOb{T,p : A2(Tr(MC(Tv 77)7"41’ ’Dl)) = A3(Tr(MC(T777)?A17 Pl))}
—Prob{r, p: Ax(Tr(Mc(7,n), A1, P2)) = A3(Tr(Mc(7, 1), A1, P2))}

is negligible.
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Computational indistinguishability (I)

For any PPT Ay, A5, As,

PrOb{T,p : A2(Tr(MC(Tv 77)7“41’ ’Dl)) = A3(Tr(MC(T777)?A17 Pl))}
—Prob{r, p: Ax(Tr(Mc(7,n), A1, P2)) = A3(Tr(Mc(7, 1), A1, P2))}

is negligible.
Example 1

P; = vn.out(c, n) P> =vn'.out(c,n)
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Computational indistinguishability (I)

For any PPT Ay, A5, As,

PrOb{T,p : A2(Tr(MC(Tv 77)7"41’ ’Dl)) = A3(Tr(MC(T777)?~A17 Pl))}
—Prob{r, p: Ax(Tr(Mc(7,n), A1, P2)) = A3(Tr(Mc(7, 1), A1, P2))}

is negligible.
Example 1
P; = vn.out(c, n) P> =vn'.out(c,n)

Py~ Py
The difference of probabilities is 0 !!
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Computational indistinguishability (II)

Example 2

P1 = vk, rn, r.out(c, aenc(ok, pk(ki), r1)).out(c, aenc(ok, pk(ki), r2))

P> = vk, ko, r1, r.out(c, aenc(ok, pk(k1), r1)).out(c, aenc(ok, pk(k2), r2))
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Computational indistinguishability (II)

Example 2

P1 = vk, rn, r.out(c, aenc(ok, pk(ki), r1)).out(c, aenc(ok, pk(ki), r2))

P> = vk, ko, r1, r.out(c, aenc(ok, pk(k1), r1)).out(c, aenc(ok, pk(k2), r2))

P1 ~ P> depends on assumptions on the crypto libraries
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Computational indistinguishability (II)

Example 2

P1 = vk, rn, r.out(c, aenc(ok, pk(ki), r1)).out(c, aenc(ok, pk(ki), r2))

P> = vk, ko, r1, r.out(c, aenc(ok, pk(k1), r1)).out(c, aenc(ok, pk(k2), r2))
P1 ~ P> depends on assumptions on the crypto libraries

Example 3

Py =in(c, x).if x = 0 then out(c, 0) else out(c, x)

P> =in(c, x).out(c, x)
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Computational indistinguishability (II)

Example 2

P1 = vk, rn, r.out(c, aenc(ok, pk(ki), r1)).out(c, aenc(ok, pk(ki), r2))
P> = vk, ko, r1, r.out(c, aenc(ok, pk(k1), r1)).out(c, aenc(ok, pk(k2), r2))
P1 ~ P> depends on assumptions on the crypto libraries
Example 3
Py =in(c, x).if x = 0 then out(c, 0) else out(c, x)

P> =in(c, x).out(c, x)

P~ P
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Attacker's inputs
Example 4
P1 = vny, na.out({n1, np)).in(x).if m1(x) = n1 then out(n2) else 0

Py =P,

We cannot use the constraints ¢ > x any more.
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Attacker's inputs

Example 4

P1 = vny, na.out({n1, np)).in(x).if m1(x) = n1 then out(n2) else 0

P, =P
We cannot use the constraints ¢ > x any more.

We use fresh function symbols g1, go - - - for successive attacker’s
inputs.

P1 = wvny, na.out((n1, n2)).if m1(g1({n1, n2))) = n1 then out(ny) else 0

Equivalence properties 57/62



Attacker's inputs

Examples

P1 = out(u).in(x).out(v).
if b then in(y).Q; else in(z).Q»

Py = out(d).in(x").out(v").
in(y) - @'

Equivalence properties
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Attacker's inputs

Examples

P1 = out(u).in(x).out(v).
if b then in(y).Q; else in(z).Q»

Py = out(d).in(x").out(v").
in(y) - @'

P; = out(u).out(v{x — gi(u)})).
if bthen Q1 {y — g(u,w) else Q2{z — go(u,w)}

where w = v{x — gi(v)}
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Attacker's inputs

Examples

P1 = out(u).in(x).out(v).
if b then in(y).Q; else in(z).Q»

Py = out(d).in(x").out(v").
in(y) - @'

P; = out(u).out(v{x — gi(u)})).
if b then Qu{y = go(u, w) else o{z = go(u, w)}
where w = v{x — gi(v)}

P> = out(d).out(v'{x" — g1(v)}).
Uy = go(u', W)}

where w' = v/{x" — gi()}

Equivalence properties 58/62



The folding trick

Example

Py = in(x).if EQ(x, 0) then out(c, 0) else out(c, (x,0))
tp, = if EQ(g1(),0) then 0 else (g1(),0)

if _then _else _is now a function symbol !
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The folding trick

Example

Py = in(x).if EQ(x, 0) then out(c, 0) else out(c, (x,0))
tp, = if EQ(g1(),0) then 0 else (g1(),0)

if _then _else _is now a function symbol !

Example

P =in(c,x) -out(c, u)|lin(c’, y) - out(c’, v)

tp = if to() = c then u{x — g1()} else if to() = ¢’ then --- else 0
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The folding trick

Example

Py = in(x).if EQ(x, 0) then out(c, 0) else out(c, (x,0))
tp, = if EQ(g1(),0) then 0 else (g1(),0)

if _then _else _is now a function symbol !

Example

P =in(c,x) -out(c, u)|lin(c’, y) - out(c’, v)

tp = if to() = c then u{x — g1()} else if to() = ¢’ then --- else 0

In general, tp is a sequence of terms using additional functions
g1, &2, ..., to, ... and if, EQ
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Examples of axioms

Some axioms independent of the libraries

if xthenyelsey ~ y
if x then if x then y else y’ else z ~ if x then y else z
if EQ(u, v) then Clu] else w ~ if EQ(u, v) then C[v] else w

i~ YA Axp~yn = f(xa, ..o, xn) ~ (v, ..oy Yn)
An IND-CPA axiom (assumption on the library)
u, aenc(x, pk(k), r) ~ @, aenc(y, pk(k), r)
if k, does not occur (as plaintext) in T, x, y, r does not occur in

U’Xay-

Equivalence properties
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Reducing the existence of an attack to satisfiability

P1 is indistinguishable from P, iff

tp, % tp, A Axioms

is unsatisfiable. (The symbols g1, g»,- - are part of the
interpretation).
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Reducing the existence of an attack to satisfiability

P1 is indistinguishable from P, iff

tp, o4 tp, A Axioms

is unsatisfiable. (The symbols g1, g»,- - are part of the
interpretation).

Is it decidable (for processes without replication) ?
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The main ideas

Conclusion

Several possible interpretation domains/attacker models
We cannot use the model-checking tools

Tricky security properties

The abstract symbolic semantics

Axiomatizing what is not possible: Security is FO
inconsistency

62/62
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