
Chapter 13

Soundness of Static Equivalence

We will show that under some assumptions on the cryptographic primitives static equivalence
is sound with respect to a computational model, i.e. whenever two frames ϕ1 and ϕ2 are
statically equivalent, the distributions corresponding to the implementations of these frames
are computationally indistinguishable.

13.1 Security properties of symmetric encryption schemes

We recast first the security definition of IND-CPA (defined in the section 9.1 for public-key
encryption), in the case of symmetric key encryption.

We wrile AO a Probabilistic Polynomial Time Turing machine, equipped with an oracle O.
Let us recall that such machines include in particular a random tape, which is read-only and
whose content is drawn uniformly at random when the machine starts. The polynomial time
computation should only depend on the input of the machine, not on the actual values on the
random tape. We sometimes write A(x | R) for the result of the (deterministic) computation
of A on x with a random tape R.

The machine has also a special tape for oracle calls (and replies). It may write on this tape
and, from a special state corresponding to the oracle call, there is a transition of the machine
from a configuration γ to a configuration in which only the control state and the content of the
oracle tape have changed; if the oracle tape contains m before the call to the oracle, it contains
O(m) after the transition. In case the oracle itself is randomized, it is assumed to be equiped
with a random (infinite) string R, which is drawn at its first call. Each time the oracle needs
a random input, it takes the appropriate prefix of R and removes this prefix from R. When
needed, we write O(m | R) to explicitly state what is the random input of the oracle.

The following definition captures the minimal expectations for a symmetric encryption
scheme: key generation/ encryption/decryption can be performed in polynomial time and the
decryption with a correct key of the encryption of a plaintext gives back the plaintext.

Definition 13.1 A symmetric encryption scheme consists of three deterministic polynomial
time functions G, E ,D.

• G is the key generation algorithm. We assume here that the length of G(x) only depends
on the length of x.

• E is an encryption algorithm, that, given x, k, r (a plaintext, a key and a random seed)
returns E(x, k, r). We assume that the length of E(x, k, r) only depends on the length of x
for a fixed length key k. E(x,G(y), r) is also assume to depend only on a prefix of length
|y| of r: E(x,G(y), r1) = E(x,G(y), r2) if r1 and r2 have the same prefix of length |y|.
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• D is the decryption algorithm. It is assumed to satisfy the equation

D(E(x,G(y), r),G(y)) = x

for all x, y, r.

Note that in case of key mismatches, or a key that is not in the range of G, the result of D is
not specified.

Sometimes it is more convenient to hide the key generation algorithm and to use a key
distribution. Given η ∈ N, we write K(η) the distribution defined by the image of the uniform
distribution on {0, 1}η by G: for every a, P[k ← K(η) : k = a] = P[r ← U({0, 1}η) : G(r) = a].

Now, as in the section 9.1, we are going to use encryption oracles. Given a symmetric
encryption scheme G, E ,D and a key k in G({0, 1}η), we define the two randomized oracles
O1
k( | R) and O2

k( | R) as follows:

• on an input x#y where x, y ∈ {0, 1}∗ and |x| = |y|, O1
k(x#y | R) returns E(x, k, r) and

O2
k(x#y | R) returns E(y, k, r), for a bitstring r that is taken from R.

• If the input does not have the above format, O1
k (resp. O2

k) returns 0.

Note that two successive calls to Oik with the same input may return different values, as the
value r is drawn at each call.

Finally, the security cannot be ensured for fixed length keys (there is always then an at-
tacker); it is rather an asymptotic property. We therefore use the following definition of negli-
gible functions:

Definition 13.2 A function f : N → Q is negligible if, for any positive polynomial P in one
variable, there is an N ∈ N such that, for every η > N , f(η) < 1

P (η) .

We are now ready to define IND-CPA:

Definition 13.3 Let S = (G, E ,D) be a symmetric encryption scheme.
Given any oracle PPT machine A and any security parameter η ∈ N we define

Adv(A, η) =

|P[k ← K(η), R1, R2 ← U : AO1
k( |R2)(0η | R1) = 1]

−P[k ← K(η), R1, R2 ← U : AO2
k( |R2)(0η | R1) = 1]|

S is IND-CPA if, for any PPT machine A, Adv(A, η) is a negligible function of η.

This property states intuitively that an attacker cannot distinguish between the encryption
of two plaintexts of his choice.

Exercice 48
Show that the following is a symmetric encryption scheme and is not IND-CPA:

• G is the identity

• E(x, k, r) = x

• D(y, k) = y

Exercice 49
Show that any encryption scheme, in which E(x, k, r) is independent of r is not IND-CPA.
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Exercice 50
Show that there is no encryption scheme that satisfies

∀P,∃N, ∀A, ∀η > N. Adv(A, η) < 1
P (η)

Where A ranges over PPTs and P over positive polynomials in one variable.

Exercice 51
Show that there is no symmetric encryption scheme that satisfies

∀A,∃N, ∀η > N. Adv(A, η) <
1

2η

where A ranges over PPTs.

Exercice 52
Given a symmetric encryption scheme, we let

Adv′(A, η) = |2× P[b← U({1, 2}), k ← K(η), R1, R2 ← U : AObk( |R1)(0η | R2) = 1]− 1|

Show that IND-CPA is equivalent to:

For every PPT A, Adv′(A, η) is a negligible function of η.

Exercice 53
Given a symmetric encryption scheme, we define

Adv′′(A, η) = Average[k ← K(η) :
|P[R1, R2 ← U : AO1

k( |R1)(0η | R2) = 1]

− P[R1, R2 ← U : AO2
k( |R1)(0η | R2) = 1]|

]

Is IND-CPA equivalent to the following property:

For every PPT A, Adv′′(A, η) is a negligible function of η.

13.2 The symbolic model

We consider here a fixed set of function symbols F : symmetric encryption { } , pairing 〈 , 〉,
symmetric decryption dec( , ), projections π1( ), π2( ), as well as a collection of constants W.
In addition, N is a set of names. This set of names can be partitioned into different sets, for
instance keys, random seeds and nonces. For simplicity, we are going to consider in what follows
only one name sort.

We also consider the equational theory E:

dec({x}rk, k) = x For every k, r ∈ N
π1(〈x, y〉) = x π2(〈x, y〉) = y

Orienting the equations from left to right, we get a (recursive) convergent rewriting system:
every term u in T (F ,X ) has a unique normal form u ↓.

In what follows, we consider only (for simplicity) the set of valid terms M0, that is the least
set of terms such that:

• N ∪W ⊆M0

• if u, v ∈M0, then pairuv ∈M0

• if u ∈M0, r, k ∈ N , then {u}rk ∈M0
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For convenience, we re-define the static equivalence (and we will see later that it may match
the definition of chapter 6: instead of only checking equalities, we give the attacker the ability
to check some other predicates.

Valid messages: the unary predicate symbol M is assumed to check the well-formedness of
messages.

Its interpretation in our message structure is set M I of ground terms u such that u ↓∈ M0.

Equality: the binary predicate EQ checks the equality of messages: its interpretation EQI is
the set of pairs of messages (u, v) such that u ∈M I , v ∈M I and u↓ = v↓.
Note that, for instance (dec(k, k), dec(k, k)) /∈ EQI : pairs of ill-formed terms are not
considered as equal.

Equal keys: as we will see, we will need a predicate EK checking that two ciphertexts use the
same encryption keys (the indistinguishability of two such ciphertexts is not guaranteed
by IND-CPA).

EKI is true on pairs of ciphertexts that are using the same encryption key: (u, v) ∈ SKI iff
there is a k ∈ N , there are r1, r2 ∈ N , there are terms u1, v1 ∈M0 such that u ↓= {u1}r1k
and v ↓= {v1}r2k .

Equal lengths: in the computational model, if two plaintexts have different lengths, then the
corresponding ciphertexts have different lengths. Hence we need to reflect this ability to
distinguish messages in the symbolic model. Formally, we use the binary predicate symbol
EL, whose interpretation will be formally defined later in this section. Informally, ELI

is the pair of terms (u, v) such that there are terms u1, v1 ∈M0, names k1, k2, r1, r2 such
that u ↓= {u1}r1k1 , v ↓= {v1}r2k2 and, for every η ∈ N, l(u1, η) = l(v1, η).

Let us recall that a frame is an expression νn.{x1 7→ s1, . . . , xm 7→ sm} where s1, . . . , sm are
ground terms, x1, . . . , xm are distinct variables and n is a sequence of distinct names.

The free names fn(φ) of a frame φ = νn.{x1 7→ s1, . . . , xm 7→ sm}. are the names appearing
in s1, . . . , sm, that are not in n. If φ = νn.{x1 7→ s1, . . . , xm 7→ sm}, we write σφ the substitution
{x1 7→ s1, . . . , xm 7→ sm}.

A frame is defined up to the renaming of the names in n: φ = νn1, . . . , nk.σφ is considered
to be the same frame as φ′ = νn′1, . . . , n

′
k.σφ′ if fn(φ) = fn(φ′) and σφ′ is obtained by replacing

each ni with n′i in σφ.

Definition 13.4 Given a set of predicate symbols P, two frames φ1 = νn1.{x1 7→ s1, . . . , xk 7→
sk} and φ2 = νn2.{x1 7→ t1, . . . , xm 7→ tm}, such that fn(φ1) ∩ n2 = fn(φ2) ∩ n1 = ∅, are
statically equivalent, which we write φ1 ∼ φ2, if k = m and

∀P ∈ P, ∀u1, . . . , ui ∈ T (F ∪ (N \ (n1 ∪ n2)), {x1, . . . , xk}),
(u1σφ1 , . . . , uiσφ1) ∈ P I ⇔ (u1σφ2 , . . . , uiσφ2) ∈ P I

Exercice 54
Let F be the set of function symbols that has been defined in the beginning of this section and
P be {M,EQ,EK}. Show that the above definition coincides with the definition of chapter 6,
for a well chosen (recursive) equational theory E .

13.3 Indistinguishability of ensembles

Two sequences of distributions (called ensembles) parametrized by η ∈ N are indistinguishable,
if any PPT adversary, when faced to the two experiments, cannot guess with a significant
advantage with which of the two experiments it is faced:
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Definition 13.5 Let D = {Dη}η∈N and D′ = {D′η}η∈N be two ensembles. D and D′ are
computationally indistinguishable, which is written D ≈ D′ if, for any PPT A, the advantage:

ε(A, η) = |P[x← Dη, r ← U : A(x, 0η | r) = 1]− P[x← D′η, r ← U : A(x, 0η | r) = 1]|

is a negligible function of η.

Exercice 55
Show that the Dirac ensemble defined by P[x← δη : x = 0η] = 1 and the uniform ensemble
P[x← U({0, 1}η) : x = a] = 1

2η for every a ∈ {0, 1}η are distinguishable.

Exercice 56
Fix k ∈ N. Show that the two following ensembles are indistinguishable: the uniform distribu-

tion on {0, 1}η and the distribution Ukη defined by:

P[x← Ukη : x = a] =

{
0 if a = b0n−k for some b

1
2n−2k Otherwise

13.4 The computational interpretation of terms

We let G, E ,D be a symmetric encryption scheme and assume that p is a polynomial time
pairing function on bitstrings: p is an injection from {0, 1}∗ × {0, 1}∗ intp {0, 1}∗, whose two
inverses p−11 and p−12 are also polynomially computable and such that, forall x, y ∈ {0, 1}∗,
p−11 (p(x, y)) = x and p−12 (p(x, y)) = y. We also assume that, if |x1| = |x2| and |y1| = |y2|, then
|p(x1, x2)| = |p(y1, y2)|.

We define here, for each security parameter η ∈ N the interpretation of terms as bitstrings.
First, each w ∈ W is interpreted as [[w]] ∈ {0, 1}∗. Typically, the constants w denote some
specific bitstrings and we could have [[0101]] = 0101.

Next, given η, we let τ be a mapping from N to {0, 1}η. Then [[·]]τη is the homomorphism
from T (F ∪N ) to {0, 1}∗ that extends τ :

• If w ∈ W, [[w]]η = ([[w]])η

• If n ∈ N , [[n]]τη = τ(n)

• If k, r ∈ N and u ∈M0, then [[{u}rk]]τη = E([[u]]τη , [[k]]τη , [[r]]
τ
η)

• If u, v ∈M0, [[〈u, v〉]]τη = p([[u]]τη , [[v]]τη).

• [[dec(u, v)]]τη = D([[u]]τη , [[v]]τη)

• [[π1(u)]]τη = p−11 ([[u]]τη)

• [[π2(u)]]τη = p−12 ([[u]]τη)

If the names occurring in a ground term u are partitioned intoN1 andN2 and τ1 is a mapping
from N1 to {0, 1}η and τ2 is a mapping from N2 to {0, 1}η, then [[u]]τ1η defines a distribution:
P[x← [[u]]τ1η : x = a] = P[τ2 : [[u]]τ1∪τ2η = a]. As a particular case, [[u]]η is an ensemble, in which
all names in u are sampled in {0, 1}η (according to a distribution that is not precised here, and
which may be assumed to be uniform, for simplicity).

Similarly, if u1, . . . , uk is a sequences of terms and τ is a partial interpretation of the names
occurring in u1, . . . , uk, [[u1, . . . , uk]]

τ
η is an ensemble: for each η, it defines a distribution on

k-uples of bitstrings.
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Exercice 57
Assume that the names occurring in s1, . . . , sn are disjoints from the names occurring in
t1, . . . , tm then show that [[s1, . . . , sn, t1, . . . , tm]]η = [[s1, . . . , sn]]η × [[t1, . . . , tm]]η.

Show, (using a uniform distribution of name interpretations) that it is not always true when
the assumption on the disjointness of the set of names is dropped.

We may now precise the interpretation of EL. We first observe that, according to the
assumptions on E , p and the name samples, |[[u]]τη | is independent of τ (that interprets all names
occurring in u) and only depends on η. We let then l(u, η) = |[[u]]τη |, which completes the
definition of EL.

13.5 Preliminary indistinguishability results relying on the prop-
erty of the encryption scheme

Lemma 13.1 Fix an interpretation τ of the names occurring in a term u. Assume that the
encryption scheme is IND-CPA. Let u ∈M0 be such that k, r do not occur in u and are not in
the domain of τ . Then:

[[{u}rk]]τη ≈ [[{0l(u,η)}rk]]τη

Proof : Let A be a PPT machine and

ε(A, η) = |P[x← [[{u}rk]]τη , R← U : A(x, 0η | R) = 1]−P[x← [[{0l(u,η)}rk]]τη , R← U : A(x, 0η | R) = 1]|

Consider now the oracle PPT machine B (which may depend on τ) such that:

1. Computes [[u]]τη and stores this in y

2. Submits the pair (y, 0l(u,η)) to the oracle

3. Simulates A on the reply x of the oracle.

B runs in polynomial time,as each computation step runs in polynomial time. Furthermore,
|y| = l(u, η). Hence the machine B is an attacker on IND − CPA, whose advantage is exactly
Adv(B, η) = ε(A, η). Therefore ε(A, η) is negligible.

This is easily generalized to sequences of ciphertexts:

Lemma 13.2 Let u1, . . . , um ∈M0. Fix an interpretation τ of the names occurring in u1, . . . , um.
Assume that the encryption scheme is IND-CPA. If the names k, r1, . . . , rm are distinct and do
not occur in u1, . . . , um, then

[[{u1}r1k , . . . , {um}
rm
k ]]τη ≈ [[{0l(u1,η)}r1k , . . . , {0

l(um,η)}rmk ]]τη

Exercice 58
Complete the proof of the above lemma, using the same ideas as in the proof of the lemma 13.1.

The condition on the occurrences of k, r in u is necessary for lemma 13.1, as shown by the
following

Exercice 59
Assume that there exists at least one IND-CPA symmetric encryption scheme. Construct
another IND-CPA encryption scheme such that [[{k}rk]]η 6≈ [[{0η}rk]]η.

We may, however, relax a little bit the assumptions:


