
Cryptographic protocols: formal and computational proofs

First part: symbolic verification and computational soundness

November 30. Duration 3h.
All documents are allowed. Eclectronic devices are forbidden.

The length of a solution is indicated for each question. There might be valid solutions
that are longer (or shorter). The bonus questions are not evaluated in this exam.

In what follows we consider asymmetric encryption and pairing, together with the rewrite
rules (resp. the inference rules) that have been seen during the lectures.

We consider the following variant of the Needham-Schroeder-Lowe protocol, which is in-
formally described by:

A→ B : aenc(〈A,NA〉 , B)
B → A : aenc(〈NA, 〈NB, B〉〉 , A)
A→ B : aenc(NB, B)

Formally, we consider the following process for the role B, which is parametrized by a and b:

PB(b, a) = νnB. in(x). let x1 = adec(x, sk(b)) in
let x2 = π1(x1) in let x3 = π2(x1) in
if x2 = a then out(aenc(〈x3, 〈nB, b〉〉 , a)) .0

Equivalently in a small constructor-based calculus, the process would be written

PB(b, a) = νnB. in(aenc(〈a, x3〉 , b)). out(aenc(〈x3, 〈nB, b〉〉 , a)) .0

1. [5 lines] Propose similar formalizations for the role A, parametrized by a and b

2. Consider the scenario P = out(a).out(b).out(c).out(sk(c)).0 ‖ PB(b, a) ‖ PB(a, c). We
consider executions of P , in which the output actions are executed first.

(a) [6 lines] Give the two deducibility constraint systems C1, C2, corresponding respec-
tively to the case where PB(b, a) moves first (until the end) and then PB(a, c)
moves until the end (this is C1) and to the case where PB(a, c) moves first and
then PB(b, a) (This is C2).

(b) [26 lines] Solve the deducibility constraint system C1, using the simplification rules
of the lectures. (You may notice that the rules can always be applied to the first
unsolved deducibility constraint, according to the completeness proof. This avoids
unnecessary branching).
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(c) [14 lines] Find all attacks on the weak secrecy of the nonce nB, generated in the
process PB(b, a) in the scenario P , when the input action of PB(b, a) is executed
before the input action of PB(a, c).

(d) [2 lines] What can we conclude on the protocol ?

3. We consider again the process P .

(a) [6 lines] Compute the Horn clauses associated with P

(b) [18 lines] Show how the saturation process finds the attack of the question 2c

4. In order to fix the previous problems, we propose to introduce a length test. Formally,
we introduce a new function symbol L whose interpretation ` is given by:

`(a) = 1 if a is a name `(〈u, v〉) = `(u) + `(v) + 1 `(aenc(u, v)) = `(u) + `(v)

We also assume that the attacker has at least one name (for instance, any scenario first
outputs a name), so that he can construct messages of arbitrary positive length.

Now, each time a process receives a message, it checks that it has the expected length.
More precisely, we consider a small process algebra defined as follows:

• Simple processes are given by the grammar:

SP ::= 0
| in(CTerm).SP
| out(CTerm).SP
| if Cond then SP else SP

And the first occurrence of a variable in a simple process is always in an input
message.

• CTerm is defined (as usual) as the set of terms constructed using pairing, encryption,
names and variables (no symbol L).

• Cond is a Boolean combination of atomic formulas of the form L(ui) = ni where
ui is a CTerm and ni is a positive integer. If ui is a message (a ground CTerm), the
atomic condition L(ui) = ni is valid if `(ui) = ni. This is extended to Boolean
combinations of ground atomic conditions.

Processes are defined as (νn1, . . . , νnk).P1‖ · · · ‖Pm where P1, . . . , Pm are simple pro-
cesses.

The operational semantics is defined as expected (‖ is associative and commutative):

(((νn)in(u) · P‖Q,M)
in(uσ)−−−−→ ((νn)Pσ‖Q,M) If (νn)M ` uσ and uσ is a message

((νn)out(u) · P‖Q,M)
out(u)−−−−→ ((νnP‖Q,M ∪ {u})

(νn) if C then P else Q‖R,M) → ((νn)P‖R,M) If C is valid
(νn) if C then P else Q‖R,M) → ((νn)Q‖R,M) If ¬C is valid

(a) [3 lines] Propose a modification P ′B(b, a) of the process PB(b, a) in this new process
calculus, in which the expected length of the input messages are checked.
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(b) [34 lines] Propose an extension of the deducibility constraints and a symbolic op-
erational semantics [[·]] of the above process calculus, that maps every process P
to a finite set of pairs (tS , D) where tS is a symbolic trace and D is a deducibility
constraint in such a way that

t is a trace of P iff there is (tS , D) ∈ [[P ]] and a substitution σ such
that σ is a solution of D and tSσ = t

(c) [30 lines] Assuming that a (black box) linear arithmetic constraint solving proce-
dure A is available (given a Boolean combination of linear equations, A returns 1 if
it is satisfiable and 0 otherwise), design an extension of the deducibility constraint
solving procedure to the constraints of the previous question. Show that it allows
to decide the existence of an attack on weak secrecy.

(d) [27 lines] Using this new formalism, prove that there is no attack on the weak
secrecy of nB in the scenario P ′, obtained by replacing PB with P ′B in P .

(e) Bonus question: How would you extend the Horn clauses formalism in order to
take the length tests into account ?

5. A name n is strongly secret in a frame φ = νnνm.s1, . . . , sk if, for a name n′, the two
frames νn, νn′νm.s1, . . . , sk, n

′ and νn, νn′, νm.s′1, . . . , s
′
k, n
′ are statically equivalent,

where s′i is the term si, in which n is replaced with n′.

(a) [4 lines] Give an example of a frame φ such that n is weakly secret (φ 6` n) and n
is not strongly secret.

(b) [6 lines] Conversely, show that, if n is strongly secret in φ, then it is weakly secret
in φ

(c) Bonus question: A name n is strongly secret in a process P , if, for any trace of
P , n is strongly secret in the final frame of the trace.

Is nB strongly secret in the process P ′ of the question 4d ?
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