
Chapter 6

Static equivalence

6.1 Definitions and Applications

In the first part we have seen how to verify trace properties such as secrecy, formulated as
non-deducibility, and authentication properties in a symbolic model. Now we will investigate
equivalence properties. These properties formalize the notion of indistinguishability in a sym-
bolic model.

6.1.1 Static equivalence

Remember that messages can be modelled as terms over an abstract algebra: given a set of
function symbols F , a set of names N and a set of variables X we denote the set of all terms
constructed over these sets by T (F ,N]X). We consider here a slightly simplified setting where
F only contains public symbols, i.e., F = Fpub. Moreover, the algebra will be equipped with
an equational theory. Let us now be a bit more precise.

Definition 6.1 An equational theory E is a set of pairs {(M,N)|M,N ∈ T (F ,N] X)}. We
define equality modulo E denoted =E to be the smallest equivalence relation such that

• (M,N) ∈ E implies that M =E N ,

• =E is closed under substitutions of terms for variables,

• =E is closed under application of function symbols, i.e. M1 =E N1, . . . ,Mk =E Nk implies
that f(M1, . . . ,Mk) =E f(N1, . . . , Nk) for all f ∈ F of arity k,

• =E is closed under bijective renaming of names.

For convenience in examples we will often just say that E is defined by the equations

M1 = N1 . . . Mn = Nn

rather than writing E = {(M1, N1), . . . , (Mn, Nn)}. So we will for instance define the equational
theory enc which models symmetric encryption and pairings by the equations

proj1(〈x, y〉) = x proj2(〈x, y〉) = y sdec({x}y, y) = x.

Hence we have that proj2(〈n, sdec({s}k, k)〉) =enc s.
In Section 3.1.4 we have already introduced static equivalence. Let us rephrase this definition

now in this slightly simplified setting. We write new n1.σ1 =α new n2.σ2 when these two frames
are the same up to α-conversion, i.e. up to a bijective renaming of the bound names. Before
defining static equivalence between frames we define what it means for two terms to be equal
in a frame. Let phi = new n.σ. We say that (M =E N)φ iff φ =α new n′.σ′ for some n′ and σ′

such that names(M,N) ∩ n′ = ∅ and Mσ′ =E Nσ
′.

87

88 CHAPTER 6. STATIC EQUIVALENCE

Definition 6.2 Two frames φ1 = new n1.σ1 and φ2 = new n2σ2 are statically equivalent,
written φ1 ∼E φ2 iff Dom(σ1) = Dom(σ2) and for all terms M,N we have that (M =E N)φ1 ⇔
(M =E N)φ2.

Note that it follows directly from the definition that static equivalence is closed under α-
conversion.

6.1.2 Applications of static equivalence

We have already seen some uses of static equivalence in Section 3.3. There we used static
equivalence to model guessing attacks and to define equivalence properties. We will give here
some additional examples.

Password protocols. It is not always possible to rely on previously shared keys or on an
existing public key infrastructure. In these cases protocols often rely on shared passwords.
However, such passwords are weak secrets and can be subject to brute-force attacks. Brute-
force attacks on passwords are also refered to as dictionnary attacks (refering to a dictionnary
containing all passwords) or guessing attacks (the search space is small enough that the attacker
can guess the password). As we have seen before (Definition 3.3) resistance against offline
guessing attacks can be modelled by the means of static equivalence.

Example 6.1 Let us now consider an example of a password protocol, which indeed resists
offline guessing attacks. The EKE protocol [62] can be described by the following 5 steps.

1. A→ B : {(pk(k))}w (EKE.1)
2. B→ A : {aenc(r, pk(k))}w (EKE.2)
3. A→ B : {na}r (EKE.3)
4. B→ A : {〈na, nb〉}r (EKE.4)
5. A→ B : {nb}r (EKE.5)

This protocol uses both ciphers and public key encryption. It does however not rely on a public
key infrastructure, i.e. we do not assume that public keys are known and can be associated to
a particular identity. In the first step (EKE.1) A generates a new private key k and sends the
corresponding public key pk(k) to B, encrypted (using symmetric encryption) with the shared
password w. Then, B generates a fresh session key r, which he encrypts (using asymmetric
encryption) with the previously received public key pk(k). Finally, he encrypts the resulting
ciphertext with the password w and sends the result to A (EKE.2). The last three steps (EKE.3-
5) perform a handshake to avoid replay attacks. One may note that this is a password-only
protocol. A new private and public key are used for each session and the only shared secret
between different sessions is the password w.

We use the equational theory EKE defined by the equations

adec(aenc(x, pk(y)), y) = x sdec(senc(x, y), y) = x senc(sdec(x, y), y) = x
proj1(〈x1, x2〉) = x1 proj2(〈x1, x2〉) = x2

Note the modelling of ciphers with the additional equation senc(sdec(x, y), y) = x. The fact
that decryption always succeeds is one of the differences between a cipher and a symmetric

6.1. DEFINITIONS AND APPLICATIONS 89

encryption. The protocol can be modeled in our process calculus by new w.(PA || PB) where

PA = new k, na. PB = new r, nb.
out(c, {pk(k)}w)). in(c, y1).
in(c, x1). out(c, {aenc(r, sdec(y1, w))}w).
let ra = adec(sdec(x1, w), k). in(c, y2).
out(c, {na}ra) out(c, {〈sdec(y2, r), nb〉}r).
in(c, x2). in(c, y3)
if proj1(sdec(x2, ra)) = na then if sdec(y3, r) = nb then
out(c, {proj2(sdec(x2, ra))}ra) 0

We use the let construction for readability, with the obvious meaning, i.e., let x = M.P stands
for P{M/x}. An honest execution of this protocol yields the frame new w, k, r, na, nb.σ where

σ = {x1 7→ {pk(k)}w, x2 7→ {aenc(r, pk(k))}w, x3 7→ {na}r, x4 7→ {〈na, nb〉}r, x5 7→ {nb}r}

We indeed have that new w, k, r, na, nb.σ]{xw 7→ w} ∼EKE new w,w′, k, r, na, nb.σ]{xw 7→ w′}.
Using the tool ProVerif [71] it is possible to show that this equivalence holds for all reachable
frames declaring w as weaksecret.

Remark 6.1 We have used static equivalence to model resistance against guessing attacks. One
can note that the same modelization captures real-or-random properties in general.

Anonymity in electronic voting. Consider the following toy protocol for electronic voting
where a voter sends his vote to an administrator, encrypted with the administrator’s public key
and signed with his private key. When the administrator has received all the votes he decrypts
them and publishes the result. This can be modelled by the following voter and administrator
processes. We consider the same equational theory for asymmetric encryption as before, with
the slight difference that aenc will be a ternary function symbol, modelling randomization of
the encryption.

V = new r; out(c1, sign(aenc(v, r, pk(skA)), skV)

A = in(c1, y); out(c2, adec(check(y, pk(skV)), skA))

To model anonymity we consider two situations each involving two voters. In the first situation
V1 votes v1 and V2 votes v2; in the second situation V1 votes v2 and V2 votes v1, i.e. the two voters
swap their vote. The protocol provides anonymity if these two situations are indistinguishable.
Let σ = {z1 7→ pk(skA), z2 7→ pk(skV1), z3 7→ pk(skV2) model the knowledge of public keys.
The previous scenario can then be modelled by the following two general process:

V P1 = new skA, skV1, skV2;
(σ‖V {skV1/skV }{v1/v}{r1/r}‖V {skV2/skV }{v2/v}{r2/r}‖A{skV1/skV }‖A{skV2/skV })

V P2 = new skA, skV1, skV2;
(σ‖V {skV1/skV }{v2/v}{r1/r}‖V {skV2/skV }{v1/v}{r2/r}‖A{skV1/skV }‖A{skV2/skV })

Two frames which can be derived from this protocol are

φ1 = new skA, skV1, skV2, v1, r1, v2, r2;σ]
{x1 7→ sign(aenc(v1, r1, pk(skA)), skV1);x2 7→ sign(aenc(v2, r2, pk(skA)), skV2;
x3 7→ v1;x4 7→ v2}

φ2 = new skA, skV1, skV2, v1, r1, v2, r2;σ]
{x1 7→ sign(aenc(v2, r1, pk(skA)), skV1);x2 7→ sign(aenc(v1, r2, pk(skA)), skV2;
x3 7→ v1;x4 7→ v2}

and anonymity can be modelled as φ1 ∼E φ2.

90 CHAPTER 6. STATIC EQUIVALENCE

6.1.3 Some properties of static equivalence

We will now show some properties of static equivalence.

Proposition 6.1

new n1.σ1 ∼E new n2.σ2 iff new n1]m.(σ1] θ) ∼E new n2]m.(σ2] θ)

where m ∩ (names(σ1) ∪ names(σ2)) = ∅ and (n1 ∪ n2) ∩ names(θ) = ∅.

A direct corollary of this proposition is the following.

Corollary 6.1

new n1.σ1 ∼E new n2.σ2 and new m1.θ1 ∼E new m2.θ2
iff

new n1]m1.(σ1] θ1) ∼E new n2]m2.(σ2] θ2)

where mi ∩ names(σi) = ∅ and ni ∩ names(θi) = ∅ (i ∈ {1, 2}).

The ⇒ direction can be seen as a composition result provided the frames do not share any
secret name. The ⇐ direction states that whenever two frames are statically equivalent then
any subframe is also statically equivalent.

When proving results on static equivalence it is often more convenient to use the following
equivalent definition of static equivalence.

Definition 6.3 Two frames φ1 = new n.σ1 and φ2 = new n.σ2 (having the same set of restricted
names) are statically equivalent, written φ1 ∼E φ2 iff Dom(σ1) = Dom(σ2) and for all terms
M,N , such that (names(M)∪names(N))∩n = ∅ we have that Mσ1 =E Nσ1 ⇔Mσ2 =E Nσ2.

We leave it as an exercise to show that these two definitions are equivalent.

Proof : [of Proposition 6.1]
⇒ We will show the contrapositive. Suppose that new n1]m.(σ1] θ) 6∼E new n2]m.(σ2] θ).

Hence there exist two terms M,N such that names(M,N)∩(n1∪n2∪m) = ∅ and M(σ1]θ) =E
N(σ1] θ) and M(σ2] θ) 6=E N(σ2] θ) (or vice-versa). As σi are ground M(σi] θ) = (Mθ)σi
and N(σi] θ) = (Nθ)σi. Because names(M,N) ∩ (n1 ∪ n2) = ∅ and (n1 ∪ n2) ∩ names(θ) = ∅
we have that names(Mθ,Nθ) ∩ (n1 ∪ n2) = ∅. Hence, Mθ,Nθ gives a valid test to distinguish
new n1.σ1 and new n2.σ2.

⇐ We again show the contrapositive. Suppose that new n1.σ1 6∼E new n2.σ2. Hence there
exist two terms M,N such that names(M,N) ∩ (n1 ∪ n2) = ∅ and Mσ1 =E Nσ1 and Mσ2 6=E
Nσ2 (or vice-versa). Let M ′ and N ′ be two terms obtained from M and N by applying a
bijective renaming of names in names(M,N) ∩ m and variables in Dom(θ) by fresh names.
Hence, names(M ′, N ′) ∩ (m ∪ n1 ∪ n2) = ∅ and vars(M ′, N ′) ∩ Dom(θ) = ∅. Because =E and
6=E are closed under bijective renaming and m ∩ (names(σ1) ∪ names(σ2)) = ∅ we have that
M ′σ1 =E N

′σ1 and M ′σ2 6=E N ′σ2. As vars(M ′, N ′)∩Dom(θ) = ∅ and σi are ground we obtain
that M ′(σ1] θ) =E N

′(σ1] θ) and M ′(σ2] θ) 6=E N ′(σ2] θ). ut
While composition with shared secrets does not hold in general, resistance against offline

guessing attacks (in the presence of a passive attacker) composes when the same password is
used.

Proposition 6.2

new w.new n1.(σ1] {x 7→ w}) ∼E new w.new w′.new n1.(σ1] {x 7→ w′})
and new w.new n2.(σ2] {x 7→ w}) ∼E new w.new w′.new n2.(σ2] {x 7→ w′})

implies that
new w.new n1] n2.(σ1] σ2] {x 7→ w}) ∼E new w.new w′.new n1] n2.(σ1] σ2] {x 7→ w′})

6.2. PROCEDURE FOR SUBTERM CONVERGENT EQUATIONAL THEORIES 91

where w′ 6∈ names(σi) and n1 ∩ names(σ2) = n2 ∩ names(σ1) = ∅.

Exercise 30 will guide us through the proof of this proposition.

6.1.4 Further readings

This section does not give an exhaustive overview of all papers on the subject. The aim is
to give some pointers to the interested reader to papers that are closely related (using similar
techniques and notations) to the subjects covered in this chapter.

Static equivalence was first introduced in the applied pi calculus [7] which is a process
calculus for cryptographic proptocols. In this context it was used to characterize observational
equivalence by a labelled bisimulation, relying on static equivalence. Many properties of static
equivalence were already introduced in that paper. Deducibility and static equivalence for
equational theories are also discussed in detail in [6]. This paper also presents decidability and
complexity results, which we will cover in the next section.

Guessing attacks were first formalized using static equivalence in [115] (other previous for-
malizations not based on static equivalence were presented in [197, 135] but they seem less
natural). Composition results for guessing attacks were shown in [136]: this paper includes
Proposition 6.2 showing that offline guessing attacks do compose in the presence of a passive
adversary, it is shown that offline guessing attacks do not compose in general in the presence of
an active adversary, but sufficient conditions are given to achieve this composition.

The modelling of anonymity by the use of static and above all observational equivalence has
been adressed for electronic voting in [182, 138, 28]. Anonymity in a different context is studied
in [149]: there it is shown how to model anonymity in authentication protocols by the use of
observational equivalence.

6.2 Procedure for subterm convergent equational theories

In this chapter we show that for a large class of equational theories, namely subterm convergent
equational theories, static equivalence can be decided in polynomial time. This part follows
closely the paper by Abadi and Cortier [6]. Other results and more practical procedures will be
discussed in the further readings section.

6.2.1 Preliminaries

Let us first introduce some preliminary definitions and notations.

Notations. Given a set of function symbols F we write ar(F) for the maximal arity of f ∈ F .
Sometimes in this section, we will write == when we want to emphasize that we mean syntactic
equality. For a term t we define |t| to be its size as follows: |t| = 1 if t is a variable, a name or
a constant and f(t1, . . . , tn) = 1 +

∑
1≤i≤n |ti|. We denote by st(t) the set of all subterms of t

and by pos(t) the set of its positions. Then, for p ∈ pos(t) we write t|p for the subterm of t at
position p. t[u]p is the term obtained by replacing the subterm at position p by u. The notions
of size and subterms are naturally lifted to frames: for ϕ = new n.{x1 7→M1, . . . xn 7→Mn} we
define |ϕ| =

∑
1≤i≤n |Mi| and st(ϕ) = ∪1≤i≤nst(Mi).

Rewrite systems and equational theories. A rewrite system R is a set of rewrite rules
` → r such that vars(r) ⊆ vars(`). We say that a term t rewrites to u by R if there exists
` → r ∈ R and p ∈ pos(t) such that t|p = `σ for some substitution σ and u = t[rσ]p. A
rewrite system R is terminating if there is no infinite chain t1 →R t2 →R A rewrite
system R is confluent if for any t1, t2 such that t →∗R t1, t →R t2 there exists u such that
t1 →∗R u and t2 →∗R u. R is convergent if it is both confluent and terminating. For a convergent

92 CHAPTER 6. STATIC EQUIVALENCE

rewrite system R we denote by t ↓R the unique normal form of t. A rewrite system is subterm
convergent if for any rule ` → r ∈ R we have that r is either a strict subterm of ` or r is a
constant. Given an equational theory E we associate a rewrite system RE to it by orienting
the equations in E . For readability we generally write →E instead of →RE . We say that an
equational theory is subterm convergent if it can be oriented to a subterm convergent rewrite
system.

Example 6.2 The equational theories enc, cipher and EKE encountered before are subterm
convergent. However, the equational theories for homomorphic encryption homo, extending enc
by the equations

{〈x, y〉}z = 〈{x}z, {y}z〉 sdec(〈x, y〉, z) = 〈sdec(x, z), sdec(y, z)〉

and for blind signatures blind defined by

check(sign(x, y), pk(y)) = x
unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

are not subterm convergent.

DAG representation of terms. In order to achieve a polynomial time complexity we will
use a DAG representation of terms (which can be exponentially more succint than its tree
representation). A DAG representation of a term is a directed acyclic graph (V, l, E, v0) where

• V is the set of vertices;

• l : V → F ∪N ∪ X is a labelling function;

• E ⊆ (V × {1..ar(F)})× V is the edge relation;

• v0 is the root vertex.

For each vertex v ∈ V such that l(v) = f ∈ F , v has exactly ar(f) outgoing edges labelled by
1 to ar(f). Vertices labelled by names and variables have no outgoing edge. We denote by
E(v, i) the unique vertex v′ such that (v, i, v′) ∈ E. A DAG D = (V, l, E, v0) defines a term
t(D) as t(D) = f(t(V, l, E,E(v0, 1)), . . . , t(V, l, E,E(v0, ar(f))) if l(v0) = f ∈ F and t(D) = l(v0)
if l(v0) ∈ N ∪ X . We say that a DAG representation (V, l, E, v0) is minimal if there are no two
distinct vertices v1, v2 ∈ V such that t(V, l, E, v1) = t(V, l, E, v2).

The size of a DAG D denoted |D| is the number of its vertices. We define the DAG size
of a term t, denoted |t|DAG, as |st(t)| which coincides with |D| when D is a minimal DAG
representation of t.

Given a DAG representation D we can compute its minimal DAG representation in O(|D|3).
We check whether there are two vertices v1, v2 (at most |D|2 possibilities) such that l(v1) = l(v2)
and E(v1, i) = E(v2, i) for 1 ≤ i ≤ ar(l(v1)). In that case we delete v2 from V and replace any
occurence of v2 by v1. We iterate this at most |D| times.

Hence, we can also check whether t(D1) == t(D2) in polynomial time in |D1|+ |D2|.
Given a subterm convergent rewrite system R and a minimal DAG representation D =

(V, l, E, v0) of a term t we can compute the minimal DAG representation of t ↓R in O(|D|4). To
see this note that each rewrite rule is of the form C[x1, . . . , xn]→ C ′[x1, . . . , xn] or C[x1, . . . , xn]→
c. Starting from the root we check whether the rewrite rule applies in D (at most |C||D| tests).
If it applies to some vertex v, i.e. t(V, l, E, v) = C[x1, . . . , xn]θ for some θ, replace v by the
vertex representing C ′[x1, . . . , xn]θ (if it is not a constant this vertex exists because it is a sub-
term; otherwise add a vertex labelled by the constant c). Then minimize the DAG in O(|D|3).
At each step (except for a constant number of cases) we delete one vertex. Hence the procedure
stops after at most |D| iterations and we compute the DAG representation of t ↓R in O(|D|4).

6.2. PROCEDURE FOR SUBTERM CONVERGENT EQUATIONAL THEORIES 93

6.2.2 Deciding ∼E in polynomial time for subterm convergent equational
theories

Let E be a subterm convergent equational theory defined by the axioms ∪1≤i≤n{(`i, ri)}. We
define the theory constant cE = max1≤i≤n(|`i|, ar(F) + 1). By convention, we define cE to be 1
in the case where E and F are empty.

Theorem 6.1 Let ϕ and ϕ′ be two frames. We can decide whether ϕ ∼E ϕ′ in polynomial time
in |ϕ|+ |ϕ′|.

The remaining of this section will be dedicated to the proof of this result. The proof can be
split into 3 steps:

1. frame saturation,

2. caracterization of a frame by a finite set of equalities,

3. decidability of ∼E .

We now detail each of these steps.

6.2.2.1 Frame saturation

For each frame ϕ we can compute a set of terms sat(ϕ). This set contains all terms that are
deducible from the frame by applying only “small” contexts.

Definition 6.4 Given a frame ϕ = new n.{x1 7→M1, . . . , xk 7→Mk} we define sat(ϕ) to be the
smallest set such that

1. {M1, . . . ,Mk} ⊆ sat(ϕ),

2. if M1, . . . ,Mn ∈ sat(ϕ) and f(M1, . . . ,Mn) ∈ st(ϕ) then f(M1, . . . ,Mn) ∈ sat(ϕ),

3. if M1, . . . ,Mn ∈ sat(ϕ) and C is a context such that C[M1, . . . ,Mn]→E M and |C| ≤ cE ,
names(C) ∩ n = ∅ and M ∈ st(ϕ) then M ∈ sat(ϕ).

Example 6.3 We again consider the equational theory enc which can be oriented into the fol-
lowing subterm convergent equational theory:

sdec({x}y, y)→enc x
proji(〈x1, x2〉)→enc xi (i ∈ {1, 2})

We have that cenc = 5. Consider the frame

ϕ = new s1, s2, k1, k2.{x1 7→ {〈s1, s2〉}〈k1,k2〉, x2 7→ k1, x3 7→ k2}

We have that sat(ϕ) = {{〈s1, s2〉}〈s1,s2〉, k1, k2, 〈k1, k2〉, 〈s1, s2〉, s1, s2}. The first three terms
result directly from the frame (rule 1). The term 〈k1, k2〉 can be added by applying the pairing
function symbol (rule 2). Term 〈s1, s2〉 can be added in two different ways using rule 3: either
apply the context sdec(,) on {〈s1, s2〉}〈s1,s2〉 and 〈k1, k2〉 or sdec(, 〈 , 〉) on {〈s1, s2〉}〈k1,k2〉,
k1 and k2. si can be added by applying proji() on 〈s1, s2〉. Note that we are not allowed to
directly use the context C = proji(sdec(, 〈 , 〉)) (corresponding to the actual recipe for deducing
si directly from ϕ) because |C| > 5.

We now show that this set can be computed in polynomial time in |ϕ|

Proposition 6.3 The set sat(ϕ) can be computed in O(|ϕ|max(ar(F),cE)+2).

94 CHAPTER 6. STATIC EQUIVALENCE

Proof : We initialize the set with the elements {M1, . . . ,Mk} (rule 1) and then saturate the
set using rules 2 and 3. We notice that sat(ϕ) ⊆ st(ϕ). Hence, we have that sat(ϕ) contains at
most |ϕ| elements and the saturation will take at most |ϕ| steps.

• If the step is an application of rule 2 we have to construct at most |F||ϕ|ar(F) terms. For
each of these terms we check whether it is in sat(ϕ) which can be done in linear time in
|ϕ|. Hence, this step can be computed in O(|ϕ|ar(F)+1).

• If the step is an application of rule 3 we have to compare whether any context of size
≤ cE applied to some Mis in sat(ϕ) is an instance of the lhs of a rewrite rule and check
whether the resulting term is in sat(ϕ). This can be computed in O(|ϕ|cE+1). To see this
note that the number of contexts is constant (as cE is fixed) and that a context has at
most cE holes. Hence, we need to consider at most O(|ϕ|cE) terms for which we need to
check whether they are in sat(ϕ).

Hence each step can be computed in O(|ϕ|max(ar(F),cE)+1). As there are at most |ϕ| steps we
can compute sat(ϕ) in O(|ϕ|max(ar(F),cE)+2).

Moreover any element of sat(ϕ) can be deduced using a recipe of small DAG size.

Proposition 6.4 Let ϕ = new n.σ. For all M ∈ sat(ϕ) there exists a recipe RM such that
|RM |DAG ≤ cE · |ϕ|, names(RM) ∩ n = ∅ and RMσ =E M .

Proof : For each termM ∈ sat(ϕ) we can give a recipeRM according to the rule of Definition 6.4
which added M to sat(ϕ).

1. Let RM = xi if xiσ = M and M is added by rule 1.

2. Let RM = f(RM1 , . . . RMn) if M is added by rule 2.

3. Let RM = C(RM1 , . . . RMn) if M is added by rule 3.

We can now construct a graph which contains each DAG corresponding to RM for M ∈ sat(ϕ).
The graph is constructed as follows.

1. For each recipe RM constructed by rule 1 add a vertex labelled by xi.

2. For each recipe RM = f(RM1 , . . . RMn) constructed by rule 2 add a vertex labelled by f
and connect it to the vertices corresponding to the terms RM1 , . . . RMn .

3. For each recipe RM = C(RM1 , . . . RMn) constructed by rule 3 construct the minimal DAG
corresponding to C and connect it to the vertices corresponding to the terms RM1 , . . . RMn .

Steps 1 and 2 add 1 vertex to the graph. As |C| ≤ cE each step 3 adds at most cE vertices to
the graph. Moreover, we know that the graph can be constructed in |ϕ| steps. Hence its size is
bounded by cE · |ϕ|.

Example 6.4 Continuing Example 6.3, let

M1 = {〈s1, s2〉}〈k1,k2〉
M2 = k1
M3 = k2

M4 = 〈k1, k2〉
M5 = 〈s1, s2〉
M6 = s1
M7 = s2

denote the elements of sat(ϕ). We can define the following recipes

RMi = xi (1 ≤ i ≤ 3)
RM4 = 〈x2, x3〉

RM5 = sdec(x1, RM4)
RM6 = proj1(RM5)
RM7 = proj2(RM6)

6.2. PROCEDURE FOR SUBTERM CONVERGENT EQUATIONAL THEORIES 95

6.2.2.2 Caracterization of a frame by a finite set of equalities

To each frame ϕ, we can associate a set Eq(ϕ) which is finite (up to renaming) and caracterizes
all equalities which hold in ϕ.

Definition 6.5 Given a frame ϕ we define Eq(ϕ) to be the set of equalities

C1[RM1 , . . . RMk
] = C2[RN1 , . . . RN`]

such that |C1|, |C2| ≤ cE , M1≤i≤k, N1≤j≤` ∈ sat(ϕ) and (C1[RM1 , . . . RMk
] =E C2[RN1 , . . . RN`])ϕ.

We write ϕ′ |= Eq(ϕ) iff (M =E N)ϕ′ for all (M = N) ∈ Eq(ϕ).

Example 6.5 Let us continue with Example 6.4. Omitting redundant and trivial equations we
have that Eq(ϕ) = {({RM5}RM4

= RM1), 〈RM6 , RM7〉 = RM5)}. Intuitively these equalities state
that M1 is indeed an encryption with the key M4 and M1 is the encryption of a pair.

We now show two crucial properties of Eq(ϕ).

Lemma 6.1 Let ϕ = new n.σ and ϕ′ be two frames such that ϕ′ |= Eq(ϕ). For all contexts
C1 and C2 such that names(C1, C2) ∩ n = ∅ and for all terms M1≤i≤k, N1≤j≤` ∈ sat(ϕ) if
C1[M1, . . . ,Mk] == C2[N1, . . . , N`] then (C1[RM1 , . . . , RMk

] =E C2[RN1 , . . . , RN`])ϕ
′.

Proof : The proof is done by induction on |C1|+ |C2|.

Base case. |C1|, |C2| ≤ cE . We have that

C1[M1, . . . ,Mk] == C2[N1, . . . , N`]

As Mi, Nj ∈ sat(ϕ) we have by Proposition 6.4 that RMi , resp. RNj , are recipes for Mi, resp.
Nj , in ϕ. Hence,

(C1[RM1 , . . . , RMk
] =E C2[RN1 , . . . , RN`])ϕ

As |C1|, |C2| ≤ cE , we have that (C1[RM1 , . . . , RMk
] = C2[RN1 , . . . , RN`]) ∈ Eq(ϕ) and hence

(C1[RM1 , . . . , RMk
] =E C2[RN1 , . . . , RN`])ϕ

′.

Inductive case. We consider two cases.

• C1 6= and C2 6= .
In that case, we have that C1 == f(C1

1 , . . . C
n
1) and C2 == f(C1

2 , . . . C
n
2) and for 1 ≤ i ≤ n

Ci1[M1, . . . ,Mk] == Ci2[N1, . . . , N`].

By induction hyptothesis, we have that (Ci1[RM1 , . . . , RMk
] =E C

i
2[RN1 , . . . , RN`])ϕ

′. Hence,
as =E is closed under application of function symbols we also have that

(C1[RM1 , . . . , RMk
] =E C2[RN1 , . . . , RN`])ϕ

′.

• Either C1 == or C2 == . Let us suppose that C1 == f(C1
1 , . . . C

n
1) and C2 == .

Let M,M1, . . . ,Mk ∈ sat(ϕ) such that C1[M1, . . . ,Mk] == M . Hence we have

f(C1
1 [M1, . . . ,Mk], . . . , C

n
1 [M1, . . . ,Mk]) == M.

Let Ni = Ci1[M1, . . . ,Mk] for 1 ≤ i ≤ n. As M ∈ sat(ϕ) and Ni ∈ st(M) we have
that Ni ∈ st(sat(ϕ)). Applying iteratively rule 2 of Definition 6.4 we obtain that Ni ∈
sat(ϕ). We can apply the induction hypothesis on Ni == Ci1[M1, . . . ,Mk] and obtain

96 CHAPTER 6. STATIC EQUIVALENCE

that (RNi =E C
i
1[RM1 , . . . , RMk

])ϕ′. Moreover, M == f(N1, . . . , Nn). Applying the base
case (with contexts and f(, . . . ,)) we obtain that (RM =E f(RN1 , . . . , RNn))ϕ′. From
(RNi =E C

i
1[RM1 , . . . , RMk

])ϕ′ and (RM =E f(RN1 , . . . , RNn))ϕ′ we conclude that

(C1[RM1 , . . . , RMk
] =E RM)ϕ′.

Lemma 6.2 Let ϕ = new n.σ and C1 a context such that names(C1) ∩ n = ∅. For all
M1, . . . ,Mk ∈ sat(ϕ) and T such that C1[M1, . . . ,Mk] →∗E T there exist C2 and M ′1, . . . ,M

′
` ∈

sat(ϕ) such that names(C2) ∩ n = ∅ and T == C2[M
′
1, . . .M

′
`]. Moreover, if ϕ′ |= Eq(ϕ) then

(C1[RM1 , . . . RMk
] =E C2[RM ′

1
, . . . RM ′

k
])ϕ′.

6.2.2.3 Decidability of ∼E

We now show the key proposition of the decidability proof.

Proposition 6.5

ϕ ∼E ϕ′ ⇔ ϕ |= Eq(ϕ′) and ϕ′ |= Eq(ϕ)

Proof :
⇒ It follows directly from the definition of static equivalence that ϕ ∼E ϕ′ ⇒ ϕ |=

Eq(ϕ′) and ϕ′ |= Eq(ϕ).

⇐ We have that ϕ′ |= Eq(ϕ). Let M,N be such that (M =E N)ϕ, i.e., ϕ =α new n.σ such
that names(M,N) ∩ n = ∅ and Mσ =E Nσ. Hence Mσ ↓E== Nσ ↓E . Let T = Mσ ↓E . By
Lemma 6.2 we have that there exist CM and M1, . . . ,Mk ∈ sat(ϕ) such that names(CM)∩n = ∅
and

T == CM [M1, . . .Mk] and (M =E CM [RM1 , . . . RMk
])ϕ′.

Similarly, as T == Nσ ↓E there exist CN and N1, . . . , N` ∈ sat(ϕ) such that names(CN)∩n = ∅
and

T == CN [N1, . . . N`] and (N =E CN [RN1 , . . . RN`])ϕ
′.

We obtain that CM [M1, . . .Mk] == CN [N1, . . . N`] and by Lemma 6.1 we obtain that

(CM [RM1 , . . . RMk
] =E CN [RN1 , . . . RN`])ϕ

′

and hence (M =E N)ϕ′.

Conversely, assuming ϕ |= Eq(ϕ′) and (M =E N)ϕ′ we obtain that (M =E N)ϕ. We
conclude that ϕ ∼E ϕ′.

From this and previous propositions follows a polynomial time decision procedure. To de-
cide ϕ ∼E ϕ′ construct sat(ϕ) and sat(ϕ′). These constructions can be done in polynomial time
(Proposition 6.3). Moreover, each term in sat(ϕ) ∪ sat(ϕ′) has polynomial DAG size (Propo-
sition 6.4). Because of renamings, Eq(ϕ) and Eq(ϕ′) may be infinite. However, as each of
the equalities in Eq(ϕ) and Eq(ϕ′) is of the form C1[RM1 , . . . , RMk

] = C2[RN1 , . . . , RN`] with
|Ci| ≤ cE each equality contains at most 2 · cE distinct names which can be fixed. There are
at most O((|ϕ|cE)2) equalities in Eq(ϕ) each having a polynomial DAG size. Checking whether
two terms in DAG representation are equal can be done in polynomial time as well. Hence, we
can check in polynomial time that ϕ |= Eq(ϕ′) and ϕ′ |= Eq(ϕ).

6.3. EXERCISES 97

6.2.3 Deciding ∼E vs deciding `E

An interesting question is what is the relation between the decidability problems for ∼E and `E .
In general, these problems cannot be reduced to each other: there exist an equational theory,
such that `E is decidable and ∼E is not; there also exists (more surprisingly) an equational
theory, such that ∼E is decidable and `E is not. Indeed for many equational theories deciding
`E can be reduced to ∼E . In particular, suppose that ∼E is decidable over a signature F] {h}
where h is a free symbol. Then we can decide `E over the signature F by the following encoding:

new n.σ `E t iff new n.σ] {x 7→ h(t)} ∼E new n, a.σ] {x 7→ a}

where a 6∈ names(σ). In particular this implies that `E is decidable in polynomial time for
subterm convergent equational theories.

6.2.4 Further readings

While the here described procedure (from [6]) is indeed effective a direct implementation would
not be efficient. Procedures for deciding static equivalence for subterm convergent equational
theories have been proposed in [43, 105] and have been implemented in the tools YAPA and
KISS. Both procedures can also be used to decide the theories blind and homo presented in
Example 6.2. (The procedure presented in [105] and its implementation in the tool KISS is
actually the outcome of an M2 internship following this course.) In [6], decidability for blind
and homo (and a more general class of equational theories) was already shown, however, no
generic procedure was presented.

In [119] it is shown that static equivalence is also decidable for a class of monoidal theories
(which are theories over associative commutative operators including theories for exclusive or
and abelian groups). Another important result [25] is that (under some mild assumptions)
decision procedures for disjoint equational theories can be combined to obtain a procedure for
deciding the joint equational theory.

While decidability of static equivalence has been extensively studied, the current knowl-
edge on decidability of obervational equivalence (the generalization to the active case) is very
partial. We currently only have approximate procedures for an unboundned number of ses-
sions [79] (implemented in the tool ProVerif), approximate procedures for a bounded number
of sessions [41, 42, 137] and a decision procedure for a restricted class of processes [120].

The relationship between deciding deducibility and static equivalence has been first inves-
tigated in [6]. There the above encoding of deducibility into static equivalence is proposed and
its correctness proven in detail. An equational theory which is decidable for static equivalence
but not for deducibility is also presented. In [88] another example of such a theory is given with
detailed proofs.

6.3 Exercises

Exercice 27
Consider the equational theory enc defined by the equations

sdec({x}y, y) = x proj1(〈x1, x2〉) = x1 proj2(〈x1, x2〉) = x2

98 CHAPTER 6. STATIC EQUIVALENCE

and cipher which extends enc by the equation {sdec(x, y)}y = x. Which of the following pairs
of frames are statically equivalent? Whenever applicable give the distinguishing test.

{x 7→ a} ?∼enc {x 7→ b}
{x 7→ {0}k}

?∼enc {x 7→ {1}k}
new k.{x 7→ {0}k}

?∼enc new k.{y 7→ {1}k}
new k.{x 7→ {0}k}

?∼enc new k.{x 7→ {1}k}
new n, k.{x 7→ {n}k, y 7→ k} ?∼enc new n, k, k′.{x 7→ {n}k, y 7→ k′}
new n, k.{x 7→ {n}k, y 7→ k} ?∼cipher new n, k, k′.{x 7→ {n}k, y 7→ k′}

Exercice 28
In Section 6.1.2 we considered a toy voting protocol. However, the anonymity relied on the fact
that the administrator waits to have both votes before publishing the result (to model this we
could enhance the language with a synchronization construct). Show that as specified above
V P1 6≈` V P2.

Exercice 29
Proposition 6.1 does not hold any more if we drop one of the condition m ∩ (names(σ1) ∪
names(σ2)) = ∅ and (n1 ∪ n2) ∩ names(θ) = ∅. Give a counter-example in each case when a
condition is omitted.

Exercice 30
The aim of this exercise is to guide us through a proof of Proposition 6.2. This proof requires
us to prove several properties of static equivalence. Suppose new n1.σ1 ∼E new n2.σ2. Show
that

new n.new n1.σ1 ∼E new n.new n2.σ2 where n 6∈ (n1 ∪ n2), (6.1)

new n1.σ1{s/n} ∼E new n2.σ2{s/n} where n 6∈ (n1 ∪ n2) and s is a fresh name. (6.2)

Let s 6∈ (n1 ∪ n2). Show that

new n1.σ1 ∼E new n2.σ2 iff new s.new n1.σ1] {x 7→ s} ∼E new s.new n2.σ2] {x 7→ s} (6.3)

Use these properties (as well as Proposition 6.1) to show that the following 3 statements are
equivalent.

1. new w.new n.σ] {x 7→ w} ∼E new w.new w′.new n.σ] {x 7→ w}

2. new n.σ ∼E new w.new n.σ

3. new n.σ ∼E new n.σ{w′
/w} where w′ is a fresh name.

From these results show Proposition 6.2.

Exercice 31
Give an example illustrating that the procedure given in Section 6.2 is wrong if we would define
the theory constant cE to be max1≤i≤n(|`i|) instead of max1≤i≤n(|`i|, ar(F) + 1).

Exercice 32
We discussed the modelling of guessing attacks by static equivalence. Use the procedure of
Section 6.2 to show that

new w.new n.{z1 7→ {n}w;xw 7→ w} 6∼enc new w.new w′.new n.{z1 7→ {n}w;xw 7→ w′}

and

new w.new n.{z1 7→ {n}w;xw 7→ w} ∼cipher new w.new w′.new n.{z1 7→ {n}w;xw 7→ w′}

6.3. EXERCISES 99

Exercice 33
The here presented procedure terminates in polynomial time given that terms are implemented
by DAGs rather than trees. Give an example of two frames ϕ1, ϕ2 such that ϕ1 6∼enc ϕ2 but
every distinguishing test is of exponential size in |ϕ1|+ |ϕ2|.

Exercice 34
Give an example of two frames ϕ1 and ϕ2 such that ϕ1 6∼homo ϕ2 (for the theory of homomorphic
encryption introduced in Example 6.2) for which the above procedure fails to distinguish the
frames.

