
MPRI Exam 2-30 (part 1)

Cryptographic protocols: formal and computational proofs

Duration: 3h. All documents are allowed. Electronic devices are forbidden.

December, 3rd, 2014

Exercise 1 : Constraint solving

We consider the BAN-Yahalom protocol as described informally below. The purpose of this
protocol is to establish a fresh session key Kab between two participants A and B. This is done
through a server S who shares a long-term symmetric key with each participant. The key Kas

(resp. Kbs) is a symmetric key shared between A (resp. B) and S.

1. A→ B : A, Na

2. B → S : B, Nb, {A,Na}Kbs

3. S → A : Nb, {B,Kab, Na}Kas , {A,Kab, Nb}Kbs

4. A→ B : {A,Kab, Nb}Kbs, {Nb}Kab

We consider the constraint system C given below with T0 = {a, b, ni, ki} and the classical
inference system IDY to deal with symmetric encryption and pair.

T1
def
= T0, 〈a, na〉

?
` 〈a, x〉

T2
def
= T1, 〈b, 〈nb, senc(〈a, x〉, kbs)〉〉

?
` 〈a, x′〉

T3
def
= T2, 〈b, 〈n′b, senc(〈a, x′〉, kbs)〉〉

?
` 〈senc(〈a, 〈y, nb〉〉, kbs), senc(nb, y)〉

T3
?
` y

1. Explain the scenario encoded by the constraint system C. Who are the agents involved in
this scenario ? What are the roles played by each agent ? How many instances of each role
are they playing ? What is the security property under study ?

2. Check that the substitution σ = {x 7→ ni; x
′ 7→ 〈ki, nb〉; y 7→ ki} is a solution of C, i.e.

give proof trees witnessing that σ is a solution of the constraint system C. Explain the
underlying attack on the protocol using the informal Alice & Bob notation.

3. Solve the deducibility constraint system C, using the simplification rules of the lectures,
and give all the solutions of the constraint system C. You may notice that the simplification
rules can always be applied to the first unsolved deducibility constraint, according to the
completeness proof. Moreover, when using the rules R2 and R3, you may assume that
t, u, t1, t2 are neither variables nor of the form 〈v1, v2〉. Completeness is still true under
these hypotheses. This avoids unnecessary branching.

4. We propose to modify the protocol by adding tags. We consider public constants c1, c2, . . .
and we add such a constant in each ciphertext. For instance, messages 2 and 3 will be
modified as follows :

2. B → S : B, Nb, {c1, A,Na}Kbs

3. S → A : Nb, {c2, B,Kab, Na}Kas , {c3, A,Kab, Nb}Kbs

1

Of course, when an agent receives such a message, he will check (after decrypting the
ciphertext) that the plaintext starts with the expected constant. Modify the constraint
system C to reflect the changes done on the protocol. Let Ctag the resulting constraint sys-
tem. Is Ctag satisfiable ? Could you comment on the usefulness of such a tagging mechanism
from a security point of view ?

Exercise 2 : Blind signatures

We want to study the intruder deduction problem for the inference system Isign given below :

x y

blind(x, y)

x y

sign(x, y)

blind(x, y) y

x

sign(blind(x, y), z) y

sign(x, z)

We consider two binary function symbols sign and blind. Intuitively, the term sign(m, k)
represents the signature of the message m with the key k, and the term blind(m, r) represents
the message m hidden with the random factor r. The blind signature primitive has the follo-
wing property : given the signature of a blind message, i.e. sign(blind(m, r), k), and the blinding
factor r, it is possible to compute the signature of the message m, i.e. sign(m, k). This addi-
tional ability is also given to the intruder. This is the purpose of the last inference rule of the
system Isign.

1. Show that the inference system Isign is not local w.r.t. the notion of syntactic subterm
that we have seen during the lectures.

We consider a notion of extended subterms defined as follows : stext(t) is the smallest set
such that st(t) ⊆ stext(t) and

if sign(blind(u1, u2), u3) ∈ stext(t) then sign(u1, u3) ∈ stext(t).

This notion is extended to sets of terms as follows : stext(T) =
⋃
t∈T stext(t).

2. Let T0 = {blind(m, r), k, r} and u = sign(m, k). Give two different proof trees Π1 and Π2

of T ` u in Isign having minimal size (size = number of nodes).

3. Show that the inference system Isign is local w.r.t. the notion of extended subterms.

4. Show that the intruder deduction problem is decidable
Input : a finite set T of terms, and a term u ;
Output : Is u deducible from T in Isign ?

Justify the termination of your algorithm.

5. We consider the simplification rules seen during the lectures where the underlying deduc-
tion relation used in R1 is Isign, and the notion of subterm used in R2 and R3 is the notion
of extended subterm mentioned above. We consider the following theorem :

Termination : There is no infinite chain C σ1 C1 . . . σn Cn.

Correctness : If C ∗σ C′ for some constraint system C′ and some substitution σ and if θ
is a solution of C′ then σθ is a solution of C.

Completeness : If θ is a solution of C, then there exist a solved constraint system C′ and
substitutions σ, θ′ such that θ = σθ′, C ∗σ C′ and θ′ is a solution of C′.

Say whether each of these statements is true or not. You will provide a short explanation
to justify a positive answer, and a counter-example to illustrate a negative answer.

2

Exercice 3 : Encrypted Key Exchange protocol

The EKE protocol is designed to solve the problem of authenticated key exchange while
being resistant against dictionay attacks. EKE is a password-only protocol : the password pw
is the only shared data between the two participants A and B.

1. A→ B : {pkey}pw
2. B → A : {{R}pkey}pw
3. A→ B : {Na}R
4. B → A : {Na, Nb}R
5. A→ B : {Nb}R

First, A generated a fresh private/public key pair, and then sends the public key encrypted
with the password pw shared with B. Then B extracts the public key, generates a fresh session
key R, encrypts it with the public key, and encrypts the result with the password. B sends this
message to A. Then, nonces Na and Nb are exchanged to perform the “hand-shaking” necessary
to defend again replay attacks.

1. Give a signature F and an equational theory E suitable to model this protocol in a
reasonnable way. We will assume that the operations symmetric encryption and decryption
are commutative, i.e. senc(sdec(x, y), y) = x is one of the equations in E. In the following,
all the function symbols will be assumed to be public. So, your model is supposed to be
reasonnable in this setting.

2. Write the processes PA(pw) and PB(pw) to model one session of the role A and one session
of the role B.

In the following, we consider the frame φ0 = new pw .new ñ.σ0 obtained after a normal
execution of one session this protocol. In other words, the attacker does not try to intercept,
modify, or inject some messages during this execution.

3. Write the substitution σ0, and the names ñ that represent such an execution. We are
interested in the following static equivalence (modulo the theory E you defined above) :

new ñ.σ0
?∼ new pw .new ñ.σ0

Does this static equivalence hold or not ? Justify your answer.

Hint : You could rely on the algorithm seen during the lectures.

4. Using the result obtained at the previous question, deduce whether φ0 is resistant to
dictionary attack against pw or not ? Justify your answer.

5. Now, we assume that the asymmetric cryptosystem that is used to implement this protocol
is which-key revealing, allowing an attacker to deduce if two ciphertexts were encrypted
under the same key. Propose a signature F+ and a set of equations E+ to reflect this
new attacker model. Is φ0 resistant to dictionary attacks against pw (considering the
signature F+ and the equational theory E+) ?

3

Exercise 1 : Constraint solving

1. Actually a is involved to send the first message and then only b is involved in this scenario
(in 2 different sessions). The agent b plays two instances of the role B (and only the
two first actions for the second instance). This role is made up of one input (message 1)
followed by one output (message 2), and then the reception of a last message (message 4).
If the message has the expected form, then the agent accepts the key he received during
this exchange. This constraint system encodes the secrecy of the key Kab as received by
the agent b who plays the role B.

2. We apply the substitution σ on C and we check that each rhs is indeed deducible from the
lhs.

Π2
nb

=


〈b, 〈nb, senc(〈a, ki〉, kbs)〉〉

〈nb, senc(〈a, ki〉, kbs)〉

nb

We have the following prooftrees :

a ni

〈a, ni〉
a

ki Π2
nb

〈ki, nb〉

〈a, 〈ki, nb〉〉

〈b, 〈n′b, senc(〈a, 〈ki, nb〉〉, kbs)〉〉

〈n′b, senc(〈a, 〈ki, nb〉〉, kbs)〉

senc(〈a, 〈ki, nb〉〉, kbs),

Π2
nb

ki

senc(nb, ki)

〈senc(〈a, 〈ki, nb〉〉, kbs), senc(nb, ki)〉

ki

The attack can be informally described as follows :

1.i I(A)→ B : A,Ni

2.i B → (S) : B,Nb, {A,Ni}Kbs

1.ii I(A)→ B : A, 〈Ki, Nb〉
2.ii B → (S) : B,N ′b, {A, 〈Ki, Nb〉}Kbs

4.i I(A)→ B : {A, 〈Ki, Nb〉}Kbs
, {Nb}Ki

3. Starting with C, and following the strategy suggesting in the question, we work on the
first constraint and apply Rf followed by R1. This leads to the constraint system C1 :

C1 =



T1
?
` x

T2
?
` 〈a, x′〉

T3
?
` 〈senc(〈a, 〈y, nb〉〉, kbs), senc(nb, y)〉

T3
?
` y

Then, since the first constraint is now solved, we work on the second one and we apply
again Rf followed by R1. This leads us to the system C2 :

C2 =



T1
?
` x

T2
?
` x′

T3
?
` 〈senc(〈a, 〈y, nb〉〉, kbs), senc(nb, y)〉

T3
?
` y

4

Then, we apply Rf on the third constraint and we obtain C3 :

C3 =



T1
?
` x

T2
?
` x′

T3
?
` senc(nb, y)

T3
?
` senc(〈a, 〈y, nb〉〉, kbs)

T3
?
` y

Again, the only option is to apply Rf on the third constraint and after applying R1 to get

rid of T3
?
` nb, we obtain C4 :

C4 =



T1
?
` x

T2
?
` x′

T3
?
` y

T3
?
` senc(〈a, 〈y, nb〉〉, kbs)

Then, on the fourth constraint, there are four possible options. We may apply :

(a) R2, and we obtain C41 (where σ = {x′ 7→ 〈y, nb〉}) ;

(b) Rf , and we obtain C42 ;

(c) R2, and we obtain C43 (where σ = {x 7→ 〈y, nb〉}) ;

(d) R3, and we obtain C44 (where σ = {x′ 7→ x})
We only develop the two first cases. Actually, after some steps, we C43 and C44 are reduced
to ⊥ (no solution).

C41 =



T1
?
` x

T2
?
` 〈y, nb〉

T3σ
?
` y

T3σ
?
` senc(〈a, 〈y, nb〉〉, kbs)

C42 =



T1
?
` x

T2
?
` x′

T3
?
` y

T3
?
` kbs

T3
?
` 〈a, 〈y, nb〉〉

Since, no rule can be applied on the first unsolved constraint of C42, we deduce that C42
has no solution. Then, we apply Rf on the second constraint of C41 followed by R1 on the
resulting constraint. We get C5 :

C5 =



T1
?
` x

T2
?
` y

T3σ
?
` y

T3σ
?
` senc(〈a, 〈y, nb〉〉, kbs)

Then, we may apply R1 on the two last constraints, and we obtain at the end

T1
?
` x ∧ T2

?
` y

Thus, any substitution such that x is instantiated by a term tx deducible from T1, y is
instantiated by a term ty deducible from T2{x 7→ tx}, and x′ is mapped to 〈ty, nb〉 is a
solution. These are the only solution of such a constaint system C.

5

4. The constraint system Ctag is as follows where T+
0 = T0 ∪ {c1, c2, c3, c4}.

Ctag =



T+
1

def
= T+

0 , 〈a, na〉
?
` 〈a, x〉

T+
2

def
= T+

1 , 〈b, 〈nb, senc(〈c1, 〈a, x〉〉, kbs)〉〉
?
` 〈a, x′〉

T+
3

def
= T+

2 , 〈b, 〈n′b, senc(〈c1, 〈a, y〉〉, kbs)〉〉
?
` 〈senc(〈c3, 〈a, 〈z, nb〉〉〉, kbs), senc(〈c4, nb〉, z)〉

T+
3

?
` y

Following the same strategy as the one described previously, we reach the system Ctag4

Ctag4 =



T+
1

?
` x

T+
2

?
` x′

T+
3

?
` y

T+
3

?
` senc(〈c3, 〈a, 〈y, nb〉〉〉, kbs)

The option of applying R2 is not possible anymore. The only possibility is to apply Rf , and
this leads to a constraint system that is not satisfiable. Hence, we conclude that Ctag is
not satisfiable. The presence of such tags improves the security of the protocol by avoiding
type confusion attacks as the one described in this exercice. This avoids confusion between
different ciphertexts that are used at different places in the protocol.

Exercise 2 : Blind signatures

1. Let T = {sign(blind(blind(m, r1), r2), k); r2; r1} and u = sign(m, k). We have that T ` u
and any proof of this fact used the term sign(blind(m, r1), k) as an intermediate node. The
term sign(blind(m, r1), k) is not a subterm of T ∪ {u}.

2. We consider the proof trees Π1 and Π2 below :

Π1 =


blind(m, r) r

m k

sign(m, k)

Π2 =


blind(m, r) k

sign(blind(m, r), k) r

sign(m, k)

3. Given a prooftree Π, we define its size as its number of nodes plus the number of instances
of the “special” rule that occurs in it (e.g. size(Π1) = 5 whereas size(Π2) = 6).

Let T be a set of terms, and u be a term such that T ` u. Let Π be a prooftree witnessing
this fact whose size is minimal. We show by induction on Π that Π only contains terms
in stext(T ∪ {u}). Moreover, if Π is reduced to a leaf or ends with a “decomposition rule”
(i.e. one of the two last rules), then Π only contains terms in stext(T). We do the proof
by case analysis on the last rule of the prooftree.
– Π is reduced to a leaf : the result trivially holds.
– Π ends with an instance of the first inference rule : u = blind(u1, u2) and we denote Π1

and Π2 the two direct sub-prooftrees of Π. By induction hypothesis, we have that Π1

(resp. Π2) only contains terms in stext(T ∪ {u1}) (resp. stext(T ∪ {u2})), and thus Π
only contains terms in stext(T ∪ {u}) since u = blind(u1, u2) and u1, u2 ∈ stext(u). The
case of the second inference rule is similar.

– Π ends with an instance of the third inference rule with blind(u, v) and v as hypotheses.
We denote by Π1 and Π2 the two direct sub-prooftrees of Π. By minimality, we know that
Π1 is either reduced to a leaf or ends with an instance of third rule. Thus, by induction

6

hypothesis, we have that Π1 only contains terms in stext(T), and thus blind(u, v) ∈
stext(T). By induction hypothesis on Π2, we deduce that Π2 only contains terms in
stext(T ∪ {v}) ⊆ stext(T) (since blind(u, v) ∈ stext(T)). We have also that u ∈ stext(T),
and this allows us to conclude that Π only contains stext(T).

– Π ends with an instance of the fourth rule with sign(blind(u1, v), u2) and u2 as hypo-
theses. We denote by Π1 and Π2 the two direct sub-prooftrees of Π. We have that Π1

is either reduced to a leaf, or ends with an instance of the 2nd, 3rd, or 4th inference
rule. Actually, thanks to minimality, an instance of the 2nd rule is not possible (indeed
a smaller proof will be possible in this case). Thus, we have that Π1 only contains terms
in stext(T ∪{sign(blind(u1, v), u2)}), thus v and u = sign(u1, u2) are in stext(T), and this
allows us to conclude that Π only contains terms in stext(T).

Of course, this result allows us to conclude.

4. The saturation algorithm seen during the lectures applies. Correction comes form the fact
that we only add deducible terms in the saturation set. Completeness is derived from the
locality result. Regarding termination, we have to ensure that the set stext(T ∪ {u}) is
finite. We have that |stext(t)| ≤ |t|+ |t|blind (where |t| is the number of symbols occurring
in t and |t|blind is the number of occurrence of the symbols blind in t). This allows us to
conclude.

5. Regarding termination, the same measure as the one seen during the lectures allows us to
conclude (#vars(C),Σu∈rhs(C)|u|) with a lexicographical order. Regarding correctness, the
same arguments also apply. In particular, correcteness for the rule R1 can be established
as during the lectures. However, completeness is wrong :

m, r
?
` x sign(x, k), r

?
` sign(m, k) with θ = {x 7→ blind(m, r)}.

There is no simplication rule that we can applied to progress towards this solution and
the system is not in solved form.

Exercise 3 : Encrypted Key Exchange protocol

1. We consider the signature F = {senc/2, sdec/2, aenc/2, adec/2, pk/1〈 〉/2, proj1/1, proj2/1},
and the equational theory generated by the following equations :

sdec(senc(x, y), y) = x adec(aenc(x, y), y) = x proj1(〈x, y〉) = x proj2(〈x, y〉) = y

Note : we may consider in addition the equation senc(sdec(x, y), y) = x.

2. PA(pw) = new sk .out(c, senc(pk(sk), pw)).in(c, x1).
let xR = adec(sdec(x1, pw), sk) in
new na.out(c, senc(na, xR)).in(c, x2).
if proj1(sdec(x2, xR)) = na then out(c, senc(proj2(sdec(x2, xR)), xR)).

PB(pw) = in(c, y1).let ypub = sdec(y1, pw) in
new r.out(c, senc(aenc(r, ypub), pw)).in(c, y2).
let yna = sdec(y2, r) in new nb.out(c, senc(〈na, nb〉, r))
in(c, y3).if y3 = senc(nb, r) then 0.

3. We have that

φ0 = newpw .newsk , r, na, nb.{x1 7→ senc(pk(sk), pw); x2 7→ senc(aenc(r, pk(sk)), pw);
x3 7→ senc(na, r); x4 7→ senc(〈na, nb〉, r); x5 7→ senc(nb, r)}

Any test that is satisfied by new pw .new ñ.σ0 will be also true in new ñ.σ0. Thus, to check
whether static equivalence holds between these two frames, we will focus on computing

7

the sets sat(φ) and Eq(φ) when φ = new ñ.σ0. Then, we will check whether all these tests
are also valid in new pw .new ñ.σ0.

We list below the elements in sat(φ) together with their associated recipe, and the rule
applied according to the definition of frame saturation.

senc(pk(sk), pw) x1 (1)
senc(aenc(r, pk(sk)), pw) x2 (1)
senc(na, r) x3 (1)
senc(〈na, nb〉, r) x4 (1)
senc(nb, r) x5 (1)
pw pw (3)
pk(sk) sdec(x1, pw) (3)
aenc(r, pk(sk)) sdec(x2, pw) (3)

In case, we have the equation senc(sdec(x, y), y) = x in our model, all the equalities that
we can infer are actually trivial, and thus static equivalence holds. Otherwise, there is a
test senc(sdec(x1, pw), pw) = x1 which holds in φ, and does not hold in new, pw .φ (note
that we have first to rename pw with pw ′).

4. Actually, we have newñ.σ ∼ new pw .new ñ.σ if, and only if, new pw .new ñ.σ is resistant to
dictionary attack against pw with the definition seen during the lectures, i.e. if and only
if :

new pw .newñ.(σ ∪ {x 7→ pw}) ∼ new pw .new pw ′.new ñ.(σ ∪ {x 7→ pw ′})

We show the following equivalence :

new ñ.σ ∼ new pw .new ñ.σ

if, and only if,

new ñ.σ ∼ new pw ′.new ñ.(σ{pw 7→ pw ′}) by α-conversion.

if, and only if,

new pw , new ñ.(σ ∪ {x 7→ pw}) ∼ new pw .new pw ′.new ñ.(σ{pw 7→ pw ′} ∪ {x 7→ pw})

Note that for this equivalence, it is easy to see that any test that distinsguishes the two
frames can be transformed in another test that distinsguishes the two resulting frames
(and conversely) by replacing the use of pw with x (or the converse).

Lastly, this equivalence holds if, and only if,

new pw , newñ.(σ ∪ {x 7→ pw}) ∼ new pw ′.new pw .newñ.(σ ∪ {x 7→ pw ′}) by α-conversion.

Hence we conclude that φ0 is resistant to dictionary attacks against pw if, and only if, the
static equivalence studied at the previous question holds.

5. We consider two additional function symbol samekey/2 and ok/0, as well as, the equation
samekey(senc(x1, y), senc(x2, y)) = ok. Clearly, φ0 is not resistant against dictionary attack

on pw . It suffices to consider the test samekey(x1, senc(n, x))
?
= ok. This test holds on the

frame new pw .new ñ.(σ∪{x 7→ pw}) but does not hold in new pw .new pw ′.new ñ.(σ∪{x 7→
pw ′}).

8

