
Cryptographic protocols: formal and computational proofs

Mid Term exam

December 2, 2015
Duration 3h. All documents are allowed

Problem

We consider the following (informally described) handshake protocol

A→ B : νn, νr, νs.{〈n, 〈s,A〉〉}rk
B → A : νn′. 〈n, n′〉
A→ B : νr′.{〈s, n′〉}r′k

in which k is a shared key between A,B.

1. Give a reasonable definition of the processes PA(a) and PB(a), in which a plays the role
A (this is checked by the process PB)

2. We wish to check the agreement property on the nonce n. Include in the above processes
the appropriate events and state formally the agreement property.

3. We consider the scenario νk.(PA(a)‖PB(a)) in a context, in which the initial attacker’s
knowledge is only {a}.

(a) Explain why complete traces of the above process (i.e., traces with 3 input actions
and 3 output actions) must correspond to the following sequence of actions: 1.
output of PA 2. input of PB 3. output of PB 4. input of PA 5. output of PA 6.
input of PB.

(b) Compute the deducibility constraint representing all possible complete traces.

(c) Solve the above deducibility constraints.

(d) List all possible attacks on the agreement property that was stated in the previous
question. (Justify that there is no other attack)

(e) Show that there is no attack on the secrecy of s in this scenario.

(f) Show an attack on the secrecy of s in the scenario νk.(PA(a)‖PB(a)‖PB(a)).

4. Give a Horn clause translation H of νk.(PA(a)‖PB(a)).

5. Show how the attacker clauses, together with H, allow to deduce Att(s).

6. In the senario νk.(PA(a)‖PB(a)) is there any attack on the agreement on n′ ?

1



7. (Bonus) What are the possible attacks on the agreement on n (resp. n′) in a scenario
νk.(!PA(a) ‖ !PB(a)) ?

8. (Bonus) Assume the encryption scheme is IND-CPA, do we get more attacks in the
computational semantics ?

Exercise 2

We assume here that the encryption scheme is IND-CPA. k1, k2, k3, r, r
′ are arbitrary distinct

names. u, v are arbitrary terms.
Which of the following are true ? false (at least for some IND-CPA encryption schemes) ?
Justify your answer.

1. [[{k1}rk2 , {〈k1, k2〉}
r′
k3
, k1]] ≈ [[{k2}rk1 , {〈k1, k2〉}

r′
k3
, k1]]

2. [[{k2}rk1 , {〈k1, k3〉}
r′
k2
, k1]] ≈ [[{k2}rk1 , {〈k2, k3〉}

r′
k2
, k1]]

3. [[{k2}rk1 , {〈k1, k2〉}
r′
k1
, k2]] ≈ [[{k2}rk1 , {〈k2, k3〉}

r′
k2
, k3]]

4. [[{{u}rk1}
r′
k2

]] ≈ [[{{u}rk1}
r′
k1

]]

Exercise 3

If a symmetric encryption scheme uses the specific BC mode, we assume that it is possible to
compute {u}rk from {〈v, u〉}rk (for all u, v, k, r).

Give an example of a protocol, a scenario and a (weak) secrecy property, which is secure
in the Dolev-Yao model, but insecure for a symmetric encryption scheme using such a BC
mode.

2



Problem

1. PA(a) = νn, νs, νr, νr′.out({〈n, 〈s, a〉〉}rk).in(y).if π1(y) = n then out({〈s, π2(y)〉}r′k )

PB = νn′.in(x). let yn = π1(dec(x, k)) in out(〈yn, n′〉).in(z). if π1(dec(z, k)) = π1(π2(dec(x, k)))∧
π2(dec(z, k)) = n′ then OK.

2. PA(a) = νn, νs, νr, νr′.out({〈n, 〈s, a〉〉}rk.in(y).if π1(y) = n then eva(n).out({〈s, π2(y)〉}r′k )

PB = νn′.in(x). let yn = π1(dec(x, k)) in evb(yn).out(〈yn, n′〉).in(z). if π1(dec(z, k)) =
π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

Agreement: eva(x)⇒ evb(x).

Comment: in the student’s answers, the events are often misplaced, yielding either a
trivially unsatisfiable security property (the attacker may always cheat) or a very strong
agreement property, because the agreement is required, even when a has not checked n
in B’s reply.

3. (a) Let P = PA(a) ‖ PB. Consider (φ0, P, ∅) be the initial configuration.

First observe that, if φ is a frame that does not contain the key k, then, for every
u, φ 6` {u}rk. Therefore, if φ ` m, then dec(m, k) is irreducible.

There are, a priori, two possible transitions from the initial configuration (output
of A or input of B). Let us show that the latter yields a dead-end.

(φ0, P, ∅) → (νn′.φ0, PA(a)‖ let yn = π1(dec(m, k)) in out(〈yn, n′〉).
in(z). if π1(dec(z, k)) = π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

where φ0 ` m. Then yn is bound to π1(dec(m, k)). There are again two possible
moves:

(φ0, P, ∅) → (νn′.φ0, PA(a)‖ let yn = π1(dec(m, k)) in out(〈yn, n′〉).
in(z). if π1(dec(z, k)) = π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

→ (νn′.φ0, 〈π1(dec(m, k)), n′〉 , PA(a)‖
in(z). if π1(dec(z, k)) = π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

and

(φ0, P, ∅) → (νn′.φ0, PA(a)‖ let yn = π1(dec(m, k)) in out(〈yn, n′〉).
in(z). if π1(dec(z, k)) = π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

→ (νn′.φ0, 〈π1(dec(m, k)), n′〉 , P1‖
in(z). if π1(dec(z, k)) = π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

where P1 = in(y).if π1(y) = n then eva(n).out({〈s, π2(y)〉}r′k )

In order to complete one of these traces, we need to deduce a message m′ such that
π1(dec(m

′, k)) = π1(π2(dec(m, k))) or such that π1(m
′′) = n. In both cases, the

frames are contained in φ = φ0, 〈π1(dec(m, k)), n′〉 , {〈n, 〈s, a〉〉}rk. However, φ 6` n,
hence, for every m′′ such that π1(m

′′), φ 6` m′′. Furthermore, the only message
m′ that can be computer from φ and decrypted with k is {〈n, 〈s, a〉〉}rk, for wich
π1(dec(m

′, k)) = n 6= π1(π2(dec(m, k))). Finally, if m′ cannot be decrypted by k,

3



the two messages π1(dec(m
′, k)), π1(π2(dec(m, k))) are irreducible and distinct. In

all cases the process is stuck.

It follows that the first action in a complete trace is an output of A. The second
action cannot be an input of A because a, {〈n, 〈s, a〉〉}rk 6` n. It is therefore an
input of B, followed by an output of B (for the same reason, the input of A is not
possible before the output of B).

Now, we got out A; in B; out B. Remains two choices: in A or in B. in B requires a
message, which is encrypted by k and whose plaintext contains n′. The frame does
not contain any such message and there is not way to construct new encryptions
with k.

Therefore, the next action must be an input of A, followed by an output of A: we
have the desired sequence of actions.

Comments: I did not require such a detailed explanation. A 10-15 lines explanation
providing with the correct arguments was OK. However, many explanations were
incorrect or too short.

(b) For the only sequence of actions that we have:
a, {〈n, a〉}rk

?
` {〈yn, a〉}z

′
k

φ0, {〈n, a〉}rk, 〈yn, n′〉
?
` 〈n, y′〉

φ0, {〈n, a〉}rk, 〈yn, n′〉 , {〈s, y′〉}z
′′

k

?
` {〈s, n′〉}z′′′k

(c) We may focus on the first constraint first, for which there are only two possible
rule applications, yielding respectively:

yn = n ∧ z′ = r

a, {〈n, a〉}rk, 〈n, n′〉
?
` 〈n, y′〉

a, {〈n, a〉}rk, 〈n, n′〉 , {〈s, y′〉}z
′′

k

?
` {〈s, n′〉}z′′′k



a, {〈n, a〉}rk
?
` 〈yn, a〉

a, {〈n, a〉}rk
?
` k

a, {〈n, a〉}rk
?
` z′

a, {〈n, a〉}rk, 〈yn, n′〉
?
` 〈n, y′〉

a, {〈n, a〉}rk, 〈yn, n′〉 , {〈s, y′〉}z
′′

k

?
` {〈s, n′〉}z′′′k

The second system has no solution, because the second constraint reduces to ⊥.

Consider therefore the first one. There are, a priori, 3 possible rules applications,
yielding respectively

C1 =


yn = n ∧ z′ = r ∧ y′ = a

a, {〈n, a〉}rk, 〈n, n′〉
?
` 〈n, a〉

a, {〈n, a〉}rk, 〈n, n′〉 , {〈s, a〉}z
′′

k

?
` {〈s, n′〉}z′′′k

4



C2 =


yn = n ∧ z′ = r ∧ y′ = n′

a, {〈n, a〉}rk, 〈n, n′〉
?
` 〈n, n′〉

a, {〈n, a〉}rk, 〈n, n′〉 , {〈s, n′〉}z
′′

k

?
` {〈s, n′〉}z′′′k

C3 =


yn = n ∧ z′ = r

a, {〈n, a〉}rk, 〈n, n′〉
?
` y′

a, {〈n, a〉}rk, 〈n, n′〉 , {〈s, y′〉}z
′′

k

?
` {〈s, n′〉}z′′′k

We have now to consider the last constraint of the systems:

• for C1, there is no applicable rule: C1 has no solution.

• for C2 we get z′′ = z′′′ and then the system is solved.

• for C3, all rules force y′ = n′ and we are back to the previous system.

In summary, there is only one possible solved form: yn = n∧z′ = z′′∧z′ = r∧y′ =
n′.

(d) There is no attack on the agreement for this scenario, since eva(n) occurs only in
a completed trace, in which evb(yn) also occurs. Furthermore, as we have seen, we
must have yn = n.

And, for incomplete traces, we have even fewer solutions to the constraint system.

(e) There is an attack on the secrecy of s if there is an execution that yields a frame
φ, from which we can deduce s. From the question 3c, any complete trace yields
the frame a, {〈n, a〉}rk, 〈n, n′〉 , {〈s, n′〉}r

′
k . It is not possible to deduce s from this

frame.

All other frames that would emerge from incomplete traces are even shorter, there-
fore we cannot deduce s either from these frames.

(f) Attack in the cas of PA(a)‖PB(a)‖PB(a):

((a), P ) → ((a, {〈n, 〈s, a〉〉}rk), P1‖PB‖PB)
→2 ((a, {〈n, 〈s, a〉〉}rk), 〈n, n′〉), P1‖P2‖PB)

→ ((a, {〈n, 〈s, a〉〉}rk), 〈n, n′〉), out({〈s, π2(〈n, 〈n′, a〉〉)〉}r
′

k )‖P2‖PB)

→ ((a, {〈n, 〈s, a〉〉}rk, 〈n, n′〉 , {〈s, 〈n′, a〉〉}r
′

k ), P2‖PB)

→ ((a, {〈n, 〈s, a〉〉}rk, 〈n, n′〉 , {〈s, 〈n′, a〉〉}r
′

k , 〈s, n′′〉), P2‖P2)

where P1 = in(y).if π1(y) = n then out({〈s, π2(y)〉}r′k ) and P2 = in(z). if π1(dec(z, k)) =
π1(π2(dec(x, k))) ∧ π2(dec(z, k)) = n′ then OK.

In the last configuration, it is possible to deduce s from the frame.

4. We apply automatically the translation and we get:

Att({〈n, 〈s, a〉〉}rk) ⇐
Att(〈yn, n′〉) ⇐ Att({〈yn, 〈ys, a〉〉}zk)

Att({〈s, x〉}zk) ⇐ Att(〈n, x〉)

5



5.

Att({〈n, 〈s, a〉〉}rk) Att(
〈
yn, n

′〉)⇐ Att({〈yn, 〈ys, a〉〉}zk)

Att(
〈
n, n′

〉
)

and

Att(
〈
n, n′

〉
)

Att(n)

Att(
〈
n, n′

〉
)

Att(n′) Att(a)

Att(
〈
n′, a

〉
)

Att(
〈
n,
〈
n′, a

〉〉
)

and

Att(
〈
n,
〈
n′, a

〉〉
) Att({〈s, x〉}zk)⇐ Att(〈n, x〉)

Att({
〈
s,
〈
n′, a

〉〉
}rk) Att(

〈
yn, n

′〉)⇐ Att({〈yn, 〈ys, a〉〉}zk)

Att(
〈
s, n′

〉
)

Att(s)

6. Again, we have only to consider the complete traces, and the constraint system that we
solved in question 3c. In particular, we must have y′ = n′. With the same reasoning as
in the question 3d, there is no attack on the agreement on n′.

7. There is no attack on the agreement on n (resp. n′), even for multiple copies of the
processes

We only sketch why. An event eva(ni) is triggered when A receives a message 〈ni, zi〉.
This is only possible when ni is deducible from the current frame. Since the key k is
never deducible from any frame (it does not appear in clear in any message), ni can
only be deduced from a message where it appears in clear. Hence at a point where B
has sent a message 〈n′, z′i〉.

8. There is an attack if the encryption scheme is malleable.

We only sketch why. First there are IND-CPA encryption schemes, for which the in-
tegrity of the plaintext is not ensured. In particular (as in El-Gamal), we could modify
the plaintext, without decrypting it. Using a first session of the protocol, the attacker
may get a sample of the encryption with k. Then, in a second session, it could be possi-
ble to replace the nonce n with, say, the pair 〈v, n〉 in the first message sent by a. When
b replies, the message 〈〈v, n〉 , n′〉 is replaced with 〈n, n′〉. Then b has yn = 〈v, n〉 6= n,
which violates the agreement property.

Exercise 2

They are all false. For the first three ones, we use the completeness of static equivalence: we
give in each case a predicate symbol and recipes allowing to distinguish the two sequences.

1. M(dec(x1, x3)) holds true on the second sequence of terms and holds false on the first
one. And there are IND-CPA encryption schemes that implement the predicate M
(decryption succeeds).

6



2. EQ(dec(x1, x3), π1(dec(x2, dec(x1, x3)))) holds on the second sequence and not on the
first

3. EK(x1, x2) holds true on the first sequence and not on the second, and there are IND-
CPA encryption schemes that implement EK.

4. First, if u does not contain k1, k2 (actually, we only need that it does not contain k1)
as a plaintext, the equivalence is true, using the soundness theorem of the lecture: the
two terms are statically equivalent, hence computationally equivalent.

If u = k1, We can build (as in the exercise from the lecture) an IND-CPA encryption
scheme such that, on input x,

• It returns 0 · E(x, k, r) if x 6= k and x 6= 1 · k
• It returns 1 · E(k, k, r) if x = k

• It returns 1 · E(1 · k, k, r) if x = 1 · k

Then the two distributions can be distinguished: it is sufficient to check the first bit of
the ciphertext.

Exercise 3

Consider for instance
A→ B : νn.νs, νr.{〈a, 〈n, s〉〉}rk
B → A : νn′, νr′{〈n, n′〉}r′k
A→ B : n′

And the scenario νk.PA (B does not even play!)
The weak secrecy of s holds in the standard model: the constraint {〈a, 〈n, s〉〉}rk

?
` {〈n, x〉}z′k

{〈a, 〈n, s〉〉}rk, x
?
` s

has no solution, since the first constraint cannot be simplified by any rule.
There is an attack in BC mode: the attacker gets {〈n, s〉}rk, which is sent back to a (i.e.,

we use the binding x = s). He gets s as a reply.
Comment: Some simpler solutions were submitted by students.

7


