$$
\begin{aligned}
& R_{1} \quad C \wedge T \stackrel{?}{\vdash} u \rightsquigarrow C \quad \text { if } T \cup\left\{x \mid\left(T^{\prime} \stackrel{?}{\vdash} x\right) \in C, T^{\prime} \subsetneq T\right\} \vdash u \\
& R_{2} \quad C \wedge T \stackrel{?}{\vdash} u \rightsquigarrow C \sigma \wedge T \sigma \stackrel{?}{\vdash} u \sigma \wedge t=u \quad \text { if } t \in \operatorname{St}(T), \sigma=\operatorname{mgu}(t, u) \\
& t \neq u, t, u \text { not variables } \\
& R_{3} \quad C \wedge T \stackrel{?}{\vdash} u \rightsquigarrow C \sigma \wedge T \sigma \stackrel{?}{\vdash} u \sigma \wedge t_{1}=t_{2} \quad \text { if } t_{1}, t_{2} \in \operatorname{St}(T), \sigma=\operatorname{mgu}\left(t_{1}, t_{2}\right) \\
& t_{1} \neq t_{2}, t_{1}, t_{2} \text { not variables } \\
& R_{3}^{\prime} \quad C \wedge T \stackrel{?}{\vdash} u \rightsquigarrow C \sigma \wedge T \sigma \stackrel{?}{\vdash} u \sigma \wedge t_{2}=\operatorname{pk}\left(t_{3}\right) \text { if }\left\{t_{1}\right\}_{t_{2}}^{p}, \operatorname{sk}\left(t_{3}\right) \in \operatorname{St}(T), \\
& \sigma=\operatorname{mgu}\left(t_{2}, \operatorname{pk}\left(t_{3}\right)\right), t_{2} \neq \operatorname{pk}\left(t_{3}\right) \text {, } \\
& t_{2} \text { or } t_{3} \text { (or both) is a variable } \\
& R_{4} \quad C \wedge T \stackrel{?}{\vdash} u \rightsquigarrow \perp \quad \text { if } \mathcal{V}(T, u)=\emptyset \text { and } T \nvdash u \\
& \left.R_{f} \quad C \wedge T \stackrel{?}{\vdash} f(u, v) \rightsquigarrow C \wedge T \stackrel{?}{\vdash} u \wedge T \stackrel{?}{\vdash} v \quad \text { for } f \neq \mathrm{sk}()_{-}\right)
\end{aligned}
$$

Figure 2: Simplification rules.

3.2 Constraint Simplification

We describe here a non-deterministic simplification procedure. It can be simplified in many respects, but we will see that the problem of deciding whether a constraint system has at least one solution is NP-complete anyway.

Many parts of this section, including the set of rules, is borrowed from [?].
$\sigma=\operatorname{mgu}(t, u)$ is a most general unifier of t, u, such that $\mathcal{V}(t \sigma, u \sigma) \subseteq \mathcal{V}(t, u)$. We also use two properties of the unification algorithm, that we assume here: if $t \neq u$ and $\sigma=\mathrm{mgu}(t, u)$ then

1. $\mathcal{V}(t \sigma, u \sigma)$ is strictly included in $\mathcal{V}(t, u)$.
2. $\operatorname{St}(t \sigma) \cup \operatorname{St}(u \sigma)=\operatorname{St}(t) \sigma \cup \operatorname{St}(u) \sigma$.

The second property implies in particular (for a suitable representation of terms) that $|t \sigma, u \sigma| \leq|t, u|:$ the number of distinct subterms of $t \sigma, u \sigma$ is smaller than the number of distinct subterms in t, u.

Example $11 t=f(x, g(x)), u=f\left(f(y, z), g\left(f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)\right)\right)$.
$\sigma=m g u(t, u)=\left\{x \mapsto f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right) ; y \mapsto g\left(x^{\prime}\right) ; z \mapsto g\left(y^{\prime}\right)\right\}$.

$$
\operatorname{St}(t, u)=\left\{\begin{aligned}
& x, y, z, x^{\prime}, y^{\prime}, g(x), f(y, z), g\left(x^{\prime}\right), g\left(y^{\prime}\right), f(x, g(x)), f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right), \\
& \left.g\left(f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)\right), f\left(f(y, z), g\left(f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)\right)\right)\right\}
\end{aligned}\right.
$$

there are 13 elements.

$$
\begin{aligned}
\operatorname{St}(t \sigma, u \sigma)=\{\quad & x^{\prime}, y^{\prime}, g\left(x^{\prime}\right), g\left(y^{\prime}\right), f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right), g\left(f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)\right), \\
& \left.f\left(f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right), g\left(f\left(g\left(x^{\prime}\right), g\left(y^{\prime}\right)\right)\right)\right)\right\}
\end{aligned}
$$

there are 7 elements.

Lemma 3.3 The rules of figure 2 are correct: any deducibility constraint system C is transformed in a deducibility constraint system C^{\prime} such that any solution σ of C^{\prime} is also a solution of C.

Proof: Let C be a deduction constraint, $C=\bigwedge_{i}\left(T_{i} \stackrel{?}{\vdash} u_{i}\right)$ and $C \rightsquigarrow C^{\prime}$. Since $T_{i} \subseteq T_{i+1}$ implies $T_{i} \sigma \subseteq T_{i+1} \sigma, C^{\prime}$ satisfies the first point of the definition of deduction constraints.

We show that C^{\prime} also satisfies the second point of the definition of deduction constraints.
Let $\left(T^{\prime} \stackrel{?}{\vdash} u^{\prime}\right) \in C^{\prime}$ and $x \in \mathcal{V}\left(T^{\prime}\right)$. We have to prove that T_{x}^{\prime} exists and $T_{x}^{\prime} \subsetneq T^{\prime}$. We distinguish cases, depending on which simplification rule is applied:

- If the rule R_{1} is applied, eliminating the constraint $T \stackrel{?}{\vdash} u$. Then $C^{\prime}=C \backslash\{T \stackrel{?}{\vdash} u\}$. If $T_{x} \neq T$ then $T_{x}^{\prime}=T_{x}$ (and thus T_{x}^{\prime} exists and $T_{x}^{\prime} \subsetneq T^{\prime}$). Suppose that $T_{x}=T$. Then there is $\left(T \stackrel{\vdash}{\vdash} u^{\prime \prime}\right) \in C$ such that $x \in \mathcal{V}\left(u^{\prime \prime}\right)$. If $u \neq u^{\prime \prime}$ then again $T_{x}^{\prime}=T_{x}$ (since $\left.\left(T_{x}^{\prime} \stackrel{?}{\vdash} u^{\prime \prime}\right) \in C^{\prime}\right)$. Finally, suppose that $u=u^{\prime \prime}$. By the minimality of T, it follows that $x \notin \mathcal{V}(T)$ and $x \notin\left\{y \mid\left(T^{\prime \prime} \stackrel{?}{\vdash} y\right) \in C, T^{\prime \prime} \subsetneq T\right\}$. Since $x \in \mathcal{V}(u)$, we use the following lemma:

Lemma 3.4 If $T \vdash u$ then $\mathcal{V}(u) \subseteq \mathcal{V}(T)$.
whose proof is left to the reader. We conclude $T \cup\left\{y \mid\left(T^{\prime \prime} \stackrel{?}{\vdash} y\right) \in C, T^{\prime \prime} \subsetneq T\right\} \nvdash u$, which contradicts the applicability of rule R_{1}.

- If one of the rules R_{2}, R_{3} or R_{3}^{\prime} is applied, then, for each constraint $\left(T^{\prime \prime} \stackrel{?}{\vdash} u^{\prime \prime}\right) \in C^{\prime}$, there is a constraint $(T \stackrel{?}{\vdash} u) \in C$ such that $T \sigma=T^{\prime \prime}$ and $u \sigma=u^{\prime \prime}$. Consider $(T \stackrel{?}{\vdash} u) \in C$ such that $T \sigma=T^{\prime}$ and $u \sigma=u^{\prime}$.
If x is not introduced by σ, then $x \in \mathcal{V}(T)$. Then T_{x} exists and $T_{x} \subsetneq T$. Thus $T_{x} \sigma \subseteq T \sigma$. If $T_{x} \sigma=T \sigma$, then $x \in \mathcal{V}\left(T_{x}\right)$, which contradicts the minimality of T_{x}. Thus $T_{x} \sigma \subsetneq T \sigma$. We also have that $\left\{T^{\prime \prime} \sigma \mid\left(T^{\prime \prime} \Vdash u^{\prime \prime}\right) \in C, x \in \mathcal{V}\left(u^{\prime \prime}\right)\right\} \subseteq\left\{T^{\prime \prime} \sigma \mid\left(T^{\prime \prime} \sigma \Vdash u^{\prime \prime} \sigma\right) \in C^{\prime}, x \in\right.$ $\left.\mathcal{V}\left(u^{\prime \prime} \sigma\right)\right\}$, since, for any term $u^{\prime \prime}$, if $x \in \mathcal{V}\left(u^{\prime \prime}\right)$, then $x \in \mathcal{V}\left(u^{\prime \prime} \sigma\right)$. It follows that T_{x}^{\prime} exists and $T_{x}^{\prime} \subseteq T_{x} \sigma$. Hence $T_{x}^{\prime} \subsetneq T^{\prime}$.
Otherwise, assume that x is introduced by $\sigma: \exists y \in \mathcal{V}(T)$ such that $x \in \mathcal{V}(y \sigma)$. Then T_{y} exists and $T_{y} \subsetneq T$. Let $Y=\{z \in \mathcal{V}(T) \mid x \in \mathcal{V}(z \sigma)\}$ and let $y_{0} \in Y$ be such that $T_{y_{0}}=\min \left\{T_{y} \mid y \in Y\right\}$. For all $y^{\prime} \in Y$, we have that

$$
\begin{aligned}
& A \quad \stackrel{\text { def }}{=}\left\{T^{\prime \prime} \sigma \mid\left(T^{\prime \prime} \Vdash u^{\prime \prime}\right) \in C^{\prime}, x \in \mathcal{V}\left(u^{\prime \prime}\right)\right\} \\
&=\{T \sigma \mid(T \Vdash u) \in C, x \in \mathcal{V}(u \sigma)\} \\
& \supseteq\{T \sigma \mid(T \Vdash u) \in C, \exists z \in \mathcal{V}(u), x \in \mathcal{V}(z \sigma)\} \\
& \supseteq\left\{T \sigma \mid(T \Vdash u) \in C, y^{\prime} \in \mathcal{V}(u), x \in \mathcal{V}\left(y^{\prime} \sigma\right)\right\} \\
&=\left\{T \sigma \mid(T \Vdash u) \in C, y^{\prime} \in \mathcal{V}(u)\right\} \stackrel{\text { def }}{=} B_{y^{\prime}} .
\end{aligned}
$$

Thus $T_{x}^{\prime}=\min A \subseteq \min B_{y^{\prime}}=T_{y^{\prime}} \sigma$. From $T_{y_{0}} \subsetneq T$, we obtain that $T_{y_{0}} \sigma \subseteq T \sigma$. Suppose, by contradiction, that $T_{y_{0}} \sigma=T \sigma$. Then $x \in \mathcal{V}\left(T_{y_{0}} \sigma\right)$ (since $\left.x \in \mathcal{V}(T \sigma)\right)$.

That is, there exists $z \in \mathcal{V}\left(T_{y_{0}}\right)$ such that $x \in \mathcal{V}(z \sigma)$. From the second condition of Definition 3.1 applied to z, it follows that $T_{z} \subsetneq T_{y_{0}}$. As z is in Y, this contradicts the choice of y_{0}. Thus $T_{x}^{\prime} \subseteq T_{y_{0}} \sigma \subsetneq T \sigma=T^{\prime}$.

- If the rule R_{4} is applied then there is nothing to prove.
- If some rule R_{f} is applied, then the property is preserved, since, if $x \in \mathcal{V}\left(u^{\prime \prime}\right)$ for some term $u^{\prime \prime}$ such that $\left(T^{\prime \prime} \Vdash u^{\prime \prime}\right) \in C^{\prime}$, then there is a term v with $x \in \mathcal{V}(v)$ such that $\left(T^{\prime \prime} \Vdash v\right) \in C$.

Lemma 3.5 There is no infinite simplification sequence using the rules of figure 2.
Proof: The number of variables occurring in the non-equational part of the constraint is non-increasing. Furthermore, it is strictly decreasing by the rules $R_{2}, R_{3}, R_{3}^{\prime}$. Any other rule strictly reduces the total size of the right hand sides of the constraint (here, the "size" is the number of symbols in the term).

3.3 Solved forms

Definition 3.6 A deducibility constraint system is in solved form if it is either \perp, \top or a conjunction

$$
x_{1}=s_{1} \wedge \ldots \wedge x_{n}=s_{n} \wedge T_{1} \stackrel{?}{\vdash} y_{1} \wedge \ldots \wedge T_{m} \stackrel{?}{\vdash} y_{m}
$$

where $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ are variables and every x_{i} does not occur in $s_{i}, x_{i+1}, s_{i+1}, \ldots, s_{n}$, $T_{1}, y_{1}, \ldots, T_{m}, y_{m}$.

It is straighforward to see that a solved deducibility constraint that is not \perp has at least a solution. Furthermore, if it is not reduced to its equational part, then it has infinitely many solutions.

3.4 Completeness

First, we show that proofs, that are considered in solutions of constraints, can be narrowed to the so-called simple proofs.

Definition 3.7 Given a sequence of hypotheses $T_{1} \subsetneq T_{2} \cdots \subsetneq T_{n}$ and a term t such that $T_{n} \vdash t$, a simple proof of t is a proof Π of $T_{i} \vdash t$, such that

1. Π is a local proof (see definition 2.2)
2. i is the minimal index j such that there is a proof of $T_{j} \vdash t$
3. all stict subproofs are simple.

First, we must refine the lemma 2.3 showing that there are always simple proofs:
Lemma 3.8 For any sequence $T_{1} \subsetneq T_{2} \cdots \subsetneq T_{n}$ and any term t such that $T_{n} \vdash t$, there exists a simple proof of t.

Proof: Let i be a minimal index for which there is a proof of $T_{i} \vdash t$. Thanks to the lemma 2.3, there is a local proof π_{0} of $T_{i} \vdash t$.

We prove the lemma by induction on the size of π_{0}. If $t \in T_{i} \backslash T_{i-1}$, then the proof reduced to the leaf node is a simple proof.

Otherwise, consider the last rule in the proof of t :

$$
\pi_{0}=\frac{\begin{array}{ccc}
\pi_{1} & \ldots & \pi_{n} \\
t_{1} & & t_{n} \\
\hline & t
\end{array}, \quad \frac{1}{}}{}
$$

For every $j=1, \ldots, n, \pi_{j}$ is a proof of $T_{i} \vdash t_{i}$. By induction hypothesis, there are simple proofs π_{j}^{\prime} of $T_{i_{j}} \vdash t_{j}$ with $i_{j} \leq i$. If t appears as a node in some of these proofs, we simply replace π_{0} with the corresponding subproof and get the desired result. Otherwise we let

$$
\Pi=\frac{\begin{array}{lll}
\pi_{1}^{\prime} & & \pi_{n}^{\prime} \\
t_{1} & \cdots & t_{n} \\
\hline
\end{array}}{t}
$$

Π is a simple proof of t. Indeed, all properties are satisfied, except possibly the first one. But, as shown in the proof of lemma $2.3, t_{j} \notin \operatorname{St}\left(T_{i}\right) \cup S \mathrm{t}(t)$ can only occur when the last rule of Π is a decomposition and the last rule of π_{j}^{\prime} is a composition, which would yield a loop.

Lemma 3.9 Let σ be a solution of $C=T_{0} \stackrel{?}{\vdash} x_{0}, \ldots, t_{i-1} \stackrel{?}{\vdash} x_{i-1}, T_{i} \stackrel{?}{\vdash} s, \ldots$, with $T_{0} \subseteq \cdots \subseteq$ $T_{i} \subseteq \cdots$ If there is a simple proof of $T_{i} \sigma \vdash u$ whose last inference rule is a decomposition, then there is a non-variable $t \in \operatorname{St}\left(() T_{i}\right)$ such that $t \sigma=u$.

Proof:

Consider a simple proof π of $T_{i} \sigma \vdash u$. We may assume, without loss of generality, that i is minimal. Otherwise, we simply replace everywhere T_{i} with a minimal T_{j} such that $T_{j} \theta \vdash u$. Such a $T_{j} \subseteq T_{i}$ also satisfies the hypotheses of the lemma.

We reason by induction on the depth of the proof π. We make a case distinction, depending on the last rule of π :

The last rule is an axiom Then $u \in T_{i} \sigma$ and there is $t \in T_{i}$ (thus $t \in \operatorname{St}\left(T_{i}\right)$) such that $t \sigma=u$. By contradiction, if t was a variable then $T_{t} \stackrel{?}{\vdash} w$, with $t \in \mathcal{V}(w)$ is a constraint in C such that $T_{t} \subsetneq T_{i}$. By hypothesis of the lemma, w must be a variable. Hence $w=t$. Then $T_{t} \theta \vdash u$, which contradicts the minimality of i.

The last rule is a symmetric decryption

By simplicity, the last rule of π_{1} cannot be a composition: u would appear twice on the same path. Then, by induction hypothesis, there is a non variable $t \in \operatorname{St}\left(T_{i}\right)$ such that $t \sigma=\{u\}_{w}^{s}$. It follows that $t=\left\{t^{\prime}\right\}_{t^{\prime \prime}}^{s}$ with $t^{\prime} \sigma=u$. If t^{\prime} was a variable, then $T_{t^{\prime}} \sigma \vdash t^{\prime} \sigma$. Hence $T_{t^{\prime}} \sigma \vdash u$ would be derivable, which again contradicts the minimality of i. Hence t^{\prime} is not variable, as required.

The last rule is an asymmetric decryption, (resp. projection, resp. unsigning) The proof is similar to the above one: by simplicity and by induction hypothesis, there is a non-variable $t \in \operatorname{St}\left(T_{i}\right)$ such that $t \sigma=\{u\}_{\mathrm{pk}(v)}^{p}$ (resp. $t \sigma=\langle u, v\rangle$, resp. $\left.t \sigma=\operatorname{sign}(u, v)\right)$. Then $t=\{t\}_{t^{\prime \prime}}^{p}$ (resp. $t=\left\langle t^{\prime}, t^{\prime \prime}\right\rangle$, resp. $\left.t=\operatorname{sign}\left(t, t^{\prime \prime}\right)\right) . t^{\prime} \in \operatorname{St}\left(T_{i}\right), t^{\prime} \sigma=u$ and, by minimality of i, t^{\prime} is not a variable.

Lemma 3.10 Let C be $T_{0} \stackrel{?}{\vdash} x_{0}, \ldots, T_{i-1} \stackrel{?}{\vdash} x_{i-1}, T_{i} \stackrel{?}{\vdash} u, \ldots$ be a constraint system and σ be a solution of C such that

1. T_{i} does not contain two distinct non-variable subterms t_{1}, t_{2} with $t_{1} \theta=t_{2} \theta$;
2. T_{i} does not contain two subterms $\left\{t_{1}\right\}_{t_{2}}^{p}$ and $s k\left(t_{3}\right)$ where $t_{2} \neq p k\left(t_{3}\right)$ and $t_{2} \sigma=p k\left(t_{3} \sigma\right)$.
3. u is a non-variable subterm of T_{i};

Then $T_{i}^{\prime} \vdash u$, where $T_{i}^{\prime}=T_{i} \cup\left\{x \mid(T \stackrel{?}{\vdash} x) \in C, T \subsetneq T_{i}\right\}$.
Proof: Let j be minimal such that $T_{j} \theta \vdash u \theta$. Thus $j \leq i$ and $T_{j} \subseteq T_{i}$. Consider a simple proof π of $T_{j} \theta \vdash u \theta$. We reason by induction on the depth of π. We analyze the different cases, depending on the last rule of π :

The last rule is an axiom Suppose, by contradiction, that $u \notin T_{j}$. Then there is $t \in T_{j}$ such that $t \sigma=u \sigma$ and $t \neq u$. By hypothesis $3, u$ is not a variable and, by hypothesis 1 of the lemma, t, u cannot be both non-variable subterms of T_{i}. It follows that t is a variable. Then $T_{t} \sigma \vdash t \sigma$, which implies $T_{t} \sigma \vdash u \sigma$, contradicting the minimality of j, since $T_{t} \subsetneq T_{j}$. Hence $u \in T_{j}$ and then $T_{i}^{\prime} \vdash u$, as required.

The last rule is the symmetric decryption rule There is w such that $T_{j} \sigma \vdash\{u \sigma\}_{w}^{s}$, $T_{j} \sigma \vdash w:$

By simplicity, the last rule of the proof π_{1} is a decomposition. By Lemma 3.9, there is $t \in \operatorname{St}\left(T_{j}\right), t$ not a variable, such that $t \sigma=\{u \sigma\}_{w}^{s}$. Let $t=\left\{t_{1}\right\}_{t_{2}}^{s}$ and $t_{1} \sigma=u \sigma$, $t_{2} \sigma=w$. By induction hypothesis, $T_{i}^{\prime} \vdash t$.
If t_{1} was a variable, then $T_{t_{1}} \subsetneq T_{j}$ and, by hypothesis of the lemma, $T_{t_{1}} \sigma \vdash u \sigma$, contradicting the minimality of j.
Now, by hypothesis 3 of the lemma, u is a non-variable subterm of T_{i}, hence t_{1}, u are two non variable subterms of T_{i} such that $t_{1} \sigma=u \sigma$. By hypothesis 1 of the lemma, this implies $t_{1}=u$.
On the other hand, if t_{2} is a variable, $t_{2} \in \mathcal{V}\left(T_{i}\right)$ implies $T_{t_{2}} \subsetneq T_{i}$ and, by minimality of $T_{i} t_{2} \in T_{i}^{\prime}$. If t_{2} is not a variable, then, from $T_{j} \sigma \vdash t_{2} \sigma$ and by induction hypothesis, $T_{i}^{\prime} \vdash t_{2}$. So, in any case, $T_{i}^{\prime} \vdash t_{2}$.
Now, both $T_{i}^{\prime} \vdash\left\{(\}_{u}, t_{2}\right)$ and $T_{i}^{\prime} \vdash t_{2}$, from which we conclude that $T_{i}^{\prime} \vdash u$, by symmetric decryption.

The last rule is an asymmetric decryption rule There is a w such that $T_{j} \sigma \vdash \operatorname{sk}(w)$ and $T_{j} \sigma \vdash\{u \sigma\}_{\mathrm{pk}(w)}^{p}$. As in the previous case, there is a non-variable $t \in \operatorname{St}\left(T_{j}\right)$ such that $t \sigma=\{u \sigma\}_{\mathrm{pk}(w)}^{p}$. By induction hypothesis, $T_{i}^{\prime} \vdash t$. Let $t=\left\{t_{1}\right\}_{t_{2}}^{p}$.
As in the previous case, t_{1} cannot be a variable. Therefore t_{1}, u are two non-variable subterms of T_{i} such that $t_{1} \sigma=u \sigma$, which implies that $t_{1}=u$. (We use here the hypotheses 1 and 3).
On the other hand, the last rule in the proof of $T_{j} \sigma \vdash \mathrm{sk}(w)$ is a decomposition (no composition rule can yield a term headed with sk(_)). Then, by Lemma 3.9 (T_{j} satisfies the hypotheses of the lemma since $\left.T_{j} \subseteq T_{i}\right)$, there is a non-variable subterm $w_{1} \in \operatorname{St}\left(T_{j}\right)$ such that $w_{1} \sigma=\operatorname{sk}(w)$. Let $w_{1}=\operatorname{sk}\left(w_{2}\right)$. By induction hypothesis, $T_{j}^{\prime} \vdash \operatorname{sk}\left(w_{2}\right)$.

By hypothesis 2 of the lemma, we must have $t_{2}=\mathrm{pk}\left(w_{2}\right)$. Finally, from $T_{i}^{\prime} \vdash\{u\}_{\mathrm{pk}\left(w_{2}\right)}^{p}, T_{i}^{\prime} \vdash$ sk $\left(w_{2}\right)$ we conclude $T_{i}^{\prime} \vdash u$.

The last rule is a projection rule

$$
\begin{gathered}
\pi_{1} \\
\langle u \sigma, v\rangle \\
\hline u \sigma
\end{gathered}
$$

As before, by simplicity, the last rule of π_{1} must be a decomposition and, by Lemma 3.9, there is a non variable term $t \in \operatorname{St}\left(T_{j}\right)$ such that $t \sigma=\langle u \sigma, v\rangle$. We let $t=\left\langle t_{1}, t_{2}\right\rangle$. By induction hypothesis, $T_{i}^{\prime} \vdash t$.
Now, as in the previous cases, t_{1} cannot be a variable, by minimality of T_{j}. Next, by hypotheses 1 and 3, we must have $t_{1}=u$. Finally, from $T_{i}^{\prime} \vdash\left\langle u, t_{2}\right\rangle$ we conclude $T_{i}^{\prime} \vdash u$ by projection.

The last rule is an unsigning rule

$$
\begin{gathered}
\begin{array}{c}
\pi_{1} \\
\operatorname{sign}(u \sigma, v)
\end{array} \\
\hline u \sigma
\end{gathered}
$$

This case is identical to the previous one.
The last rule is a composition Assume for example that it is the symmetric encryption rule.

$$
\begin{array}{cc}
\pi_{1} & \pi_{1} \\
v_{1} & v_{2} \\
\hline\left\{v_{1}\right\}_{v_{2}}^{s}
\end{array}
$$

with $u \sigma=\left\{v_{1}\right\}_{v_{2}}^{s}$. Since u is not a variable, $u=\left\{u_{1}\right\}_{u_{2}}^{s}, u_{1} \sigma=v_{1}$, and $u_{2} \sigma=v_{2}$. If u_{1} (resp. u_{2}) is a variable then u_{1} (resp. u_{2}) belongs to $\mathcal{V}\left(T_{i}\right)$ since $u \in \operatorname{St}\left(T_{i}\right)$. Again, this implies $u_{1} \in T_{i}^{\prime}\left(\right.$ resp. $\left.u_{2} \in T_{i}^{\prime}\right)$.

Otherwise, u_{1} and u_{2} are non-variables. Then, by induction hypothesis, $T_{i}^{\prime} \vdash u_{1}$ and $T_{i}^{\prime} \vdash u_{2}$. Hence in both cases we have $T_{i}^{\prime} \vdash u_{1}$ and $T_{i}^{\prime} \vdash u_{2}$. Thus $T_{i}^{\prime} \vdash u$.
The proof is similar for other composition rules.

Theorem 3.11 (Completeness) If σ is a solution of C and C is not in solved form, then there is a C^{\prime} such that $C \rightsquigarrow C^{\prime}$ and σ is a solution of C^{\prime}.

Proof: We assume here that the equations are eagerly simplified into solved equations systems, which may be not mentioned below, for simplicity.

If C is not in solved form, then there is an index i such that

$$
C=T_{1} \stackrel{?}{\vdash} x_{1}, \ldots T_{i-1} \stackrel{?}{\vdash} x_{i-1}, T_{i} \stackrel{?}{\vdash} u_{i}, \ldots, T_{n} \stackrel{?}{\vdash} u_{n}
$$

where $T_{1} \subseteq \ldots \subseteq T_{n}, x_{1}, \ldots, x_{i-1}$ are variables and u_{i} is not a variable.
Since σ is a solution, there is a simple proof π of $T_{i} \sigma \vdash u_{i} \sigma$. We distinguish cases, depending on the last rule of π.

The last rule is a composition Since u is not a variable, $u=f\left(u_{1}, \ldots, u_{n}\right)$ and $T_{i} \sigma \vdash u_{j} \sigma$ for every $j=1, \ldots, n$. Then we may apply the transformation rule R_{f} to C, yielding constraints $T_{i} \Vdash u_{j}$ in C^{\prime} for every $j . \sigma$ is a solution of C^{\prime}.

The last rule is not a composition By Lemma 3.9, there is a non-variable term $t \in \operatorname{St}\left(T_{i}\right)$ such that $t \sigma=u_{i} \sigma$. We distinguish then again between cases, depending on t, u_{i} :

Case $t \neq u_{i}$ Then, since t, u_{i} are both non-variable terms, we may apply the simplification rule R_{2} to $C: C \rightsquigarrow_{R_{2}} C^{\prime} \wedge t=u_{i}$ where $C^{\prime}=C \theta$ and $\theta=\operatorname{mgu}\left(t, u_{i}\right)$. Furthermore, $t \sigma=u_{i} \sigma$, hence (by definition of a mgu) there is a substitution τ such that $\sigma=\theta \tau$. Finally, σ is a solution of C, hence τ is a solution of C^{\prime} and σ is a solution of $C^{\prime} \wedge t=u_{i}$.
Case $t=u_{i}$ Then $u_{i} \in \operatorname{St}\left(T_{i}\right)$.

1. If there are two distinct non-variable terms $t_{1}, t_{2} \in \operatorname{St}\left(T_{i}\right)$ such that $t_{1} \sigma=t_{2} \sigma$. Then we apply the simplification rule R_{3}, yielding $C^{\prime}=C \theta \wedge t_{1}=t_{2}$. As in the previous case, there is a substitution τ such that $\sigma=\theta \tau$ and τ is a solution of C^{\prime}, σ is a solution of $C^{\prime} \wedge t_{1}=t_{2}$.
2. If there are $\left\{t_{1}\right\}_{t_{2}}^{p}, \operatorname{sk}\left(() t_{3}\right) \in \operatorname{St}\left(T_{i}\right)$ such that either t_{2} or t_{3} is a variable, $t_{2} \neq \mathrm{pk}\left(t_{3}\right)$ and $t_{2} \sigma=\mathrm{pk}\left(t_{3}\right) \sigma$, then we may apply the rule R_{3}^{\prime} and conclude as in the previous case.
3. Otherwise, we match all hypotheses of Lemma 3.10 and we conclude that $T_{i}^{\prime} \vdash u_{i}$. Then the rule R_{1} can be applied to C, yielding a deduction constraint, of which σ is again a solution.

Exercise 7

Consider the following protocol (defined informally):

$$
\begin{array}{lc}
A \rightarrow B: & \nu k_{1}, k_{2}:\left\langle\left\{k_{1}\right\}_{\mathrm{pk}(b)}^{p},\left\{k_{2}\right\}_{\mathrm{pk}(b)}^{p}\right\rangle \\
B \rightarrow A: & \left\{k_{1}\right\}_{k_{2}}^{s}
\end{array}
$$

1. write formally the processes corresponding to an instance of the role A by two honest agents a, b and an instance of the role b with the same two honest agents
2. Give a deduction constraint system corresponding to the only relevant symbolic trace for the processes of the previous question.
3. Apply the simplification rules to this constraint system and derive all possible attacks on the secrecy of k_{1} (resp. k_{2}) for this scenario.

Exercise 8

Give an example showing that R_{3} is necessary for the completeness.

Exercise 9

Give an example showing that R_{3}^{\prime} is necessary for the completeness.

