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Chapter 2

An Introductory Example

We start with the well-known example of the so-called “Needham-Schroeder public-key pro-
tocol” [212], that has been designed in 1978 and for which an attack was found in 1996 by
G. Lowe [193], using formal methods.

2.1 An Informal Description

The protocol is a so-called “mutual authentication protocol”. Two parties A and B wish to
agree on some value, e.g. they wish to establish a shared secret that they will use later for fast
confidential communication. The parties A and B only use a public communication channel
(for instance a postal service, Internet or a mobile phone). The transport of the messages on
such channels is insecure. Indeed, a malicious agent might intercept the letter (resp. message)
look at its content and possibly replace it with another message or even simply destroy it.

In order to secure their communication, the agents use lockers (or encryption). We consider
here public-key encryption: the lockers can be reproduced and distributed, but the key to open
them is owned by a single person. Encrypting a message m with the public key of A is written
{m}pk(A) whereas concatenating two messages m1 and m2 is written 〈m1,m2〉. An informal
description of the protocol in the so-called Alice-Bob notation is given in Figure 2.1.

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈NA, NB〉}pk(A)
3. A→ B : {NB}pk(B)

Figure 2.1: Informal description of the Needham-Schroeder public key protocol

Description. First the agent A encrypts a nonce NA, i.e. a random number freshly generated,
and her identity with the public key of B and sends it on the public channel (message 1). Only
the agent B, who owes the corresponding private key can open this message. Upon reception,
he gets NA, generates his own nonce NB and sends back the pair encrypted with the public key
of A (message 2). Only the agent A is able to open this message. Furthermore, since only B
was able to get NA, inserting NA in the plaintext is a witness that it comes from the agent B.
Finally, A, after decrypting, checks that the first component is NA and retrieves the second
component NB. As an acknowledgement, she sends back NB encrypted by the public key of B
(message 3). When B receives this message, he checks that the content is NB. If this succeeds,
it is claimed that, if the agents A and B are honest, then both parties agreed on the nonces NA

and NB (they share these values). Moreover, these values are secret: they are only known by
the agents A and B.

9
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1. A→ D : {〈A,NA〉}pk(D)

1′. D(A)→ B : {〈A,NA〉}pk(B)

2′. B → A : {〈NA, NB〉}pk(A)
2. B → A : {〈NA, NB〉}pk(A)
3. A→ D : {NB}pk(D)

3′. D(A)→ B : {NB}pk(B)

Figure 2.2: Attack on the Needham-Schroeder public key protocol

Attack. Actually, an attack was found in 1996 by G. Lowe [193] on the Needham-Schroeder
public-key protocol. The attack described in Figure 2.2 relies on the fact that the protocol
can be used by several parties. Moreover, we have to assume that an honest agent A starts a
session of the protocol with a dishonest agent D (message 1). Then D, impersonating A, sends
a message to B, starting another instance of the protocol (message 1′). When B receives this
message, supposedly coming from A, he answers (messages 2′ & 2). The agent A believes this
reply comes from C, hence she continues the protocol (message 3). Now, the dishonest agent D
decrypts the ciphertext and learn the nonce NB. Finally, D is able to send the expected reply
to B (message 3′). At this stage, two instances of the protocol have been completed with
success. In the second instance B believes that he is communicating with A: contrarily to what
is expected, A and B do not agree on NB. Moreover, NB is not a secret shared only between A
and B.

Fixed version of the protocol. It has been proposed to fix the protocol by including the
respondent’s identity in the response (see Figure 2.3).

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈〈NA, NB〉, B〉}pk(A)
3. A→ B : {NB}pk(B)

Figure 2.3: Description of the Needham-Schroeder-Lowe protocol

The attack described above cannot be mounted in the corrected version of the protocol.
Actually, it is reported in [193] that the technique that permitted to find the Lowe attack on
the Needham-Schroeder public key protocol found no attack on this protocol.

2.2 A More Formal Analysis

The Alice-Bob notation is a semi-formal notation that specifies the conversation between the
agents. We have to make more precise the view of each agent. This amounts specifying the
concurrent programs that are executed by each party. One has also to be precise when specifying
how a message is processed by an agent. In particular, what parts of a received message are
checked by the agent? What are the actions performed by the agent to compute the answer?

A classical way to model protocols is to use a process algebra. However, in order to model
the messages that are exchanged, we need a process algebra that allows processes to send first-
order terms build over a signature, names and variables. These terms model messages that are
exchanged during a protocol.

Example 2.1 Consider for example the signature Σ = {{ } , pk , sk( ), dec, 〈 , 〉, proj1, proj2}
which contains three binary function symbols modelling asymmetric encryption, decryption, and
pairing, and four unary function symbols modelling projections, public key and private key. The
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signature is equipped with an equational theory and we interpret equality up to this theory. For
instance the theory

dec({x}pk(y), sk(y)) = x, proj1(〈x1, x2〉) = x1, and proj2(〈x1, x2〉) = x2.

models that decryption and encryption cancel out whenever suitable keys are used. One can
also retrieves the first (resp. second) component of a pair.

Processes P,Q,R, . . . are constructed as follows. The process new N.P restricts the name N
in P and can for instance be used to model that N is a fresh random number. in(c, x).P models
the input of a term on a channel c, which is then substituted for x in process P . out(c, t) outputs
a term t on a channel c. The conditional if M = N then P else Q behaves as P when M and
N are equal modulo the equational theory and behaves as Q otherwise.

The program (or process) that is executed by an agent, say a, who wants to initiate a session
of the Needham-Schroeder protocol with another agent b is as follows:

A(a, b) =̂ new Na. a generates a fresh message Na

out(c, {a,Na}pk(b)). the message is sent on the channel c

in(c, x). a is waiting for an input on c
letx0 = dec(x, sk(a)) in a tries to decrypt the message

if proj1(x0) = Na then a checks that the first component is Na

letx1 = proj2(x0) in a retrieves the second component

out(c, {x1}pk(b)) a sends her answer on c

Note that we use variables for the unknown components of messages. These variables can
be (a priori) replaced by any message, provided that the attacker can build it and that it is
accepted by the agent. In the program described above, if the decryption fails or if the first
component of the message received by a is not equal to Na, then a will abort the protocol.

Similarly, we have to write the program that is executed by an agent, say b, who has to
answer to the messages sent by the initiator of the protocol. This program may look like this:

B(a, b) =̂ in(c, y). b is waiting for an input on c
let (a, y0) = dec(y, sk(b)) in b tries to decrypt it and then retrieves

the second component of the plaintext

new Nb. b generated a fresh random number Nb

out(c, {y0, Nb}pk(a)). b sends his answer on the channel c

in(c, y′). b is waiting for an input on c
if dec(y′, sk(b)) = Nb then Ok. b tries to decrypt the message and he

checks whether its content is Nb or not

The (weak) secrecy property states for instance that, if a, b are honest (their secret keys
are unknown to the environment), then, when the process B(a, b) reaches the Ok state, Nb is
unknown to the environment. We will also see later how to formalise agreement properties. The
“environment knowledge” is actually a component of the description of the global state of the
network. Basically, all messages that can be built from the public data and the messages that
have been sent are in the knowledge of the environment.

Any number of copies of A and B (with any parameter values) are running concurrently
in a hostile environment. Such a hostile environment is modelled by any process that may
receive and emit on public channels. We also assume that such an environment owes as many
public/private key pairs as it wishes (compromised agents), an agent may also generate new
values when needed. The only restrictions on the environment is on the way it may construct
new messages: the encryption and decryption functions, as well as public keys are assumed to
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be known from the environment. However no private key (besides those that it generates) is
known. We exhibit now a process that will yield the attack, assuming that the agent d is a
dishonest (or compromised) agent who leaked his secret key:

P =̂ in(c, z1). d receives a message (from a)
let 〈a, z′1〉 = dec(z1, sk(d)) in d decrypts it

out(c, {〈a, z′1〉}pk(b)). d sends the plaintext encrypted with pk(b)

in(c, z2).out(c, z2). d forwards to a the answer he obtained from b
in(c, z3). d receives the answer from a
let z′3 = dec(z3, sk(d)) in d decrypts it and learn Nb

out(c, {z′3}pk(b)). d sends the expected message {Nb}pk(b) to b.

The Needham-Schroeder-Lowe protocol has been proved secure in several formal models
close to the one we have sketched in this section [72, 24].

2.3 An Attack on the Fixed Version of the Protocol

Up to now, the encryption is a black-box: nothing can be learnt on a plaintext from a ciphertext
and two ciphertexts are unrelated.

Consider however a simple El-Gamal encryption scheme. Roughly (we skip here the group
choice for instance), the encryption scheme is given by a cyclic group G of order q and genera-
tor g; these parameters are public. Each agent a may choose randomly a secret key sk(a) and
publish the corresponding public key pk(a) = gsk(a). Given a message m (assume for simplicity
that it is an element gm

′
of the group), encrypting m with the public key pk(a) consists in

drawing a random number r and letting {m}pk(a) = (pk(a)r × gm′
, gr). Decrypting the message

consists in raising gr to the power sk(a) and dividing the first component of the pair by gr×sk(a).
We have that:

[pk(a)r × gm′
]/(gr)sk(a) = [(gsk(a))r × gm′

]/(gr)sk(a) = gm
′

= m.

This means that this encryption scheme satisfies the equation dec({x}pk(y), sk(y)) = x. How-
ever, as we will see, this encryption scheme also satisfies some other properties that are not taken
into account in our previous formal analysis.

Attack. Assume now that we are using such an encryption scheme in the Needham-Schroeder-
Lowe protocol and that pairing two group elements m1 = gm

′
1 and m2 = gm

′
2 is performed in a

naive way: 〈m1,m2〉 is mapped to gm
′
1+2|m

′
1|×m′

2 (i.e. concatenating the binary representations
of the messages m′1 and m′2). In such a case, an attack can be mounted on the protocol (see
Figure 2.4).

Actually, the attack starts as before. We assume that the honest agent a is starting a
session with a dishonest party d. Then d decrypts the message and re-encrypt it with the public
key of b. The honest party b replies sending the expected message {〈〈Na, Nb〉, b〉}pk(a). The
attacker intercepts this message. Note that the attacker can not simply forward it to a since
it does not have the expected form. The attacker intercepts {〈〈Na, Nb〉, b〉}pk(a), i.e. (pk(a)r ×
gNa+2α×Nb+22α×b, gr) where α is the length of a nonce. The attacker knows g, α, b, hence he can
compute g−2

2α×b× g22α×d and multiply the first component, yielding {〈〈Na, Nb〉, d〉}pk(a). Then
the attack can go on as before: a replies by sending {Nb}pk(d) and the attacker sends {Nb}pk(b)
to b, impersonating a.

This example is however a toy example since pairing could be implemented in another way.
In [251] there is a real attack that is only based on weaknesses of the El Gamal encryption
scheme. In particular, the attack does not dependent on how pairing is implemented.
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1. a→ d : {〈a,Na〉}pk(d)
1′. d(a)→ b : {〈a,Na〉}pk(b)
2′. b→ a : {〈〈Na, Nb〉, b〉}pk(a) = (gNa+2α×Nb+22α×b × pk(a)r, gr)

d intercepts this message, and computes

[gNa+2α×Nb+22α×b × pk(a)r]× g−22α×b × g22α×d = gNa+2α×Nb+22α×d × pk(a)r

2. d→ a : {〈〈Na, Nb〉, d〉}pk(a) = (gNa+2α×Nb+22α×d × pk(a)r, gr)

3. a→ d : {Nb}pk(d)
3′. d→ b : {Nb}pk(d)

Figure 2.4: Attack on the Needham-Schroeder-Lowe protocol with El-Gamal encryption.

This shows that the formal analysis only proves the security in a formal model, that might
not be faithful. Here, the formal analysis assumed a model in which it is not possible to forge
a ciphertext from another ciphertext, without decrypting/encrypting. This property is known
as non-malleability, which is not satisfied by the El Gamal encryption scheme.

2.4 Further Readings

A survey by Clark and Jacob [106] describes several authentication protocols and outlines also
the methods that have been used to analyse them. In addition, it provides a summary of the
ways in which protocols have been found to fail. The purpose of the SPORE web page [1] is to
continue on-line the seminal work of Clark and Jacob, updating their base of security protocols.

As you have seen, some protocols (or some attacks) rely on some algebraic properties of
cryptographic primitives. In [122], a list of some relevant algebraic properties of cryptographic
operators is given, and for each of them, some examples of protocols or attacks using these
properties are provided. The survey also gives an overview of the existing methods in formal
approaches for analysing cryptographic protocols.

2.5 Exercises

Exercice 1 (?)
Consider the following protocol:

A→ B : 〈A, {K}pk(B)〉
B → A : 〈B, {K}pk(A)〉

First, A generates a fresh key K and sends it encrypted with the public key of B. Only B
will be able to decrypt this message. In this way, B learns K and B also knows that this message
comes from A as indicated in the first part of the message he received. Hence, B answers to A
by sending again the key, this time encrypted with the public key of A.

Show that an attacker can learn the key K generated by an honest agent A to another honest
agent B.

Exercice 2 (?)
The previous protocol is corrected as in the Needham-Schroeder protocol, i.e. we add the
identity of the agent inside each encryption.

A→ B : {〈A,K〉}pk(B)

B → A : {〈B,K〉}pk(A)
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1. Check that the previous attack does not exist anymore. Do you think that the secrecy
property stated in Exercise 1 holds?

2. Two agents want to use this protocol to establish a session key. Show that there is an
attack.

Exercice 3 (??)
For double security, all messages in the previous protocol are encrypted twice:

A→ B : {〈A, {K}pk(B)〉}pk(B)

B → A : {〈B, {K}pk(A)〉}pk(A)

Show that the protocol then becomes insecure in the sense that an attacker can learn the key K
generated by an honest agent A to another honest agent B.

Exercice 4 (? ? ?)
We consider a variant of the Needham-Schroeder-Lowe protocol. This protocol is as follows:

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈NA, 〈NB, B〉〉}pk(A)
3. A→ B : {NB}pk(B)

1. Check that the ’man-in-the-middle’ attack described in Figure 2.2 does not exist.

2. Show that there is an attack on the secrecy of the nonce Nb.
hint: type confusion

3. Do you think that this attack is realistic? Why?



Chapter 3

A Small Process Calculus

We now define our cryptographic process calculus for describing protocols. This calculus is
inspired by the applied pi calculus [7] which is the calculus used by the ProVerif tool [72]. The
applied pi calculus is a language for describing concurrent processes and their interactions. It is
an extension of the pi calculus [207] with cryptographic primitives. It is designed for describing
and analysing a variety of security protocols, such as authentication protocols (e.g. [149]),
key establishment protocols (e.g. [5]), e-voting protocols (e.g. [138]), . . . These protocols try to
achieve various security goals, such as secrecy, authentication, privacy, . . .

In this chapter, we present a simplified version that is sufficient for our purpose and we
explain how to formalise security properties in such a calculus.

3.1 Preliminaries

The applied pi calculus is similar to the spi calculus [10]. The key difference between the
two formalisms concerns the way that cryptographic primitives are handled. The spi calculus
has a fixed set of primitives built-in (symmetric and public key encryption), while the applied
pi calculus allows one to define less usual primitives by means of an equational theory. This
flexibility is particularly useful to model the new protocols that are emerging and which rely on
new cryptographic primitives.

3.1.1 Messages

To describe processes, one starts with an infinite set of names N (which are used to represent
atomic data, such as keys, nonces, . . . ), an infinite set of variables X , and a signature F which
consists of the function symbols which will be used to define terms. Each function symbol has
an associated integer, its arity. In the case of security protocols, typical function symbols will
include a binary function symbol senc for symmetric encryption, which takes plaintext and a
key and returns the corresponding ciphertext, and a binary function symbol sdec for decryption,
taking ciphertext and a key and returning the plaintext. Variables are used to consider messages
containing unknown (unspecified) pieces.

Terms are defined as names, variables, and function symbols applied to other terms. Terms
and function symbols may be sorted, and in such a case, function symbol application must
respect sorts and arities. We denote by T (Σ) the set of terms built on the symbols in Σ. We
denote by fv(M) (resp. fn(M)) the set of variables (resp. names) that occur in M . A term
M that does not contain any variable is a ground term. The set of positions of a term T is
written pos(T ) ⊆ N∗, and its set of subterms st(T ). The subterm of T at position p ∈ pos(T )
is written T |p. The term obtained by replacing T |p with a term U in T is denoted T [U ]p.

We split the function symbols between private and public symbols, i.e. F = Fpub ] Fpriv.
Private function symbols are used to model algorithms or data that are not available to the

15
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attacker. Moreover, sometimes, we also split the function symbols into constructors and de-
structors, i.e. F = D ] C. Destructors are used to model the fact that some operations fail. A
typical destructor symbol could be the symbol sdec if we want to model a decryption algorithm
that fails when we try to decrypt a ciphertext with a wrong key. A constructor term is a term
in T (C ∪ N ∪ X ).

By the means of a convergent term rewriting system R, we describe the equations which
hold on terms built from the signature. A term rewriting system (TRS) is a set of rewrite rules
l→ r where l ∈ T (F ∪X ) and r ∈ T (F ∪ fv(l)). A term S ∈ T (F ∪N ∪X ) rewrites to T by R,
denoted S →R T , if there is l → r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ
and T = S[rσ]p. Moreover, we assume that {xσ | x ∈ Dom(σ)} are constructor terms. We
denote by →∗R the reflexive and transitive closure of →R, and by =R the symmetric, reflexive
and transitive closure of →R. A TRS R is convergent if it is:

• terminating, i.e. there is no infinite chain T1 →R T2 →R . . .; and

• confluent, i.e. for all terms S, T such that S =R T , there exists U such that S →∗R U and
T →∗R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗R S and S is R-
reduced then S is a R-reduced form of T . When this reduced form is unique (in particular if R
is convergent), we write S = T↓R (or simply T↓ when R is clear from the context). In the
following, we will only consider convergent rewriting system. Hence, we have that M =R N , if
and only if, M↓ = N↓. A ground constructor term in normal form is also called a message.

Example 3.1 In order to model the handshake protocol that we will present later on, we intro-
duce the signature:

Fsenc = {senc/2, sdec/2, f/1}

together with the term rewriting system Rsenc = {sdec(senc(x, y), y)→ x}. We will assume that
Fsenc only contains constructor symbols. This represents a decryption algorithm that always
succeeds. If we decrypt the ciphertext senc(n, k) with a key k′ 6= k, the decryption algorithm will
return the message sdec(senc(n, k), k′).

Here, we have that sdec(senc(n′, sdec(n, n)), sdec(n, n)) =R n
′. Indeed, we have that sdec(senc(n′, sdec(n, n)), sdec(n, n))

rewrites in one step to n′ (with p = ε, and σ = {x 7→ n′, y 7→ sdec(n, n)}).

Example 3.2 In order to model the Needham-Schroeder protocol, we will consider the following
signature:

Faenc = {〈 , 〉, proj1/1, proj2/1, aenc/2, pk/1, sk/1, adec/2}

together with the term rewriting system Raenc:

proj1(〈x, y〉) → x proj2(〈x, y〉) → y adec(aenc(x, pk(y)), sk(y)) → x

This will allow us to model asymmetric encryption and pairing. We will assume that proj1,
proj2, and adec are destructors symbols. The only private non-constant symbol is the symbol sk.
Note that proj1(〈n, adec(n, n)〉) 6=R n. Indeed, the terms proj1(〈n, adec(n, n)〉 and n are both
irreducible and not syntactically equal.

3.1.2 Assembling Terms into Frames

At some moment, while engaging in one or more sessions of one or more protocols, an attacker
may have observed a sequence of messages M1, . . . ,M`, i.e. a set of ground constructor terms
in normal form. We want to represent this knowledge of the attacker. It is not enough for us to
say that the attacker knows the set of terms {M1, . . . ,M`} since he also knows the order that
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he observed them in. Furthermore, we should distinguish those names that the attacker knows
from those that were freshly generated by others and which remain secret from the attacker;
both kinds of names may appear in the terms. We use the concept of frame from the applied pi
calculus [7] to represent the knowledge of the attacker. A frame φ = new n.σ consists of a finite
set n ⊆ N of restricted names (those that the attacker does not know), and a substitution σ of
the form:

{M1/x1 , . . . ,
M`/x`}.

The variables enable us to refer to each message Mi. We always assume that the terms Mi

are ground term in normal form that do not contain destructor symbols. The names n are
bound and can be renamed. We denote by =α the α-renaming relation on frames. The domain
of the frame φ, written Dom(φ), is defined as {x1, . . . , x`}.

3.1.3 Deduction

Given a frame φ that represents the information available to an attacker, we may ask whether
a given ground constructor term M may be deduced from φ. Given a convergent rewriting
system R on F , this relation is written φ `R M and is formally defined below.

Definition 3.1 (Deduction) Let M be a ground term and φ = new n.σ be a frame. We have
that new n.σ `R M if, and only if, there exists a term N ∈ T (Fpub ∪ N ∪ Dom(φ)) such that
fn(N) ∩ n = ∅ and Nσ =R M . Such a term N is a recipe of the term M .

Intuitively, the deducible messages are the messages of φ and the names that are not pro-
tected in φ, closed by rewriting with R and closed by application of public function symbols.
When new n.σ `R M , any occurrence of names from n inM is bound by new n. So new n.σ `R M
could be formally written new n.(σ `R M).

Example 3.3 Consider the theory Rsenc given in Example 3.1 and the following frame:

φ = new k, s1.{senc(〈s1,s2〉,k)/x1 , k/x2}.

We have that φ `Rsenc k, φ `Rsenc s1 and φ `Rsenc s2. Indeed x2, proj1(sdec(x1, x2)) and s2 are
recipes of the terms k, s1 and s2 respectively.

The relation new n.σ `R M can be axiomatized by the following rules:

if ∃x ∈ dom(σ) such that xσ = M
new n.σ `R M

s ∈ N r n
new n.σ `R s

φ `R M1 . . . φ `R M`
f ∈ Fpub

φ `R f(M1, . . . ,M`)

φ `R M
M =R M

′
φ `R M ′

Since we only consider convergent rewriting systems, it is easy to prove that the two defini-
tions coincide.

3.1.4 Static Equivalence

The frames we have introduced are too fine-grained as representations of the attacker’s knowl-
edge. For example, νk.{senc(s0,k)/x} and νk.{senc(s1,k)/x} represent a situation in which the
encryption of the public name s0 (resp. s1) by a randomly-chosen key has been observed. Since
the attacker cannot detect the difference between these two situations, the frames should be
considered equivalent. To formalise this, we note that if two recipes M,N on the frame φ pro-
duce the same constructor term, we say they are equal in the frame, and write (M =R N)φ.
Thus, the knowledge of the attacker can be thought of as his ability to distinguish such recipes.
If two frames have identical distinguishing power, then we say that they are statically equivalent.



18 CHAPTER 3. A SMALL PROCESS CALCULUS

Definition 3.2 (static equivalence) We say that two terms M and N in T (Fpub ∪ N ∪ X )
are equal in the frame φ, and write (M =R N)φ, if there exists n and a substitution σ such
that φ =α νn.σ, n ∩ (fn(M) ∪ fn(N)) = ∅, and Mσ↓ and Nσ↓ are both constructor terms that
are equal, i.e. Mσ↓ = Nσ↓.

We say that two frames φ1 = n1.σ1 and φ2 = n2.σ2 are statically equivalent, and write
φ1 ∼R φ2, when:

• Dom(φ1) = Dom(φ2),

• for all term M ∈ T (Fpub ∪N ∪X ) such that fn(M)∩ (n1 ∪ n2) = ∅, we have that: Mσ1↓
is constructor term ⇔ Mσ2↓ is a constructor term.

• for all terms M,N in T (Fpub ∪N ∪ X ) we have that: (M =R N)φ1 ⇔ (M =R N)φ2.

Note that by definition of ∼, we have that φ1 ∼ φ2 when φ1 =α φ2 and we have also that
new n.φ ∼ φ when n does not occur in φ.

Example 3.4 Consider the rewriting system Rsenc provided in Example 3.1. Consider the
frames φ = new k.{senc(s0,k)/x1 , k/x2}, and φ′ = new k.{senc(s1,k)/x1 , k/x2}. Intuitively, s0 and s1
could be the two possible (public) values of a vote. We have (sdec(x1, x2) =Rsenc s0)φ whereas
(sdec(x1, x2) 6=Rsenc s0)φ

′. Therefore we have that φ 6∼ φ′. However, we have that:

new k.{senc(s0,k)/x1} ∼ new k.{senc(s1,k)/x1}.

Example 3.5 Consider again the rewriting system Rsenc provided in Example 3.1. We have
that:

new k.{senc(0,k)/x} ∼ new k.{senc(1,k)/x}
{senc(0,k)/x, 〈0,k〉/y} 6∼ new k.{senc(1,k)/x, 〈0,k〉/y} (sdec(x, proj2(y))

?
= 0)

new a.{a/x} ∼ new b.{b/x}
new a.{a/x} 6∼ new b.{b/y} (different domains)

{a/x} 6∼ {b/x} (x
?
= a)

3.2 Protocols

We now described our cryptographic process calculus for describing protocols. For sake of
simplicity, we only consider public channels, i.e. under the control of the attacker.

3.2.1 Protocol Language

The grammar for processes is given below. One has plain processes P,Q,R and extended pro-
cesses A,B,C.

Plain processes. Plain processes are formed from the following grammar

P,Q,R =̂ plain processes
0 null process
P ‖ Q parallel composition
in(c,Mi).P message input
out(c,Mo).P message output
if M = N then P else Q conditional
new n.P restriction
!P replication
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such that a variable x appears in a term only if the term is in the scope of an input in(c,Mi)
with x ∈ fv(Mi). The null process 0 does nothing; P ‖ Q is the parallel composition of P
and Q. The replication !P behaves as an infinite number of copies of P running in parallel.
The conditional construction if M = N then P else Q is standard. We omit else Q when Q
is 0. The process in(c,Mi).P is ready to input on the public channel c, then to run P where
the variables of Mi are bound by the actual input message. The term Mi is a constructor term
with variables. out(c,Mo).P is ready to output Mo (it may contains some destructors), then to
run P . Again, we omit P when P is 0.

In this definition, we consider both pattern inputs and conditionals, which is redundant
in some situations: for any executable process, the patterns can be replaced with condition-
als. However, we keep both possibilities, in order to keep some flexibility in writing down the
protocols.

Example 3.6 We illustrate our syntax with the well-known handshake protocol that can be
informally described as follows:

A → B : senc(n,w)
B → A : senc(f(n), w)

We rely on the signature given in Example 3.1. The goal of this protocol is to authenticate B
from A’s point of view, provided that they share an initial secret w. This is done by a simple
challenge-response transaction: A sends a random number (a nonce) encrypted with the shared
secret key w. Then, B decrypts this message, applies a given function (for instance f(n) = n+1)
to it, and sends the result back, also encrypted with w. Finally, the agent A checks the validity of
the result by decrypting the message and checking the decryption against f(n). In our calculus,
we can model the protocol as new w.(PA ‖ PB) where

• PA(w) = new n. out(c, senc(n,w)). in(c, x). if sdec(x,w) = f(n) then P

• PB(w) = in(c, y). out(c, senc(f(sdec(y, w)), w)).

where P models an application that is executed when PB has been successfully authenticated.
Here, we use the formalism with explicit destructors but we could also used pattern inputs.

Example 3.7 Going back to the Needham-Schroeder public key protocol described in Chapter 2
and considering the signature given in Example 3.2, we have that:

PA(a, b) =̂ out(c, aenc(〈a,Na〉, pk(b))).
in(c, aenc(〈Na, x〉, pk(a)).
out(c, aenc(x, pk(b)))

PB(a, b) =̂ in(c, aenc(〈a, y〉, pk(b))).
out(c, aenc(〈y,Nb〉, pk(a)).
in(c, aenc(Nb, pk(b)))

Here, we have used pattern inputs. We could also have used the alternative formalism of
explicit destructors. With pattern inputs, we do not need in general to used destructors to
describe the outputs.

Note that all the processes that can be written in this syntax (in particular the one with
pattern inputs) are not necessary meaningful. Some of them will not be executable.

Continuing with the Needham-Schroeder protocol, we may define several execution scenarii:

Example 3.8 (Scenario 1) The following specifies a copy of the role of Alice, played by a,
with d and a copy of the role of Bob, played by b, with a, as well as the fact that d is dishonest,
hence his secret key is leaked.

P1 =̂ (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d))
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Example 3.9 (Scenario 2) Assume that we wish a to execute the role of the initiator, however
with any other party, which is specified here by letting the environment give the identity of such
another party: the process first receives xb, that might be bound to any value. The other role is
specified in the same way.

P2 =̂ (new Na. in(c, xb). PA(a, xb)) ‖ (new Nb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

Example 3.10 (Scenario 3) In Example 3.8 and Example 3.9, a was only able to engage the
protocol once (and b was only able to engage once in a response). We may wish a (resp. b) be
able to execute any number of instances of the role of the initiator (resp. responder).

P3 =̂ !(new Na. in(c, xb). PA(a, xb)) ‖ !(newNb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

Example 3.11 (Scenario 4) Finally, in general, the role of the initiator could be executed by
any agent, including b and the role of the responder could be executed by any number of agents as
well. We specify an unbounded number of parties, engaging in an unbounded number of sessions
by:

P4 =̂

{
!(new Na. in(c, xa). in(c, xb). PA(xa, xb)) ‖
!(new Nb. in(c, xa). in(c, xb). PB(xa, xb)) ‖ out(c, sk(d))

We can imagine other scenarios as well. Verifying security will only be relative to a given
scenario.

Extended Processes. Further, we extend processes with active substitutions and restric-
tions:

A,B,C := P
∣∣ A ‖ B ∣∣ new n.A

∣∣ {M/x}
where M is a ground constructor term in normal form. As usual, names and variables have
scopes, which are delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A), bn(A)
for the sets of free and bound variables (resp. names). Moreover, we require processes to be
name and variable distinct, meaning that bn(A) ∩ fn(A) = ∅, bv(A) ∩ fv(A) = ∅, and also
that any name and variable is bound at most once in A. Note that the only free variables are
introduced by active substitutions (the x in {M/x}). Lastly, in an extended process, we require
that there is at most one substitution for each variable. An evaluation context is an extended
process with a hole instead of an extended process.

Extended processes built up from the null process, active substitutions using parallel com-
position and restriction are called frames (extending the notion of frame introduced in Sec-
tion 3.1.2). Given an extended process A we denote by φ(A) the frame obtained by replacing
any embedded plain processes in it with 0.

Example 3.12 Consider the following process:

A = new s, k1.(out(c, a) ‖ {senc(s,k1)/x} ‖ new k2.out(c, senc(s, k2))).

We have that φ(A) = new s, k1.(0 ‖ {senc(s,k1)/x} ‖ new k2.0).

3.2.2 Operational Semantics

To formally define the operational semantics of our calculus, we have to introduce three relations,
namely structural equivalence, internal reduction, and labelled transition.
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Structural Equivalence. Informally, two processes are structurally equivalent if they model
the same thing, even if the grammar permits different encodings. For example, to describe a
pair of processes PA and PB running in parallel, we have to write either PA ‖ PB, or PB ‖ PA.
These two processes are said to be structurally equivalent. More formally, structural equivalence
is the smallest equivalence relation closed by application of evaluation contexts and such that:

Par-0 A ‖ 0 ≡ A
Par-C A ‖ B ≡ B ‖ A
Par-A (A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

New-Par A ‖ new n.B ≡ new n.(A ‖ B) n 6∈ fn(A)
New-C new n1.new n2.A ≡ new n2.new n1.A

Note that the side condition of the rule New-Par is always true on processes that are name
and variable distinct. Using structural equivalence, every extended process A can be rewritten
to consist of a substitution and a plain process with some restricted names, i.e.

A ≡ new n.({M1/x1} ‖ . . . ‖ {Mk/xk} ‖ P ).

In particular, any frame can be rewritten as new n.σ matching the notion of frame introduced in
Section 3.1.2. We note that unlike in the original applied pi calculus, active substitutions cannot
“interact” with the extended processes. As we will see in the following, active substitutions
record the outputs of a process to the environment. The notion of frames will be particularly
useful to define equivalence based security properties such as resistance against guessing attacks
and privacy type properties.

Internal Reduction. A process can be executed without contact with its environment, e.g.
execution of conditionals, or internal communications between processes in parallel. Formally,
internal reduction is the smallest relation on processes closed under structural equivalence and
application of evaluation contexts such that:

Repl !P
τ−→ P ′ ‖ !P where P ′ is a fresh renaming of P

Then if M = N then P else Q
τ−→ P where M↓ = N↓ and M↓ is a message

Else if M = N then P else Q
τ−→ Q where M↓ 6= N↓ and M↓, N↓ are messages

Comm out(c,M1).P1 ‖ in(c,M2).P2
τ−→ P1 ‖ P2θ where θ is such that

Dom(θ) = fv(M2), M2θ↓ = M1↓, and M1↓ is a message.

We write →∗ for the reflexive and transitive closure of
τ−→. Note that, in some situations, a

process of the form if M = N then P else Q may block. This happens when M↓ (resp. N↓)
contains some destructors.

Labelled Transition. Communications are synchronous, but (as long as there is no private
channel) we can assume that they occur with the environment. We sketch here a labelled
transition semantics. The semantics given previously allow us to reason about protocols with
an adversary represented by a context. In order to prove that security properties hold for
all adversaries, quantification over all contexts is typically required, which can be difficult in
practise. The labelled semantics aim to eliminate universal quantification of the context. We
have two main rules:

In in(c, x).P
in(c,M)−−−−→` P{M/x} where M is a message

Out out(c,M).P
out(c,M↓)−−−−−−→` P ‖ {M↓/x} where x is a fresh variable and M↓ is a message
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The labelled operational semantics is closed by structural equivalence and under some eval-
uation contexts. Actually, we have that:

A ≡ A′ A′
α−→` B

′ B′ ≡ B

A
α−→` B

A
α−→` B

C[A]
α−→` C[B]

where C is an evaluation context, and in case of an input, i.e. α = in(c,M), we have that
φ(C[A]) `R M .

We write →` to denote
τ−→ ∪ α−→` and →∗` to denote the reflexive and transitive closure of →`.

Example 3.13 Going back to the handshake protocol described in Example 3.6, the derivation
described below represents a normal execution of the protocol. For simplicity of this example we
suppose that x 6∈ fv(P ).

new w.(PA(w) ‖ PB(w))
out(c,senc(n,w))−−−−−−−−−−→` new w, n.(PB(w) ‖ {senc(n,w)/x1} ‖ in(c, x). if sdec(x,w) = f(n) then P )
in(c,senc(n,w))−−−−−−−−−→` new w, n.(out(c,M) ‖ {senc(n,w)/x1} ‖ in(c, x). if sdec(x,w) = f(n) then P )

out(c,M↓)−−−−−−→` new w, n.({senc(n,w)/x1} ‖ {M↓/x2} ‖ in(c, x). if sdec(x,w) = f(n) then P )
in(c,senc(f(n),w))−−−−−−−−−−→` new w, n.({senc(n,w)/x1} ‖ {M↓/x2} ‖ if sdec(senc(f(n), w), w) = f(n) then P )

τ−→ new w, n.({senc(n,w)/x1} ‖ {M↓/x2} ‖ P )

where M = senc(f(sdec(senc(n,w), w)), w)→Rsenc senc(f(n), w).

Example 3.14 Continuing Example 3.7 we develop some transitions from

P1 = (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d))

For convenience, the names Na and Nb are pushed out. We obtain another process that is
structurally equivalent.
Case 1: The process PA may move first, yielding

P1
out(c,aenc(〈a,Na〉,pk(d)))−−−−−−−−−−−−−−−→` new Na.new Nb. ( {aenc(〈a,Na〉,pk(d))/x1}

‖ (in(c, aenc(〈Na, x〉, pk(a))). out(c, aenc(x, pk(b)))
‖ PB(a, b)
‖ out(c, sk(d)) )

Case 2: The process PB may also move first, and the resulting process depends on an input M1

such that new Na, Nb.(σ ` aenc(〈a,M1〉, pk(b))) where Dom(σ) = ∅.

P1
in(c,M1)−−−−−→`= new Na, new Nb. ( PA(a, d)

‖ out(c, aenc(〈M1, Nb〉, pk(a))).in(c, aenc(Nb, pk(b)))
‖ out(c, sk(d)) )

Case 3: The last process may also move first, yielding

P1
out(c,sk(d))−−−−−−−→` new Na, new Nb. ( {sk(d)/x1} ‖ PA(a, d) ‖ PB(a, b) )

From the resulting processes, there are again several possible transitions. We do not continue
here the full transition sequence, which is too large to be displayed.

In the above example, we see that the transition system might actually be infinite. Indeed,
the term M1 is an arbitrary message that satisfies some deducibility conditions. Such deducibil-
ity conditions can be simplified (and decided). This will be the subject of Chapter 4 on bounded
process verification.


