
13.6. PROOF OF SOUNDNESS OF STATIC EQUIVALENCE: A SPECIAL CASE 183

Exercice 60
Assume that the encryption scheme is IND-CPA and that u, v ∈ M0 are such that l(u, η) =
l(v, η) and, for any name n not occuring in u, v, [[〈u, n〉]]η ≈ [[〈u, k〉]]η and [[〈v, n〉]]η ≈ [[〈v, k〉]]η.
Prove then [[{u}rk]]η ≈ [[{v}rk]]η for any name r not occurring in u, v, k.

Give an example of such u, v that do contain occurrences of k.

13.6 Proof of soundness of static equivalence: a special case

As we saw above, we need some assumptions on the sequence of terms, ruling out situations
such as a key encrypting itself.

Given a sequence of terms s1, . . . , sn, we define the relation k >s1,...,sn k
′ between names, as

the least transitive relation such that:

If k1 occurs in u and there is an index i and a subterm {u}rk2 of si, then k2 >s1,...,sn k1

A random seed is a name that is used as a third argument of an encryption symbol.

Definition 13.6 A valid frame (resp. valid term sequence) is a frame (resp. term sequence)
νn.{x1 7→ s1, . . . , xn 7→ sn} (resp. s1, . . . , sn), such that

1. s1, . . . , sn ∈M0

2. n is the set of names occurring in s1, . . . , sn

3. ≥s1,...,sn is an ordering.

4. each random seed is used only once in s1, . . . , sn

Example 13.1 The following are not valid term sequences

1. {k}rk

2. {{k1}r1k2}
r2
k3
, {{k2}r3k1}

r4
k3

3. {{k1}r1k2}
r2
k3
, {{k1}r3k3}

r4
k2

4. {{k1}r1k2}
r2
k2
, {{k2}r3k3}

r4
k3

The main restriction imposed by the first condition is the use of names as keys: only atomic
keys are considered.

The second condition is not a restriction: we may always bind all names and disclose ex-
plicitly the names that are supposed to be available to the attacker.

The third condition is a real (strong) restriction. Some restriction that rules out key cycles is
necessary (with the current state of the art). The above condition rules out terms {{u}r1k }

r2
k in

the frames. We will see in the section 13.7, that the condition can be slightly relaxed, allowing
for such terms in the frames.

The last condition forbids several occurrences of the same ciphertext in the frames. This
condition will also be relaxed in the section 13.7.

Theorem 13.1 Let νn.{x1 7→ s1, . . . xn 7→ sn} and νn′.{x1 7→ t1, . . . , xn 7→ tn} be two valid
frames.

νn.{x1 7→ s1, . . . xn 7→ sn} ∼ νn′.{x1 7→ t1, . . . , xn 7→ tn} ⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η

184 CHAPTER 13. SOUNDNESS OF STATIC EQUIVALENCE

In other words, if the two frames are statically equivalent, then they are computationally
indistinguishable.

In what follows, we drop the name binders and the variables, since all names are bound
and the variable symbols can be inferred from the context. Furthermore, if P is a predicate
symbol and u, v are valid recipes (terms that do not use any names in our case), we write
s1, . . . , sn |= P (u, v) insteand of (u{x1 7→ s1, . . . , xn 7→ sn}, v{x1 7→ s1, . . . , xn 7→ sn}) ∈ P I .

Proof : We use an induction on |s1| + · · · + |sn| + |t1| + · · · |tn| where |s| is the number of
function symbols and names appearing in s (we do not count the constants). In each case, we
leave to the reader the verification that the induction hypothesis is applied to valid sequences
indeed.

Base case: s1, . . . , sn and t1, . . . , tn are constants. Since there is no names in the frames, si
is a valid recipe: s1, . . . , sn |= EQ(xi, si) and therefore t1, . . . , tn |= EQ(xi, si). It follows
that, for every i, si = ti, hence the indistinguishability of the two sequences.

Induction case: We successively investigate cases. In each case, we assume that the previous
cases do not apply.

1. If one of the two sequences contains a pair.
w.l.o.g., assume s1 = 〈s11, s12〉. Then s1, . . . , sn |= M(π1(x1)), hence t1, . . . , tn |=
M(π1(x1)). This implies that there are terms t11, t12 ∈M0 such that t1 = pairt11t12.

Then s11, s12, s2, . . . , sn ∼ t11, t12, t2, . . . , tn:

s11, s12, s2, . . . , sn |= P (u, v) iff s1, s2, . . . , sn |= P (u, v){x11 7→ π1(x1), x12 7→ π2(x1)}
iff t1, t2, . . . , tn |= P (u, v){x11 7→ π1(x1), x12 7→ π2(x1)}
iff t11, t12, t2, . . . , tn |= P (u, v)

By induction hypothesis, [[s11, s12, s2, . . . , sn]]η ≈ [[t11, t12, t2, . . . , tn]].

We use then the following exercise:

Exercice 61
Let f be a function symbol, whose computational interpretation is a PPT function
[[f]]. Assume [[s1, . . . sp, sp+1 . . . , sn]]η ≈ [[t1, . . . , tp, tp+1, . . . , tn]]η and r /∈ fn(s1, . . . , sn, t1, . . . , tn).
Prove that [[f(s1, . . . , sp | r), sp+1, . . . , sn]]η ≈ [[f(t1, . . . , tp | r), tp+1, . . . , tn]]η (r is as-
sumed to be drawn according to a polynomial distribution).

With the pairing function for f and conclude that [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η.

2. If si = sj(resp. ti = tj) for some i 6= j and si is not a constant. Then s1, . . . , sn |=
EQ(xi, xj), hence t1, . . . , tn |= EQ(xi, xj), which implies ti = tj . Then s1, . . . , si−1, si+1, . . . , sn ∼
t1, . . . , ti−1, ti+1, . . . , tn and, by induction hypothesis, [[s1, . . . , si−1, si+1, . . . , sn]]η ≈
[[t1, . . . , ti−1, ti+1, . . . , tn]]η, hence the result.

3. If some si = {ui}rik (or some ti; this case is symmetric) where ui is not a constant
and k is maximal w.r.t. ≥s1,...,sn and k /∈ {s1, . . . , sn}. After possibly renumbering
the terms, let s1 = {u1}r1k , . . . sp = {up}

rp
k and sp+1, . . . , sn are not encryptions with

k.

k does not occur in u1, . . . , up, sp+1, . . . , sn since every si is either a name (different
from k), a constant, or a ciphertext (thanks to step 1) and, in the latter case, k does
not occur in si by maximality of k.

Let σ = {x1 7→ s1, . . . , xn 7→ sn} and σ′ = {x1 7→ s′1, . . . , xn 7→ s′n} and let ρ be the
replacement of s1, . . . , sp with {0l(u1,η)}r1k , . . . , {0

l(up,η)}rpk respectively. We observe
first that, for any recipe u, ρ(uσ↓) = uσ′↓ by consistency of use of the random seeds.

13.6. PROOF OF SOUNDNESS OF STATIC EQUIVALENCE: A SPECIAL CASE 185

If s1, . . . , sn |= P (u, v), (uσ↓, vσ↓) ∈ P I . For P ∈ {M,EQ,EK,EL}, (u1, u2) ∈ P I
iff (ρ(u1), ρ(u2)) ∈ P I (for instance, when P = EL, this is thanks to the presevation
of plaintexts lengths by ρ). Hence

s1. . . . , sn |= P (u, v) iff (ρ(uσ↓), ρ(vσ↓)) ∈ P I
iff (uσ′↓, vσ′↓) ∈ P I
iff s′1, . . . , s

′
n |= P (u, v)

s1, . . . , sn ∼ t1, . . . , tn therefore implies s′1, . . . , s
′
n ∼ t1, . . . , tn. Since, by assumption,

at least one si is such that si{ui}rik where ui is not a constant and s′i = {0l(ui,η)}rik
has a sctritly smaller size, we may apply the induction hypothesis:

[[s′1, . . . , s
′
n]]η ≈ [[t1, . . . , tn]]η

Then, thanks to our assumptions (validity of the sequences) and lemma 13.2, [[s1, . . . , sn]]η ≈
[[s′1, . . . , s

′
n]]η.

We conclude [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]].

4. If there are two indices i, j such that si = {ui}risj . Assume w.l.o.g i = 1. s1, . . . , sn |=
M(dec(x1, xj)) implies t1, . . . , tn |= M(dec(x1, xj)), hence t1 = {v1}

r′1
tj

for some v1.

We claim that u1, s2, . . . , sn ∼ v1.t2, . . . , tn:

u1, s2 . . . sn |= P (w1, w2) iff s1, s2 . . . , sn |= P (w1{x1 7→ dec(x1, xj)}, w2{x1 7→ dec(x1, xj)})
iff t1, . . . , tn |= P (w1{x1 7→ dec(x1, xj)}, w2{x1 7→ dec(x1, xj)})
iff v1, t2, . . . , tn |= P (w1, w2)

By induction hypothesis, [[u1, s2, . . . , sn]]η ≈ [[v1, t2, . . . , tn]]η. By exercise 61 and since
we assumed that each random seed is used only once, we conclude [[s1, . . . , sn]]η ≈
[[t1, . . . , tn]]η. (We sill see in the next section how to modify this part, to avoid the
assumption on the unique use of random seeds).

5. Now we have only to consider sequences s1, . . . , sn, t1, . . . , tn that consist of encryp-
tions of constants, names that are not used as encryption keys, and constants. If
one of the sequence contains at least one ciphertext, assume w.l.o.g. that this is
s1: s1 = {c1}r1k . Let s1, . . . sp be all ciphertexts in the sequence s1, . . . , sn, whose
encryption key is k: vsi = {ci}rik for 1 ≤ i ≤ p.
For every 1 ≤ i, j ≤ p, s1, . . . , sn |= EK(xi, xj), hence t1, . . . , tp |= EK(xi, xj): for

i = 1, ..., p, ti = {c′i}
r′i
k′ for some constants c′i. Furthermore, thanks to EL, for every

i = 1, ..., p, l(ci, η) = l(c′i, η). It follows that [[s1, . . . , sp]]η ≈ [[t1, . . . , tp]]η by lemma
13.2.

The key k does not occur in the sequence sp+1, ldots, sn and, by symmetry, the key
k′ does not occur in the sequence tp+1, . . . , tn. Then, by consistency of use of random
seeds,

[[s1, . . . , sn]]η = [[s1, . . . , sp]]η × [[sp+1, . . . , sn]]η

and

[[t1, . . . , tp]]η × [[tp+1, . . . , tn]]η = [[t1, . . . , tn]]η

By induction hypothesis, and since sp+1, . . . , sn ∼ tp+1, . . . , tn, [[sp+1, . . . , sn]]η ≈
[[tp+1, . . . , tn]]η. It follows that

[[s1, . . . , sn]]η = [[s1, . . . , sp]]η×[[sp+1, . . . , sn]]η ≈ [[t1, . . . , tp]]η×[[tp+1, . . . , tn]]η = [[t1, . . . , tn]]η

186 CHAPTER 13. SOUNDNESS OF STATIC EQUIVALENCE

6. We are left to a case where s1, . . . , sn, (and t1, . . . tn) are sequences of distinct names
and constants. If there is at least one name in the sequence, say s1, then t1 must
also be a name (otherwise EQ(x1, t1) would be satisfied in the second sequence and
not in the first one). By induction hypothesis, [[s2, . . . , sn]]η ≈ [[t2, . . . , tn]]η and then

[[s1, . . . , sn]]η = [[s1]]η × [[s2, . . . , sn]]η ≈ [[t1]]η × [[t2, . . . , tn]]η = [[t1, . . . , tn]]η

Exercice 62
Give an example showing that the above proof does not work when a random seed may occur
twice in a valid frame.

13.7 The proof in the general case

In this section, we prove exactly the same result as in the previous section, however relaxing
two assumptions.

First, we relax the condition on keys occurences, in order to allow for instance terms {{u}rk}r
′
k

in the sequence. We define the relation v on terms (read s v t as “s occurs as plaintext in t”)
as the least symmetric and transitive relation such that:

• If u v u1 or u v u2, then u v 〈u1, u2〉.

• If u v v then u v {v}rk.

Now,�s1....,sn is redefined as the (more general) least transitive relation such that, k2 �s1,...,sn

l1 whenever there is a subterm {u}rk2 of some si such that k1 v u.

Definition 13.7 A sequence of terms s1, . . . , sn in M0 has no key cycle if �s1,...,sn
is an

ordering. Dually, if there is a name k such that k �s1,...,sn k, then s1, . . . , sn contains a key-
cycle.

Key cycles are defined now according to this new ordering.

Example 13.2 1. {k}rk contains a key cycle

2. {{k1}r1k2}
r2
k3
, {{k2}r3k1}

r4
k3

contains a key-cycle

3. {{k1}r1k2}
r2
k3
, {{k1}r3k3}

r4
k2

does not contains a key-cycle

4. {{k1}r1k2}
r2
k2
, {{k2}r3k3}

r4
k3

does not contains a key-cycle

Second, we relax the conditions on random seeds, allowing several copies of the same cipher-
text:

Definition 13.8 A sequence s1, . . . , sn of terms uses the random seeds in a consistent way if

1. Any random seed occurring in s1, . . . , sn, only occurs in s1, . . . , sn as the third argument
of an encryption

2. If {u1}rk1 and {u2}rk2 are two subterms of s1, . . . , sn, then u1 = u2 and k1 = k2.

Definition 13.9 A sequence of terms (resp. a frame) s1, . . . , sn is weakly valid if

• it has no key cycle

• the sandom seeds are used in a consistent way

13.7. THE PROOF IN THE GENERAL CASE 187

Example 13.3 {{u}rk}r
′
k , {{u}rk}r

′′
k′ , {k′}r

′′′
k is a weakly valid sequence, with k � k′.

Definition 13.10 A key k is deducible from a frame φ, if there is a recipe u such that uσφ↓ = k.

Now we can generalize theorem 13.1 to:

Theorem 13.2 Let νn.{x1 7→ s1, . . . xn 7→ sn} and νn′.{x1 7→ t1, . . . , xn 7→ tn} be two weakly
valid frames.

νn.{x1 7→ s1, . . . xn 7→ sn} ∼ νn′.{x1 7→ t1, . . . , xn 7→ tn} ⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η

The proof is basically the same as the proof of theorem 13.1. The only difference lies in
points 3 and 4: at step 3, we need to replace ciphertexts {u}rk with {0l(u,η)}rk at every position.
And, at step 4, we have to show that maximal keys for one sequence correspond to maximal
keys for the other sequence.

The following two lemmas prepare these steps.

Again, we confuse the frames and the term sequences, as all names are assumed to be bound.

Lemma 13.3 Let v1, . . . , vm be a valid sequence of terms, let u ∈M0, k, r be names such that
k 6v u, v1, . . . , vm, and r occurs in u, v1, . . . , vm only as a random seed in subterms {u}rk. Then

[[v1, . . . , vm]]η ≈ [[v1[{u}rk 7→ {0l(u,η)}rk], . . . , vm[{u}rk 7→ {0l(u,η)}rk]]]η

and

(νn)v1, . . . , vm ∼ (νn)v1[{u}rk 7→ {0l(u,η)}rk], . . . , vm[{u}rk 7→ {0l(u,η)}rk]

Proof : We prove first the first claim of the lemma.

Let τ be a partial assigment of all names, except k and the random seeds s that are used in
ciphertexts {w}sk occurring in v1, . . . vm. We prove actually

[[v1, . . . , vm]]τη ≈ [[v1[{u}rk 7→ {0l(u,η)}rk], . . . , vm[{u}rk 7→ {0l(u,η)}rk]]]τη

Assume that A can distinguish the two above sequences with an advantage ε:

ε = |P[k,R, r1, . . . , rn : A([[v1, . . . , vm]]τη |R) = 1]

−P[k,R, r1, . . . , rn : A([[v1[{u}rk 7→ {0l(u,η)}rk], . . . , vm[{u}rk 7→ {0l(u,η)}rk]]]τη |R) = 1]|

We construct as follows an adversary B on IND-CPA: let w1, . . . , wn be the set of terms w
such that w v v1, . . . , vm. w1, . . . , wn are ordered in such a way that i < j whenever wi is a
subterm of wj .

1. B stores in its memory a table associating the terms wi with their computational inter-
pretations: For i = 1 to n, B

(a) if wi is a constant or a name (which is then in he domain of τ), B stores in its table
[[wi]]

τ
η

(b) if wi = 〈wj , wk〉, then B retrieves the values of [[wj]]
τ
η , [[wk]]

τ
η , that are stored in its

table, computes teh pair of them and stores the result in the table

(c) if wi = {wj}r
′
k′ where k′ 6= k, then B retreives [[wj]]

τ
η and computes [[wi]]

τ
η and stores

the result

(d) if wi = {wj}r
′
k , with r 6= r′, then B retrieves [[wj]]

τ
η from its table, queries the encryp-

tion oracle with ([[wj]]
τ
η , [[wj]]

τ
η) and stores the result.

188 CHAPTER 13. SOUNDNESS OF STATIC EQUIVALENCE

(e) if wi = {u}rk, then B retrieves [[u]]τη from its table and queries the encryption oracle

with ([[u]]τη , 0
l(u,η)) and strores the result

At the end of this (PTIME) procedure, B has stored in its table all the computational
interpretations of the subterms of v1, . . . , vm, if it was interacting with the left-oracle. Oth-
erwise, the stores contains the computational interpretation of the subterms of v1[{u}rk 7→
{0l(u,η)}rk], . . . , vm[{u}rk 7→ {0l(u,η)}rk], u.

2. B simulates A with the inputs corresponding to the values stored at v1, . . . , vm locations.
It produces the same output as A.

The advantage of B is ε: if A distinguishes the two sequences of terms with non negligible
probability, then B breaks IND-CPA.

Now, remains to prove the second claim.
We let ρ be the replacement of {u}rk with {0l(u,η)}rk and, for every i, v′i = ρ(vi). The

consistency of the use of random seeds implies that ρ is a bijection, whose inverse is ρ′. We
claim that v1, . . . , vn ∼ v′1, . . . , v′n. To see this, let σ = {x1 7→ v1, . . . , xn 7→ vn} and σ′ = {x1 7→
v′1, . . . , xn 7→ v′n}. Note first that there is no recipe w such that wσ ↓= k, because k 6v vi for
every i (and since, for every rewrite rule l→ r, rσ = k implies that r v l).

By induction on m, we prove that, for any recipe t, tσ
m−→ s iff tσ′

m−→ ρ(s). If m = 0
this is because none of the random seeds of v1, . . . , vn is occurring in t, hence ρ(tσ) = tσ′.
Otherwise, there is a position p in tσ, a rewrite rule l → r and a subsitution θ such that

tσ|p = lθ and tσ[rθ]p
m−1−−−→ s. If l = πi(〈x1, x2〉) and r = xi, ρ(lθ) = πi(〈ρ(x1σ), ρ(x2σ)〉). It

follows that tσ′|p = lθ′ and ρ(tσ[rθ]p) = tσ′[rθ′]p and we may apply the induction hypothesis.
If l = dec({x}r1k1 , k1), then k1 6= k and ρ(lθ) = dec({ρ(xθ)}r1k1 , k1). Again ρ(tσ[xθ]p) = tσ′[xθ′]p
and tσ′ −→ ρ(uσ[rθ]p): we may apply the induction hypothesis.

Now, v1, . . . , vn |= P (t1, t2) iff (t1σ↓, t2σ↓) ∈ P I . As already observed, for P ∈ {M,EQ,EK,EL},
P I is invariant by ρ (and ρ′): (t1σ↓, t2σ↓) ∈ P I iff (ρ(t1σ↓), ρ(t2σ↓)) ∈ P I . Thanks to
what we proved above, ρ(tiσ↓) = tiσ

′↓, hence v1, . . . , vn |= P (t1, t2) iff (t1σ
′↓, t2σ′↓) ∈ P I

iff v′1, . . . , v
′
n |= P (t1, t2). This concludes the proof of the second claim.

Lemma 13.4 Assume that (s1, . . . , sn), (t1, . . . , tn) are weakly valid term sequences such that

• (s1, . . . , sn) ∼ (t1, . . . , tn)

• for every t = {u}rk ∈M0, if u /∈ W and t occurs in some si (resp. some ti), then there is
a recipe v such that v{x1 7→ s1, . . . , xn 7→ sn}↓ = k (resp. v{x1 7→ t1, . . . , xn 7→ tn}↓ = k).

Then, for every j1 6= j2,

sj1 /∈ W and sj1 v sj2 implies tj1 /∈ W and tj1 v tj2.

Proof : We prove the lemma by induction on |sj2 |.
In the base case, |sj2 | = 1, then sj1 = sj2 . Using EQ, it follows that tj1 = tj2 .

Now, for the induction step. If sj2 =
〈
s′j2 , s

′′
j2

〉
, using M , tj2 must also be a pair tj2 =〈

t′j2 , t
′′
j2

〉
and

(s1, . . . , sj2−1, s
′
j2 , s

′′
j2 , sj2+1, . . . , sn) ∼ (t1, . . . , tj2−1, t

′
j2 , t
′′
j2 , tj2+1, . . . , tn)

Moreover, either sj1 v s′j2 or else sj1 v s′′j2 . By induction hypothesis, tj1 is a name and tj1 v t′j2
or tj1 v t′′j2 . In any case, tj1 v

〈
t′j2 , t

′′
j2

〉
.

13.7. THE PROOF IN THE GENERAL CASE 189

If sj2 = {s′j2}
rj2
kj2

, then sj1 v s′j2 and sj1 6= kj2 and sj1 6= rj2 (because the sequences

are weakly valid). In particular, s′j2 /∈ W, hence, by hypothesis, there is a recipe u such
that u{x1 7→ s1, . . . , xn 7→ sn}↓ = kj2 . Using M again, u{x1 7→ t1, . . . , xn 7→ tn}↓ = k′j2

is a key and, considering the recipe dec(xj2 , u), tj2 must be {t′j2}
r′j2
k′j2

for some t′j2 . Now,

s1, . . . , sj2−1, s
′
j2
, sj2+1, . . . , sn) ∼ (t1, . . . , tj2−1, t

′
j2
, tj2+1, . . . , tn) and, by induction hypothesis,

sj1 v s′j2 implies tj1 v t′j2 . It follows that tj1 v tj2 .

Proof of the theorem 13.2 : Again, we use an induction on |s1|+ · · ·+ |sn|+ |t1|+ · · ·+ |tn|
(where constants are not counted in |si|, |ti|). The base case and cases 1,2 are exactly the same
as in the proof of theorem 13.1.

Let us assume now that the two sequences only consists of ciphertexts, constants and names.

• If in one of the two sequences, there is a subterm {u}rk such that u is not a constant and
k is not deducible.

Assume for instance that such a term occurs as a subterm in the sequence s1, . . . , sn.
Consider a key k, which is maximal w.r.t. �s1,...,sn

among the keys that are not deducible
from s1, . . . , sn and that encrypt at least one non-constant term.

We claim that k 6v s1, . . . , sn. If it was the case, say k v s1, we prove, by induction on s1,
that either k is deducible from the sequence, or else there is a non-deducible key k′ such
that k′ � k. In the base case, s1 = k is deducible. If s1 = 〈s11, s12〉, then either k v s11
or else k v s12 and, by induction hypothesis, k is deducible from s11, s12, s2, . . . , sn or
else there is a non deducible key k′ such that k′ �s11,s12,s2,...,sn k. In the first case, k is
deducible from s1, . . . , sn (replacing x11 with π1(x1) and x12 with π2(x1) in the recipe)
and, in the second case, k′ �s1,...,sn k. Now, if s1 = {s11}rk′ , then, by weak validity of the
sequence, k 6= k′. Then k′ �s1,...,sn k. Either k′ is not deducible, and we are done, or else,
there is a recipe u such that u{x1 7→ s1, . . . , xn 7→ sn}↓ = k′. Then dec(x1, u) is a recipe
yielding s11. Since, in addition, k v s11, by induction hypothesis, either k is deducible
from s11, s2, . . . , sn, hence from s1, . . . , sn (replacing x1 with dec(x1, u) in the recipe) or
there is a key k′, that is not deducible from s11, . . . , sn, such that k′ �s11,s2,...,sn k. In the
latter case, k′ is neither deducible from s1, . . . , sn and k′ �s1,...,sn k, which concludes the
proof of our claim.

Then, we may use the lemma 13.3: let, for every i, s′i = si{{u}rk 7→ {0l(u,η)}rk} where {u}rk
is any subterm of the sequence s1, . . . , sn such that u is not a constant. (There is such a
term by assumption). By lemma 13.3,

[[s1, . . . , sn]]η ≈ [[s′1, . . . , s
′
n]]η

and s1, . . . , sn ∼ s′1, . . . , s
′
n. It follows that s′1, . . . , s

′
n ∼ t1, . . . , tn, hence, by induction

hypothesis, [[s′1, . . . , s
′
n]]η ≈ [[t1, . . . , tn]]η and, since [[s′1, . . . , s

′
n]]η ≈ [[s1, . . . , sn]]η, we get the

desired result: [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η.

• We assume now that all terms of both sequences are either names, constants or ciphertexts
and that every ciphertext {u}rk occurring in the sequences is such that either k is deducible
or else u is a constant. Furthermore, none of the sequences contain two identical terms.

If one of the sequences contains a ciphertext {u}rk such that k is deducible: si = {ui}rik
and there is a recipe v such that vσ↓ = k where σ = {x1 7→ s1, . . . , xn 7→ sn}.
After a possible renumbering, let s1 = {u1}r1k be a term in the sequence, whose encryption
key k is deducible and which is maximal w.r.t. v. This implies that s1 has no other
occurrence in the sequence (because the plaintext of encryptions with non-deducible keys
are constant).

190 CHAPTER 13. SOUNDNESS OF STATIC EQUIVALENCE

Since s1, . . . , sn |= M(dec(x1, v)), we must have t1, . . . , tn |= M(dec(x1, v)): t1 = {v1}
r′1
k′

and k′ is a deducible key (using the recipe v). By lemma 13.4, t1 is also maximal w.r.t.
v, and, for the same reason as above, has no other occurrence in the sequence.

As before, u1, s2, . . . , sn ∼ v1, t2, . . . , tn. By induction hypothesis, we therefore have
[[u1, s2, . . . , sn]]η ≈ [[v1, t2, . . . , tn]]η. Then, by maximality w.r.t. v of s1, t1 and by the con-
sistency of use of random numbers, r has no other occurrence in the sequence s1, . . . , sn
and r′ has no other occurrence in the sequence t1, . . . , tn. From [[u1, s2, s2, s3, . . . , sn]]η ≈
[[v1, t2, t2, t3, . . . , tn]]η and exercice 61, it follows [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η.

Now, we can proceed with the last cases of the proof, as in the proof of theorem 13.1 and
conclude.

Exercice 63
We say that frame (νn) s1, . . . , sn is transparent if:

• for every ciphertext {u}rk that occurs in s1, . . . , sn, either u is constant or else k is de-
ducible.

• The random seeds are used in a consistent way

Given a transparent frame φ = (νn).s1, . . . , sn, we define the flatened frame F (φ) by induc-
tion as follows:

• If there is an index i such that si = 〈si1, si2〉, then F (φ) = F ((νn).s1, . . . , si−1, si1, si2, si+1, . . . , sn).

• If there is are indices i, j such that si = {si1}risj , then F (φ) = F ((νn).s1, . . . , si−1, si1, si+1, . . . , sn)

• Otherwise, F (φ) = φ.

1. Show that, if φ is a transparent frame, then F (φ) contains only names, constants and
encryptions of constants with non-deducible keys.

2. Show that, if φ, φ′ are two transparent frames (that may contain key-cycles), then F (φ) ∼
F (φ′) implies [[F (φ)]]η ≈ [[F (φ′)]]η

3. Given two transparent frames φ, φ′, show that φ ∼ φ′ implies F (φ) ∼ F (φ′).

4. Given two transparent frames φ, φ′ such that φ ∼ φ′, show that [[φ]]η ≈ [[φ′]]η iff [[F (φ)]]η ≈
[[F (φ′)]]η.

5. Prove an extension of the theorem 13.2, in which the frames may contain key-cycles on
deducible keys.

Exercice 64
If we allow arbitrary ground terms (not containing decryption or pairing symbols) as keys, show
that the soundness of static equivalence does not hold.

More precisely, construct (from any IND-CPA encryption scheme) another IND-CPA en-
cryption scheme, for which, for two well-chosen terms t1, t2, {u}rt1 ∼ {u}

r
t2 , none of the names

occurring in t1, t2 occurs in u, and [[{u}rt1]]η 6≈ [[{u}rt2]]η.

Exercice 65
Assume here that the encryption scheme is not only IND-CPA, but also which-key concealing,
which is defined as follows: for any PPT machine A that has access to two oracles, and security
parameter η, let

ε1(A, η) =
|P
[
k, k′ ← K(η), R← U : AO

1
k,O

1
k′ (0η | R) = 1

]
−P
[
k ← K(η), R← U : AO2

kO
2
k(0η | R) = 1

]
|

13.8. COMPLETENESS 191

Where O1
k(x, y) = E(x, k, r) and O2

k(x, y) = E(y, k, r) if |x| = |y| (and 0 otherwise).
The encryption scheme is which-key concealing if, for every PPT machine A, ε1(A, η) is

negligible.
We consider a new definition of static equivalence ∼1, in which we do not have the predicate

EK but, instead, a unary predicate Cipher, which is true exactly on terms that are in M0 and
whose top symbol is an encryption.

1. Show that νk, k′k′′, r, r′. {k′′}rk, {k′′}r
′
k′ ∼1 νk, k

′, k′′, r, r′. {k′′}rk, {k′′}r
′
k

2. Let u1, . . . , um ∈ M0 be such that all names occurring in u1, . . . , um are in the domain
of τ and k, k1, . . . , km, n1, . . . , nm /∈ Dom(τ). Assume the encryption scheme is which-key
concealing. Prove

[[{u1}n1
k1
, . . . , {um}nmkm]]τη ≈ [[{0l(u1,η)}n1

k , . . . , {0
l(um,η)}nmk]]τη

3. Assume that (s1, . . . , sn) and (t1, . . . , tn) are two valid sequences of terms and that the
encryption scheme is which-key concealing, then prove

(νn)s1, . . . , sn ∼1 (νm)t1, . . . , tn ⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η

13.8 Completeness

The completeness problem is the converse of theorem 13.2: given two sequences of terms that are
computationally indistinguishable, are they statically equivalent ? In other words, completeness
ensures that we did not give too much power to the symbolic attacker.

The main issue is to be sure that the distinguishing capabilities of the symbolic attacker,
the predicates, can be implemented. That is what we consider first.

13.8.1 Predicate implementation

We assume a set of function symbols, all of which have a computational interpretation as a PPT
algorithm. Then, ifM is the set of ground terms constructed using this set of function symbols
and a set of names, for every mapping τ from names to bitstrings, [[]]τη is the unique extension
of τ as a homomorphism from M to {0, 1}∗. As before, we consider name distributions that
are parametrized by a security parameter η ∈ N and, when τ is a partial interpretation only,
[[]]τη is the corresponding distribution.

Definition 13.11 A predicate P ∈ P of arity k is implementable if there is a PPT algorithm
[[P]] such that:

∀s1, . . . , sk ∈M,∃Q ∈ POL1, ∃N ∈ N,∀η > N.

P
[
(x1, . . . , xk)← [[s1, . . . , sk]]η : [[P]]A(x1, . . . , xk) = P I(s1, . . . , sk)

]
>

1

2
+

1

Q(η)

We will see later examples of predicate symbols that are (not) implementable.

Definition 13.12 Given a convergent rewrite system S on M, and an interpretation of the
predicate symbols, a S,PI-computational structure is a computational interpretation of the
function symbols and the predicate symbols such that

∀s, t ∈M,∀η ∈ N,∀τ. (s =S t ⇒ [[s]]τη = [[t]]τη)

and, for every P ∈ P, P is implementable.

Note here that we require not only indistinguishability, but true equality: τ is universally
quantified over the assignments of appropriate lengths.

192 CHAPTER 13. SOUNDNESS OF STATIC EQUIVALENCE

13.8.2 Completeness

Theorem 13.3 (completeness) For any computational structure,

[[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η ⇒ (νn) s1, . . . , sn ∼ (νm) t1, . . . , tn.

Proof : By definition, if s1, . . . , sn 6∼ t1, . . . , tn, then there are recipes u1, . . . , uk and a predicate
P ∈ P such that P I(u1σ↓, . . . , ukσ↓) 6⇔ P I(u1σ

′↓, . . . , ukσ′↓). where σ = {x1 7→ s1, . . . , xn 7→
sn} and σ′ = {x1 7→ t1; . . . , xn 7→ tn}. For instance, assume w.l.o.g. that P I(u1σ↓, . . . , ukσ↓) =
1 and P I(u1σ

′↓, . . . , ukσ′↓) = 0.
Moreover, u1, . . . , uk do not contain any name, by a simple induction on the length of the

rewrite sequence, there is a deterministic polynomial time Turing machine B, which, on input
[[v1, . . . , vn]]τη , computes [[P (u1θ↓, . . . , ukθ↓)]]τη , where θ = {x1 7→ v1, . . . , xn 7→ vn}. By definition,
for every η ∈ N, for every assignment τ of keys and random numbers occcurring in v1, . . . , vn,

B([[v1, . . . vn]]τη) = [[P]]([[u1θ↓]]τη , . . . [[ukθ↓]]τη)

So,
P [(x1, . . . , xn)← [[v1, . . . , vn]]η : B(x1, . . . , xn) = 1] =

P [(y1, . . . , yk)← [[u1θ↓, . . . , ukθ↓]]η : [[P]](y1, . . . , yk) = 1]

On the other hand, according to the definition, there are Q1 and N1 such that, for all η > N1,

P [(y1, . . . , yk)← [[u1σ↓, . . . , ukσ↓]]η : [[P]](y1, . . . , yk) = 1] >
1

2
+

1

Q1(η)

and there are Q2 and N2 such that, for all η > N2,

P
[
(y1, . . . , yk)← [[u1σ

′↓, . . . , ukσ′↓]]η : [[P]](y1, . . . , yk) = 0
]
>

1

2
+

1

Q2(η)

Altogether, if we let

ε(η) =
P [(x1, . . . , xn)← [[s1, . . . , sn]]η : B(x1, . . . , xn) = 1]−

P [(x1, . . . , xn)← [[t1, . . . , tn]]η : B(x1, . . . , xn) = 1]
,

For η > max(N1, N2),

ε(η) > (
1

2
+

1

Q1(η)
)− (

1

2
− 1

Q2(η)
) =

1

Q1(η)
+

1

Q2(η)

It follows that ([[s1, . . . , sn]]η)η∈N 6≈ ([[t1, . . . , tn]]η)η∈N.

13.8.3 Examples of computational structures

M , the predicate defining “valid messages” can be implemented if there is an algorithm, which
can recognize when a message is a pair (which we always assume), an algorithm which can
recognize when a message is a key, and also an algorithm, which decides when the decryption
algorithm is used with a valid input.

More precisely, we assume a particular bitstring ⊥ (an error message), which is returned
when πi is applied on a bitstring, which is not a pair, or when there is an attempt to encrypt
a message, which is not a key or when trying to decrypt something, which is not a ciphertext.
Following a strict interpretation, we also assume that any function applied to the error message⊥
returns ⊥. This corresponds actually to a typing predicate, which we assume to be implemented
deterministically, for instance using tags (it would also work with a probabilistic implementation
of such predicates). Finally, we assume confusion freeness as defined below (a definition taken
from [203], who also show that such a condition is necessary for completeness, and is not ensured
by IND-CPA):

13.8. COMPLETENESS 193

Definition 13.13 An encryption scheme is confusion free if, for every bitstring x,

P [k1, k2 ← K(η), r ← U : D(E(x, k1 | r), k2) 6=⊥] = ν(η)

is negligible.

In other words: it is very likely to get an error message when trying to decrypt with a wrong
key.

Proposition 13.1 If the encryption scheme is confusion-free, then the predicates M,EQ are
implementable.

Proof : Let us start with M . Let [[M]](x) = 1 iff x 6=⊥.

Let s ∈M. We have to compute

ε(s, η)
def
= P

[
x← [[s]]η : M I(s) 6= [[M]](x)

]
If s ∈ M0, then M I(s) = 1 and [[M]](x) = 1 and therefore ε(s, η) = 0. So, we only have to

consider the case M I(s) = 0. We proceed by induction on s. If s is a constant, then the only
possibility for not being accepted by M I is s =⊥, in which case [[M]](x) = 0.

Otherwise, if s is a pair or an encryption with a valid key, then, since M I has a strict
interpretation, there must be a direct subterm of s which does not belong toM0. Then, we use
the induction hypothesis and the strictness of [[M]]: if s1, s2 are the direct subterms of s,

ε(s, η) = P [(x1, x2)← [[s1, s2]]η : [[M]](x1) = 1 ∧ [[M]](x2) = 1]
≤ min(P [(x1, x2)← [[s1, s2]]η : [[M]](x1) = 1],P [(x1, x2)← [[s1, s2]]η : [[M]](x2) = 1])
= min(P [x1 ← [[s1]]η : [[M]](x1) = 1],P [x2 ← [[s2]]η : [[M]](x2) = 1])
≤ min(ε(s1, η), ε(s2, η))

If s = {u}rv and v is not a valid key or if s is a projection of a term which is not a pair, or if
s is a decryptoin of a term which is not a ciphertext, then [[s]]η is always ⊥, by definition, hence
[[M]](x) = 0 (for all x ∈ [[s]]η).

Finally, if s = D({t}rk1 , k2), if {t}rk1 is not in M I , we are back to the previous computation.

Assume now that {t}rk1 ∈ M I and therefore that k2 6= k1. Then, by definition of confusion
freeness, ε(s, η) = ν(η)

Next, [[EQ]](x, y) is defined as [[M]](x) ∧ [[M]](y) ∧ x = y, which is implementable, as MA is
implementable.

Now there are several symmetric encryption schemes that are proved to ensure confusion-
freeness. Typically, the encryption schemes that satisfy, additionally to IND-CPA, some in-
tegrity properties. A discussion and constructions on such authenticated encryption schemes
can be found in [54].

The converse of theorem 13.2 follows then from the theorem 13.3 and the implementability
of EK,EL, which is satisfied by some (but not all) IND-CPA encryption schemes.

Exercice 66
Given an IND-CPA encryption scheme, construct another IND-CPA encryption scheme for
which the predicates EK and EL are implementable.

Exercice 67
We extend here the definition of the computational interpretation of terms to terms that may
contain decryption symbols. [[dec(s, t)]]τη is defined by:

1. draw all names occurring in s, t and not in Dom(τ),

194 CHAPTER 13. SOUNDNESS OF STATIC EQUIVALENCE

2. The previous step yielda, together with τ , an assignment τ ′; Apply the function D to [[s]]τ
′
η

and [[t]]τ
′
η . This function returns a special bitstring ⊥ in case it is not defined on the input.

An encryption scheme is decryption-confusing if:

1. for every name k, [[{0η}rk]]η ≈ [[k]]η

2. for every x ∈M0 and every two distinct names k1, k2 not occurring in x,

[[{{x}r1k1}
r2
k2
, k2]]η ≈ [[{x}r1k1 , k2]]η

1. Show that, if the encryption scheme is decryption confusing, then

(a) for every distinct names k1, k2,

[[dec(k1, k2), k2]]η ≈ [[k1, k2]]η ≈ [[{k1}rk2 , k2]]

(b) For any term x not containing projection symbols, and for any names k1, k2 such
that k1 6= k2, and k1, k2 do not occur in x,

[[dec({x}rk1 , k2), k2]]η ≈ [[{x}rk1 , k2]]η ≈ [[{{x}r1k1}
r2
k2
, k2]]η

2. In what follows, we assume the encryption scheme IND-CPA and which-key concealing,
as defined in exercise 65.

The definition of static equivalence is modified, using a different set of predicate symbols.
We use three predicates El and Eq, m which are interpreted in a slightly different way
as before since, now, decryption can not fail. m is interpreted as the set of terms, which
do not contain projection symbols. El is interpreted as the set of pairs of terms whose
lengths are identical, where the length L is defined by:

L(k) = S For k ∈ N L(D(x, k)) = L(x)
L(c) = S for any constant c L({x}rk) = L(x)

L(〈x, y〉) = L(x) + L(y)

S is an integer constant, used only for the purpose of this definition. Also, we assume
L(c) = S for every constant, for simplicity, which means thatW is now restricted to words
whose length is a multiple of S. We can think of S as the length of a block in a block
cipher encryption scheme.

Eq is interpreted as equality on the terms that are in m. The rewrite system is unchanged.
This defines a staticic equivalence ∼c.
Show that the following sequences are (statically as well as computationally) distinguish-
able:

(a) ({〈0, k0〉}rk1 , k2, k1) and ({〈1, k0〉}r
′

k′1
, k′1, k

′
2)

(b) ({{〈0, k0〉}r1k2}
r2
k1
, k2, k1) and ({{〈0, k0〉}

r′1
k′2
}r

′
2

k′1
, k′1, k

′
2)

(c) ({k0}r1k1 , k1, {〈k2, k3〉}
r2
k1
, k2) and ({k′0}

r′1
k′1
, k′2, {〈k′2, k′3〉}

r′2
k′1
, k′1)

Where 0 and 1 are sequences of 0’s and 1’s respectively, of the same appropriate length.

3. Show that the following are statically equivalent:

(a) ({{〈0, k0〉}r1k3}
r2
k1
, k2, k1) and ({{〈1, k0〉}

r′1
k′3
}r

′
2

k′1
, k′1, k

′
2)

13.8. COMPLETENESS 195

(b) ({k0}r1k1 , k1, k2, {{k3}
r2
k2
}r3k1) and ({k′0}

r′1
k′1
, k′2, k

′
1, {{k′3}

r′2
k′2
}r

′
3

k′1
)

4. Valid sequences are defined as before: sequences of messages in M0 (in particular not
containing decryption symbols) with a consistent use of random numbers and no key-
cycle.

We say that a term sequence is transparent if, for every ciphertext {u}rk occurring in
s1, . . . , sn, either k is deducible from s1, . . . , sn or else u ∈ W.

Let (s1, . . . , sn) be a transparent sequence such that

(a) s1, . . . , sn are names or ciphertexts

(b) the only occurrences of w ∈ W in the sequence are in expressions {w}rk where k is
not deducible.

(c) s1, . . . , sn do not contain any pairing

(d) for every i 6= j, si 6v(s1,...,sn) sj

Prove then
[[s1, . . . , sn]]η ≈ [[{0l(s1,η)}r1k1 , . . . , {0

l(sn,η)}rnkn]]η

where k1, . . . , kn ∈ N are distinct and r1, . . . , rn are distinct.

5. Prove that, if (s1, . . . , sn) and (t1, . . . , tn) are valid transparent sequences of terms and
(s1, . . . , sn) ∼c (t1, . . . , tn), then si v(s1,...,sn) sj implies ti v(t1,...,tn) tj .

6. Assuming the encryption scheme is decryption confusing, if s1, . . . , sn and t1, . . . , tn are
valid sequences, prove

(s1, . . . , sn) ∼c (t1, . . . , tn)⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η

