
Cryptographic protocols: formal and computational proofs

First part: symbolic verification and computational soundness

November 30. Duration 3h.
All documents are allowed. Eclectronic devices are forbidden.

The length of a solution is indicated for each question. There might be valid solutions
that are longer (or shorter). The bonus questions are not evaluated in this exam.

In what follows we consider asymmetric encryption and pairing, together with the rewrite
rules (resp. the inference rules) that have been seen during the lectures.

We consider the following variant of the Needham-Schroeder-Lowe protocol, which is in-
formally described by:

A→ B : aenc(〈A,NA〉 , B)
B → A : aenc(〈NA, 〈NB, B〉〉 , A)
A→ B : aenc(NB, B)

Formally, we consider the following process for the role B, which is parametrized by a and b:

PB(b, a) = νnB. in(x). let x1 = adec(x, sk(b)) in
let x2 = π1(x1) in let x3 = π2(x1) in
if x2 = a then out(aenc(〈x3, 〈nB, b〉〉 , a)) .0

Equivalently in a small constructor-based calculus, the process would be written

PB(b, a) = νnB. in(aenc(〈a, x3〉 , b)). out(aenc(〈x3, 〈nB, b〉〉 , a)) .0

1. [5 lines] Propose similar formalizations for the role A, parametrized by a and b

2. Consider the scenario P = out(a).out(b).out(c).out(sk(c)).0 ‖ PB(b, a) ‖ PB(a, c). We
consider executions of P , in which the output actions are executed first.

(a) [6 lines] Give the two deducibility constraint systems C1, C2, corresponding respec-
tively to the case where PB(b, a) moves first (until the end) and then PB(a, c)
moves until the end (this is C1) and to the case where PB(a, c) moves first and
then PB(b, a) (This is C2).

(b) [26 lines] Solve the deducibility constraint system C1, using the simplification rules
of the lectures. (You may notice that the rules can always be applied to the first
unsolved deducibility constraint, according to the completeness proof. This avoids
unnecessary branching).

1

(c) [14 lines] Find all attacks on the weak secrecy of the nonce nB, generated in the
process PB(b, a) in the scenario P , when the input action of PB(b, a) is executed
before the input action of PB(a, c).

(d) [2 lines] What can we conclude on the protocol ?

3. We consider again the process P .

(a) [6 lines] Compute the Horn clauses associated with P

(b) [18 lines] Show how the saturation process finds the attack of the question 2c

4. In order to fix the previous problems, we propose to introduce a length test. Formally,
we introduce a new function symbol L whose interpretation ` is given by:

`(a) = 1 if a is a name `(〈u, v〉) = `(u) + `(v) + 1 `(aenc(u, v)) = `(u) + `(v)

We also assume that the attacker has at least one name (for instance, any scenario first
outputs a name), so that he can construct messages of arbitrary positive length.

Now, each time a process receives a message, it checks that it has the expected length.
More precisely, we consider a small process algebra defined as follows:

• Simple processes are given by the grammar:

SP ::= 0
| in(CTerm).SP
| out(CTerm).SP
| if Cond then SP else SP

And the first occurrence of a variable in a simple process is always in an input
message.

• CTerm is defined (as usual) as the set of terms constructed using pairing, encryption,
names and variables (no symbol L).

• Cond is a Boolean combination of atomic formulas of the form L(ui) = ni where
ui is a CTerm and ni is a positive integer. If ui is a message (a ground CTerm), the
atomic condition L(ui) = ni is valid if `(ui) = ni. This is extended to Boolean
combinations of ground atomic conditions.

Processes are defined as (νn1, . . . , νnk).P1‖ · · · ‖Pm where P1, . . . , Pm are simple pro-
cesses.

The operational semantics is defined as expected (‖ is associative and commutative):

(((νn)in(u) · P‖Q,M)
in(uσ)−−−−→ ((νn)Pσ‖Q,M) If (νn)M ` uσ and uσ is a message

((νn)out(u) · P‖Q,M)
out(u)−−−−→ ((νnP‖Q,M ∪ {u})

(νn) if C then P else Q‖R,M) → ((νn)P‖R,M) If C is valid
(νn) if C then P else Q‖R,M) → ((νn)Q‖R,M) If ¬C is valid

(a) [3 lines] Propose a modification P ′B(b, a) of the process PB(b, a) in this new process
calculus, in which the expected length of the input messages are checked.

2

(b) [34 lines] Propose an extension of the deducibility constraints and a symbolic op-
erational semantics [[·]] of the above process calculus, that maps every process P
to a finite set of pairs (tS , D) where tS is a symbolic trace and D is a deducibility
constraint in such a way that

t is a trace of P iff there is (tS , D) ∈ [[P]] and a substitution σ such
that σ is a solution of D and tSσ = t

(c) [30 lines] Assuming that a (black box) linear arithmetic constraint solving proce-
dure A is available (given a Boolean combination of linear equations, A returns 1 if
it is satisfiable and 0 otherwise), design an extension of the deducibility constraint
solving procedure to the constraints of the previous question. Show that it allows
to decide the existence of an attack on weak secrecy.

(d) [27 lines] Using this new formalism, prove that there is no attack on the weak
secrecy of nB in the scenario P ′, obtained by replacing PB with P ′B in P .

(e) Bonus question: How would you extend the Horn clauses formalism in order to
take the length tests into account ?

5. A name n is strongly secret in a frame φ = νnνm.s1, . . . , sk if, for a name n′, the two
frames νn, νn′νm.s1, . . . , sk, n

′ and νn, νn′, νm.s′1, . . . , s
′
k, n
′ are statically equivalent,

where s′i is the term si, in which n is replaced with n′.

(a) [4 lines] Give an example of a frame φ such that n is weakly secret (φ 6` n) and n
is not strongly secret.

(b) [6 lines] Conversely, show that, if n is strongly secret in φ, then it is weakly secret
in φ

(c) Bonus question: A name n is strongly secret in a process P , if, for any trace of
P , n is strongly secret in the final frame of the trace.

Is nB strongly secret in the process P ′ of the question 4d ?

3

Solution
1.

PA(a, b) = νnA. out(aenc(〈a, nA〉 , b). in(y).
let y1 = adec(y, sk(a)) in let y2 = π1(y1) in
let y3 = π2(y1) in let y4 = π1(y3) in let y5 = π2(y3) in
if y2 = nA ∧ y5 = b then out(aenc(y4, b)) · 0

PA(a, b) = νnA. out(aenc(〈a, nA〉 , b). in(aenc(〈nA, 〈x, b〉〉 , a)). out(aenc(x, b)). 0

2. (a) We rename the name nB generated in PB(a, c) into n′B (names are pushed in front
of the process).

When PB(a, b) moves first:

a, b, c, sk(c)
?
` aenc(〈a, x3〉 , b)

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` aenc(〈c, y3〉 , a)

When PB(a, c) moves first:

a, b, c, sk(c)
?
` aenc(〈c, y3〉 , a)

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` aenc(〈a, x3〉 , b)

(b) In order to avoid branching too much, we may first observe that it is possible
to apply the rules to the constraints in increasing order of the left members of
deducibility constraints, without breaking the completeness proof.

There is then only one possible rule that applies to the first constraint in the
system: R5. This yields the system

C11 =


a, b, c, sk(c)

?
` b

a, b, c, sk(c)
?
` 〈a, x3〉

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` aenc(〈c, y3〉 , a)

We may remove the first constraint, according to R1. Then only R5 can be applied
to the second constraint, that yields:

C12 =


a, b, c, sk(c)

?
` a

a, b, c, sk(c)
?
` x3

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` aenc(〈c, y3〉 , a)

Again, the first constraint can be removed in both cases and (in both situations)
the second constraint is solved. We may then apply either R5 or R2 on the last
constraint in both situations. This yields respectively:

4

C13 =


a, b, c, sk(c)

?
` x3

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` a

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` 〈c, y3〉

C14 =


a, b, c, sk(c)

?
` c

a, b, c, sk(c), aenc(〈c, 〈nB, b〉〉 , a)
?
` aenc(〈c, 〈nB, b〉〉 , a)

x3 = c ∧ y3 = 〈nB, b〉

After two more steps, we get 2 solved forms in each case:

C15 =

 a, b, c, sk(c)
?
` x3

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` y3

C16 =
{
x3 = c ∧ y3 = 〈nB, b〉

(c) In order to find all attacks on the weak secrecy of nB, we add in both cases the
constraint

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a), aenc(
〈
y3,
〈
n′B, a

〉〉
, c)

?
` nB

• Together with C15, this yields a failure (no solution) since we cannot reach a
solved form.

• Together with C16, this yields x3 = c ∧ y3 = 〈nB, b〉 and

a, b, c, sk(c), aenc(〈c, 〈nB, b〉〉 , a), aenc(
〈
〈nB, b〉 ,

〈
n′B, a

〉〉
, c)

?
` nB

which simplifies to > using the rule R1, since there is a proof

aenc(
〈
〈nB, b〉 ,

〈
n′B, a

〉〉
, c) sk(c)〈

〈nB, b〉 ,
〈
n′B, a

〉〉
〈nB, b〉

nB

In the end, there is one (and only one) attack in this scenario, that corresponds to
playing PB(b, a) first and using the bindings x3 = c ∧ y3 = 〈nB, b〉.

(d) Since nB is generated by a honest agent, and its target is a honest agent, we can
conclude that the protocol is flawed.

5

3. (a)

(1) → att(a)

(2) → att(b)

(3) → att(c)

(4) → att(sk(c))

(5) att(aenc(〈a, x3〉 , b) → att(aenc(〈x3, 〈nb, b〉〉 , a))

(6) att(aenc(〈c, y3〉 , a) → att(aenc(〈y3, 〈n′b, a〉〉 , c)

(b) The attacker’s rules:

(7) att(x), att(y) → att(〈x, y〉)
(8) att(x), att(y) → att(aenc(x, y))

(9) att(〈x, y〉) → att(x)

(10) att(〈x, y〉) → att(y)

(11) att(aenc(x, y)), att(sk(y)) → att(x)

Selected litterals are underlined. We obtain successively:

(4) + (11) = (16) att(aenc(x, c)) → att(x)

(5) + (8) = (12) att(〈a, x3〉), att(b) → att(aenc(〈x3, 〈nb, b〉〉 , a))

(12) + (7) = (13) att(a), att(x3), att(b) → att(aenc(〈x3, 〈nb, b〉〉 , a))

(13) + (1) = (14) att(x3), att(b) → att(aenc(〈x3, 〈nb, b〉〉 , a))

(14) + (2) = (15) att(x3) → att(aenc(〈x3, 〈nb, b〉〉 , a))

(15) subsumes (13) and (14), that are deleted. (6) +(15) yields

(17) att(c) → att(aenc(
〈
〈nb, b〉 ,

〈
n′b, a

〉〉
, c))

And then successively:

(17) + (3) = (18) → att(aenc(〈〈nb, b〉 , 〈n′b, a〉〉 , c))
(16) + (18) = (19) → att(〈〈nb, b〉 , 〈n′b, a〉〉)
(10) + (19) = (20) → att(〈nb, b〉)
(10) + (20) = (21) → att(nb)

4. (a)

PB(b, a) = νnB. in(aenc(〈a, x3〉 , b)). if L(x3) = 1 then out(aenc(〈x3, 〈nB, b〉〉 , a)) .0

(b) Constraint systems consist in conjunctions of deducibility constraints and Boolean
combinations of constraints of the form L(ui) = ni. A solution of a such a con-
straint system is a solution σ of the deducibility constraint part such that, when
applied to the length constraint part, we get a valid condition.

Assume a process P = (νn1, . . . , νnk).(P1‖ · · · ‖Pm). We omit νn1, . . . , nk that are
assumed as parameters in what follows. We define [[P]] = [[P1‖ · · · ‖Pn]](∅,>, ∅) and

[[0]](t,H, S) = {(t, S)}.
[[P1‖ · · · ‖Pm]](t,H, S) =

⋃
i,Pi 6=0[[P1‖ · · ·Pi−1‖Pi+1‖ · · · ‖Pm : Pi]](t,H, S)

6

[[Q : in(u).P]](t,H, S) = [[P‖Q]](t · in(u), H, S ∪ {H
?
` u})

[[Q : out(u).P]](t,H, S) = [[P‖Q]](t · out(u), H ∪ {u}, S)
[[Q : if C then P1 else P2]](t,H, S) = [[P1‖Q]](t,H, S ∪ {C}) ∪ [[P2‖Q]](t,H, S ∪ {¬C})

By induction on n, If
P

α1−→ · · · αn−−→ P ′

Then [[P ′]](tS , H, S) ⊆ [[P]] for some tS , H, S such that there is a substitution σ
satisfying tSσ = α1 · · ·αn, Hσ = Hn where Hn is the sequence of output messages
in α1, . . . , αn, and σ is a solution of S. In the base case, both tS and t = α1 · · ·αn
are empty. Otherwise, we investigate all possible moves of P ′. For instance if

P ′
in(u)−−−→ P ′′, then P ′ = in(v).Q‖R, Hn ` u, u = vσ1, P

′′ = Qσ1‖R. (This can be

detailed)

Conversely, if [[P ′]](t,H, S) ⊆ [[P]] and σ is a solution of S, then there is a P ′′ (not

necessarily P ′) such that P
tσ−→
∗

P ′′. (This can be detailed).

(c) Let (D,C) be a constraint system that consists of a deducibility constraint part
D and a length constraint part C. First, we solve D using the procedure of the
lectures: we compute a finite set of deducibility constraints D1, . . . , Dn such that

• σ is a solution of D iff σ is a solution of some Di

• Every Di is a solved form, i.e. consists of a substitution σi and a conjunction

of deducibility constraints Ti
?
` xi where xi is not in the domain of σ.

If n = 0, then (D,C) is unsolvable. Otherwise, for each Di, we consider the
constraint Ci = Cσi. Equations are simplified according to the semantics of L:

L(〈u, v〉) = n → L(u) + L(v) = n− 1 If n ≥ 3
L(〈u, v〉) = n → ⊥ If n < 3

L(aenc(u, v)) = n → L(u) + L(v) = n
L(a) = 1 → > If a is a name
L(a) = n → ⊥ If a is a name and n > 1

These rules are obviously correct and terminating and the simplified formulas are
Boolean combinations of formulas of the form L(x1) + . . . + L(xn) = m where
x1, . . . , xn are (not necessarily distinct) variables.

Now, assign, for each variable xi an integer variable zi (its length). The simplified
constraint Ci can be seen as a linear constraint C ′i over the variables zi. Using
the black box arithmetic constraint solving algorithm, we decide whether C ′i has
a solution. If it does not, (Di, Ci) is removed. Otherwise, we keep (Di, Ci) as a
solved form of our constraint systems. We claim that such a solved form always
has a solution: given an assignment θ of the variables zi that satisfies Ci, we can
find an assignment σ of the variables xi such that xiσ can be constructed by the
attacker and L(xiσ) = zi.

This yields therefore a decision procedure for the weak secrecy of s

i. Compute the symbolic semantics [[P]] of the process P

7

ii. For each (t,D) ∈ [[P]], let M be the set of output messages in t. Add the
constraint M ` s.

iii. If one of the resulting constraint has a solution, then there is an attack. Oth-
erwise s is weakly secure.

(d) First, we may always assume that the output actions are executed first, when they
are enabled: if there is an attack on a weak secrecy, then there is an attack for
such an interleaving since output actions only give more power to the attacker.

In the question 2d, we considered the case where the input action of PB(b, a) was
performed before the input action of PB(a, c). We now compute the constraint
corresponding to the other ordering of the input actions. This yields successively
the following constraint systems (using teh same strategy as in the question 2d):
C21 R5 C22 R1 C

′
22, C

′
22 R5 C23, C

′
22 R2 C24 and C23 ∗R1,R5 C25, C24 ∗R1

C26.

C21 =


a, b, c, sk(c)

?
` a

a, b, c, sk(c)
?
` 〈c, y3〉

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` aenc(〈a, x3〉 , b)

C22 =


a, b, c, sk(c)

?
` c

a, b, c, sk(c)
?
` y3

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` aenc(〈a, x3〉 , b)

C23 =


a, b, c, sk(c)

?
` y3

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` b

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` 〈a, x3〉

C24 =


a, b, c, sk(c)

?
` a

a, b, c, sk(c), aenc(〈a, 〈n′B, a〉〉 , c)
?
` aenc(〈a, 〈n′B, a〉〉 , b)

y3 = a ∧ x3 = 〈n′B, a〉

C25 =

 a, b, c, sk(c)
?
` y3

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` x3

C26 =
{
y3 = a ∧ x3 = 〈n′B, a〉

In the end C25 and C26 are the two solved forms corresponding to this interleaving
of actions.

We only have to consider the solved forms computed in the question 2d and the
above solved forms, together with the new constraints.

8

Together with the length constraints, this yields

C ′15 =


a, b, c, sk(c)

?
` x3

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a)
?
` y3

L(x3) = 1 ∧ L(y3) = 1

C ′16 =
{
x3 = c ∧ y3 = 〈nB, b〉 ∧ L(c) = 1 ∧ L(〈nB, b〉) = 1

C ′25 =


a, b, c, sk(c)

?
` y3

a, b, c, sk(c), aenc(〈y3, 〈n′B, a〉〉 , c)
?
` x3

L(x3) = 1 ∧ L(y3) = 1

C ′26 =
{
y3 = a ∧ x3 = 〈n′B, a〉 ∧ L(〈n′B, a〉) = 1 ∧ L(a) = 1

Now, C ′16 and C ′26 become unsatisfiable and are removed: there are only two
symbolic traces that correspond to C ′15 and C ′25. If we add now

a, b, c, sk(c), aenc(〈x3, 〈nB, b〉〉 , a), aenc(
〈
y3,
〈
n′B, a

〉〉
, c)

?
` nB

to the constraints, both become unsatisfiable since there is no rule that can be
applied to this last constraint.

It follows that the weak secrecy of nB is preserved in this scenario.

5. (a) Consider φ = νn.νa.a, aenc(n, a). n is weakly secret: there is no local proof of n
from the two assumptions. νn.νa.νn′.a, aenc(n, a), n′ 6∼ νn.νa.νn′.a, aenc(n′, a), n′:
consider the two recipes C1 = x2 and C2 = aenc(x3, x1). C1φ1 ↓6= C2φ1 ↓, while
C1φ2 ↓= C2φ2 ↓.

(b) Assume φ ` n. Then there is a recipe C1 such that C1φ ↓= n. If we let φ′ be
the frame, in which n is replaced with n′, then C1φ

′ ↓= n′ (this can be proved
by a simple induction on the number of rewriting steps: there is no rewrite rule
that depends on a name). Consider then the two recipes: C1 and C2 = xk+1. If
φ1 = νn′.φ, n′ and φ′1 = νn′.φ′, n′, then C1φ1 ↓= n 6= C2φ ↓= n′ while C1φ

′
1 ↓=

n′ = C2φ2 ↓. This prove the contrapositive of the question.

9

