
R1 C ∧ T
?
⊢ u  C if T ∪ {x | (T ′

?
⊢ x) ∈ C, T ′ ( T}⊢u

R2 C ∧ T
?
⊢ u  Cσ ∧ Tσ

?
⊢ uσ ∧ t = u if t ∈ St(T ), σ = mgu(t, u)

t 6= u, t, u not variables

R3 C ∧ T
?
⊢ u  Cσ ∧ Tσ

?
⊢ uσ ∧ t1 = t2 if t1, t2 ∈ St(T ), σ = mgu(t1, t2)

t1 6= t2, t1, t2 not variables

R′

3 C ∧ T
?
⊢ u  Cσ ∧ Tσ

?
⊢ uσ ∧ t2 = pk(t3) if {t1}

p
t2

, sk(t3) ∈ St(T ),
σ = mgu(t2, pk(t3)), t2 6= pk(t3),
t2 or t3 (or both) is a variable

R4 C ∧ T
?
⊢ u  ⊥ if V(T, u) = ∅ and T 6⊢ u

Rf C ∧ T
?
⊢ f(u, v)  C ∧ T

?
⊢ u ∧ T

?
⊢ v for f 6= sk( )

Figure 2: Simplification rules.

3.2 Constraint Simplification

We describe here a non-deterministic simplification procedure. It can be simplified in many
respects, but we will see that the problem of deciding whether a constraint system has at
least one solution is NP-complete anyway.

Many parts of this section, including the set of rules, is borrowed from [?].
σ = mgu(t, u) is a most general unifier of t, u, such that V(tσ, uσ) ⊆ V(t, u). We also use

two properties of the unification algorithm, that we assume here: if t 6= u and σ = mgu(t, u)
then

1. V(tσ, uσ) is strictly included in V(t, u).

2. St(tσ) ∪ St(uσ) = St(t)σ ∪ St(u)σ.

The second property implies in particular (for a suitable representation of terms) that
|tσ, uσ| ≤ |t, u|: the number of distinct subterms of tσ, uσ is smaller than the number of
distinct subterms in t, u.

Example 11 t = f(x, g(x)), u = f(f(y, z), g(f(g(x′), g(y′)))).
σ = mgu(t, u) = {x 7→ f(g(x′), g(y′)); y 7→ g(x′); z 7→ g(y′)}.

St(t, u) = { x, y, z, x′, y′, g(x), f(y, z), g(x′), g(y′), f(x, g(x)), f(g(x′), g(y′)),
g(f(g(x′), g(y′))), f(f(y, z), g(f(g(x′), g(y′))))}

there are 13 elements.

St(tσ, uσ) = { x′, y′, g(x′), g(y′), f(g(x′), g(y′)), g(f(g(x′), g(y′))),
f(f(g(x′), g(y′)), g(f(g(x′), g(y′))))}

there are 7 elements.

18



Lemma 3.3 The rules of figure 2 are correct: any deducibility constraint system C is trans-
formed in a deducibility constraint system C ′ such that any solution σ of C ′ is also a solution
of C.

Proof: Let C be a deduction constraint, C =
∧

i(Ti

?
⊢ ui) and C  C ′. Since Ti ⊆ Ti+1

implies Tiσ ⊆ Ti+1σ, C ′ satisfies the first point of the definition of deduction constraints.
We show that C ′ also satisfies the second point of the definition of deduction constraints.

Let (T ′

?
⊢ u′) ∈ C ′ and x ∈ V(T ′). We have to prove that T ′

x exists and T ′

x ( T ′. We
distinguish cases, depending on which simplification rule is applied:

• If the rule R1 is applied, eliminating the constraint T
?
⊢ u. Then C ′ = C \ {T

?
⊢ u}.

If Tx 6= T then T ′

x = Tx (and thus T ′

x exists and T ′

x ( T ′). Suppose that Tx = T .

Then there is (T
?
⊢ u′′) ∈ C such that x ∈ V(u′′). If u 6= u′′ then again T ′

x = Tx (since

(T ′

x

?
⊢ u′′) ∈ C ′). Finally, suppose that u = u′′. By the minimality of T , it follows that

x /∈ V(T ) and x /∈ {y | (T ′′

?
⊢ y) ∈ C, T ′′ ( T}. Since x ∈ V(u), we use the following

lemma:

Lemma 3.4 If T ⊢ u then V(u) ⊆ V(T ).

whose proof is left to the reader. We conclude T ∪ {y | (T ′′

?
⊢ y) ∈ C, T ′′ ( T} 6⊢ u,

which contradicts the applicability of rule R1.

• If one of the rules R2, R3 or R′

3 is applied, then, for each constraint (T ′′

?
⊢ u′′) ∈ C ′, there

is a constraint (T
?
⊢ u) ∈ C such that Tσ = T ′′ and uσ = u′′. Consider (T

?
⊢ u) ∈ C

such that Tσ = T ′ and uσ = u′.

If x is not introduced by σ, then x ∈ V(T ). Then Tx exists and Tx ( T . Thus Txσ ⊆ Tσ.
If Txσ = Tσ, then x ∈ V(Tx), which contradicts the minimality of Tx. Thus Txσ ( Tσ.
We also have that {T ′′σ | (T ′′


 u′′) ∈ C, x ∈ V(u′′)} ⊆ {T ′′σ | (T ′′σ 
 u′′σ) ∈ C ′, x ∈
V(u′′σ)}, since, for any term u′′, if x ∈ V(u′′), then x ∈ V(u′′σ). It follows that T ′

x exists
and T ′

x ⊆ Txσ. Hence T ′

x ( T ′.

Otherwise, assume that x is introduced by σ: ∃y ∈ V(T ) such that x ∈ V(yσ). Then
Ty exists and Ty ( T . Let Y = {z ∈ V(T ) | x ∈ V(zσ)} and let y0 ∈ Y be such that
Ty0

= min{Ty | y ∈ Y }. For all y′ ∈ Y , we have that

A
def
= {T ′′σ | (T ′′


 u′′) ∈ C ′, x ∈ V(u′′)}
= {Tσ | (T 
 u) ∈ C, x ∈ V(uσ)}

⊇ {Tσ | (T 
 u) ∈ C,∃z ∈ V(u), x ∈ V(zσ)}
⊇ {Tσ | (T 
 u) ∈ C, y′ ∈ V(u), x ∈ V(y′σ)}

= {Tσ | (T 
 u) ∈ C, y′ ∈ V(u)}
def
= By′ .

Thus T ′

x = min A ⊆ minBy′ = Ty′σ. From Ty0
( T , we obtain that Ty0

σ ⊆ Tσ.
Suppose, by contradiction, that Ty0

σ = Tσ. Then x ∈ V(Ty0
σ) (since x ∈ V(Tσ)).
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That is, there exists z ∈ V(Ty0
) such that x ∈ V(zσ). From the second condition of

Definition 3.1 applied to z, it follows that Tz ( Ty0
. As z is in Y , this contradicts the

choice of y0. Thus T ′

x ⊆ Ty0
σ ( Tσ = T ′.

• If the rule R4 is applied then there is nothing to prove.

• If some rule Rf is applied, then the property is preserved, since, if x ∈ V(u′′) for some
term u′′ such that (T ′′


 u′′) ∈ C ′, then there is a term v with x ∈ V(v) such that
(T ′′

 v) ∈ C.

�

Lemma 3.5 There is no infinite simplification sequence using the rules of figure 2.

Proof: The number of variables occurring in the non-equational part of the constraint is
non-increasing. Furthermore, it is strictly decreasing by the rules R2, R3, R

′

3. Any other rule
strictly reduces the total size of the right hand sides of the constraint (here, the “size” is the
number of symbols in the term). �

3.3 Solved forms

Definition 3.6 A deducibility constraint system is in solved form if it is either ⊥,⊤ or a
conjunction

x1 = s1 ∧ . . . ∧ xn = sn ∧ T1

?
⊢ y1 ∧ . . . ∧ Tm

?
⊢ ym

where x1, . . . , xn, y1, . . . , ym are variables and every xi does not occur in si, xi+1, si+1, . . . , sn,
T1, y1, . . . , Tm, ym.

It is straighforward to see that a solved deducibility constraint that is not ⊥ has at least
a solution. Furthermore, if it is not reduced to its equational part, then it has infinitely many
solutions.

3.4 Completeness

First, we show that proofs, that are considered in solutions of constraints, can be narrowed
to the so-called simple proofs.

Definition 3.7 Given a sequence of hypotheses T1 ( T2 · · · ( Tn and a term t such that
Tn ⊢ t, a simple proof of t is a proof Π of Ti ⊢ t, such that

1. Π is a local proof (see definition 2.2)

2. i is the minimal index j such that there is a proof of Tj ⊢ t

3. all stict subproofs are simple.

First, we must refine the lemma 2.3 showing that there are always simple proofs:

Lemma 3.8 For any sequence T1 ( T2 · · · ( Tn and any term t such that Tn ⊢ t, there exists
a simple proof of t.
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Proof: Let i be a minimal index for which there is a proof of Ti ⊢ t. Thanks to the lemma
2.3, there is a local proof π0 of Ti ⊢ t.

We prove the lemma by induction on the size of π0. If t ∈ Ti \Ti−1, then the proof reduced
to the leaf node is a simple proof.

Otherwise, consider the last rule in the proof of t:

π0 =
π1

t1
· · ·

πn

tn

t

For every j = 1, ..., n, πj is a proof of Ti ⊢ ti. By induction hypothesis, there are simple proofs
π′

j of Tij ⊢ tj with ij ≤ i. If t appears as a node in some of these proofs, we simply replace
π0 with the corresponding subproof and get the desired result. Otherwise we let

Π =
π′

1

t1
· · ·

π′

n

tn

t

Π is a simple proof of t. Indeed, all properties are satisfied, except possibly the first one.
But, as shown in the proof of lemma 2.3, tj /∈ St(Ti)∪ St(t) can only occur when the last rule
of Π is a decomposition and the last rule of π′

j is a composition, which would yield a loop. �

Lemma 3.9 Let σ be a solution of C = T0

?
⊢ x0, . . . , ti−1

?
⊢ xi−1, Ti

?
⊢ s, . . ., with T0 ⊆ · · · ⊆

Ti ⊆ · · · If there is a simple proof of Tiσ ⊢ u whose last inference rule is a decomposition,
then there is a non-variable t ∈ St(()Ti) such that tσ = u.

Proof:
Consider a simple proof π of Tiσ ⊢ u. We may assume, without loss of generality, that i is

minimal. Otherwise, we simply replace everywhere Ti with a minimal Tj such that Tjθ ⊢ u.
Such a Tj ⊆ Ti also satisfies the hypotheses of the lemma.

We reason by induction on the depth of the proof π. We make a case distinction, depending
on the last rule of π:

The last rule is an axiom Then u ∈ Tiσ and there is t ∈ Ti (thus t ∈ St(Ti)) such that

tσ = u. By contradiction, if t was a variable then Tt

?
⊢ w, with t ∈ V(w) is a constraint

in C such that Tt ( Ti. By hypothesis of the lemma, w must be a variable. Hence
w = t. Then Ttθ ⊢ u, which contradicts the minimality of i.

The last rule is a symmetric decryption

π =
π1

{u}s
w

π2

Tiw

u

By simplicity, the last rule of π1 cannot be a composition: u would appear twice on the
same path. Then, by induction hypothesis, there is a non variable t ∈ St(Ti) such that
tσ = {u}s

w. It follows that t = {t′}s
t′′ with t′σ = u. If t′ was a variable, then Tt′σ ⊢ t′σ.

Hence Tt′σ ⊢ u would be derivable, which again contradicts the minimality of i. Hence
t′ is not variable, as required.
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The last rule is an asymmetric decryption, (resp. projection, resp. unsigning) The
proof is similar to the above one: by simplicity and by induction hypothesis, there is a
non-variable t ∈ St(Ti) such that tσ = {u}p

pk(v)
(resp. tσ = 〈u, v〉, resp. tσ = sign(u, v)).

Then t = {t}p
t′′ (resp. t = 〈t′, t′′〉, resp. t = sign(t, t′′)). t′ ∈ St(Ti), t′σ = u and, by

minimality of i, t′ is not a variable.

�

Lemma 3.10 Let C be T0

?
⊢ x0, . . . , Ti−1

?
⊢ xi−1, Ti

?
⊢ u, . . . be a constraint system and σ be

a solution of C such that

1. Ti does not contain two distinct non-variable subterms t1, t2 with t1θ = t2θ;

2. Ti does not contain two subterms {t1}
p
t2

and sk(t3) where t2 6= pk(t3) and t2σ = pk(t3σ).

3. u is a non-variable subterm of Ti;

Then T ′

i ⊢ u, where T ′

i = Ti ∪ {x | (T
?
⊢ x) ∈ C, T ( Ti}.

Proof: Let j be minimal such that Tjθ ⊢ uθ. Thus j ≤ i and Tj ⊆ Ti. Consider a simple
proof π of Tjθ ⊢ uθ. We reason by induction on the depth of π. We analyze the different
cases, depending on the last rule of π:

The last rule is an axiom Suppose, by contradiction, that u /∈ Tj . Then there is t ∈ Tj

such that tσ = uσ and t 6= u. By hypothesis 3, u is not a variable and, by hypothesis 1
of the lemma, t, u cannot be both non-variable subterms of Ti. It follows that t is a
variable. Then Ttσ ⊢ tσ, which implies Ttσ ⊢ uσ, contradicting the minimality of j,
since Tt ( Tj . Hence u ∈ Tj and then T ′

i ⊢ u, as required.

The last rule is the symmetric decryption rule There is w such that Tjσ ⊢ {uσ}s
w,

Tjσ ⊢ w:
π1

{uσ}s
w

π2

w

uσ

By simplicity, the last rule of the proof π1 is a decomposition. By Lemma 3.9, there
is t ∈ St(Tj), t not a variable, such that tσ = {uσ}s

w. Let t = {t1}
s
t2

and t1σ = uσ,
t2σ = w. By induction hypothesis, T ′

i ⊢ t.

If t1 was a variable, then Tt1 ( Tj and, by hypothesis of the lemma, Tt1σ ⊢ uσ,
contradicting the minimality of j.

Now, by hypothesis 3 of the lemma, u is a non-variable subterm of Ti, hence t1, u are
two non variable subterms of Ti such that t1σ = uσ. By hypothesis 1 of the lemma,
this implies t1 = u.

On the other hand, if t2 is a variable, t2 ∈ V(Ti) implies Tt2 ( Ti and, by minimality
of Ti t2 ∈ T ′

i . If t2 is not a variable, then, from Tjσ ⊢ t2σ and by induction hypothesis,
T ′

i ⊢ t2. So, in any case, T ′

i ⊢ t2.

Now, both T ′

i ⊢ {(}u, t2) and T ′

i ⊢ t2, from which we conclude that T ′

i ⊢ u, by symmetric
decryption.
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The last rule is an asymmetric decryption rule There is a w such that Tjσ ⊢ sk(w)
and Tjσ ⊢ {uσ}p

pk(w)
. As in the previous case, there is a non-variable t ∈ St(Tj) such

that tσ = {uσ}p

pk(w)
. By induction hypothesis, T ′

i ⊢ t. Let t = {t1}
p
t2

.

As in the previous case, t1 cannot be a variable. Therefore t1, u are two non-variable
subterms of Ti such that t1σ = uσ, which implies that t1 = u. (We use here the
hypotheses 1 and 3).

On the other hand, the last rule in the proof of Tjσ ⊢ sk(w) is a decomposition (no
composition rule can yield a term headed with sk( )). Then, by Lemma 3.9 (Tj satisfies
the hypotheses of the lemma since Tj ⊆ Ti), there is a non-variable subterm w1 ∈ St(Tj)
such that w1σ = sk(w). Let w1 = sk(w2). By induction hypothesis, T ′

j ⊢ sk(w2).

{t1}
p
t2

σ
‖

{uσ}p

pk(w)

sk(w2)σ
‖

sk(w)

uσ

By hypothesis 2 of the lemma, we must have t2 = pk(w2). Finally, from T ′

i ⊢ {u}p

pk(w2)
, T ′

i ⊢

sk(w2) we conclude T ′

i ⊢ u.

The last rule is a projection rule

π1

〈uσ, v〉

uσ

As before, by simplicity, the last rule of π1 must be a decomposition and, by Lemma 3.9,
there is a non variable term t ∈ St(Tj) such that tσ = 〈uσ, v〉. We let t = 〈t1, t2〉. By
induction hypothesis, T ′

i ⊢ t.

Now, as in the previous cases, t1 cannot be a variable, by minimality of Tj . Next, by
hypotheses 1 and 3, we must have t1 = u. Finally, from T ′

i ⊢ 〈u, t2〉 we conclude T ′

i ⊢ u
by projection.

The last rule is an unsigning rule

π1

sign(uσ, v)

uσ

This case is identical to the previous one.

The last rule is a composition Assume for example that it is the symmetric encryption
rule.

π1

v1

π1

v2

{v1}
s
v2

with uσ = {v1}
s
v2

. Since u is not a variable, u = {u1}
s
u2

, u1σ = v1, and u2σ = v2. If u1

(resp. u2) is a variable then u1 (resp. u2) belongs to V(Ti) since u ∈ St(Ti). Again, this
implies u1 ∈ T ′

i (resp. u2 ∈ T ′

i ).
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Otherwise, u1 and u2 are non-variables. Then, by induction hypothesis, T ′

i ⊢ u1 and
T ′

i ⊢ u2. Hence in both cases we have T ′

i ⊢ u1 and T ′

i ⊢ u2. Thus T ′

i ⊢ u.

The proof is similar for other composition rules.

�

Theorem 3.11 (Completeness) If σ is a solution of C and C is not in solved form, then
there is a C ′ such that C  C ′ and σ is a solution of C ′.

Proof: We assume here that the equations are eagerly simplified into solved equations sys-
tems, which may be not mentioned below, for simplicity.

If C is not in solved form, then there is an index i such that

C = T1

?
⊢ x1, . . . Ti−1

?
⊢ xi−1, Ti

?
⊢ ui, . . . , Tn

?
⊢ un

where T1 ⊆ . . . ⊆ Tn, x1, . . . , xi−1 are variables and ui is not a variable.
Since σ is a solution, there is a simple proof π of Tiσ ⊢ uiσ. We distinguish cases,

depending on the last rule of π.

The last rule is a composition Since u is not a variable, u = f(u1, . . . , un) and Tiσ ⊢ ujσ
for every j = 1, ..., n. Then we may apply the transformation rule Rf to C, yielding
constraints Ti 
 uj in C ′ for every j. σ is a solution of C ′.

The last rule is not a composition By Lemma 3.9, there is a non-variable term t ∈ St(Ti)
such that tσ = uiσ. We distinguish then again between cases, depending on t, ui:

Case t 6= ui Then, since t, ui are both non-variable terms, we may apply the simpli-
fication rule R2 to C: C  R2

C ′ ∧ t = ui where C ′ = Cθ and θ = mgu(t, ui).
Furthermore, tσ = uiσ, hence (by definition of a mgu) there is a substitution τ
such that σ = θτ . Finally, σ is a solution of C, hence τ is a solution of C ′ and σ
is a solution of C ′ ∧ t = ui.

Case t = ui Then ui ∈ St(Ti).

1. If there are two distinct non-variable terms t1, t2 ∈ St(Ti) such that t1σ = t2σ.
Then we apply the simplification rule R3, yielding C ′ = Cθ∧t1 = t2. As in the
previous case, there is a substitution τ such that σ = θτ and τ is a solution of
C ′, σ is a solution of C ′ ∧ t1 = t2.

2. If there are {t1}
p
t2

, sk(()t3) ∈ St(Ti) such that either t2 or t3 is a variable,
t2 6= pk(t3) and t2σ = pk(t3)σ, then we may apply the rule R′

3 and conclude
as in the previous case.

3. Otherwise, we match all hypotheses of Lemma 3.10 and we conclude that
T ′

i ⊢ ui. Then the rule R1 can be applied to C, yielding a deduction constraint,
of which σ is again a solution.

�
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Exercise 7
Consider the following protocol (defined informally):

A → B : νk1, k2 :
〈

{k1}
p

pk(b)
, {k2}

p

pk(b)

〉

B → A : {k1}
s
k2

1. write formally the processes corresponding to an instance of the role A by two honest
agents a, b and an instance of the role b with the same two honest agents

2. Give a deduction constraint system corresponding to the only relevant symbolic trace
for the processes of the previous question.

3. Apply the simplification rules to this constraint system and derive all possible attacks
on the secrecy of k1 (resp. k2) for this scenario.

Exercise 8
Give an example showing that R3 is necessary for the completeness.

Exercise 9
Give an example showing that R′

3 is necessary for the completeness.
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