
38 CHAPTER 4. DEDUCIBILITY CONSTRAINTS

4.3.2 Completeness

First, we show that proofs considered in solutions of constraints can be narrowed to so-called
simple proofs. Let T1 ⊆ T2 ⊆ . . . ⊆ Tn . We say that a proof Π of Ti " u is left minimal if,
whenever there is a proof of Tj " u for some j < i, then Π is also a proof of Tj " u. In other
words, the left-minimal proofs are those that can be performed in a minimal Tj . We say that a
proof is simple if all its subproofs are left minimal and there is no repeated label on any branch.
Note that a subproof of a simple proof is simple.

Example 4.4 Assume T1 = {a, b}, T2 = {a, b, 〈a, b〉} and T3 = {a, b, c, 〈a, b〉}.

• The following proof is local but not simple:

a 〈a, b〉

〈a, 〈a, b〉〉

Since the set of hypotheses is not contained in T1, while there is a proof of T1 " 〈a, 〈a, b〉〉.

• The following proof is local but not simple:

c 〈a, b〉

〈c, 〈a, b〉〉

Since there is a subproof, which is not simple.

•

c

a b

〈a, b〉

〈c, 〈a, b〉〉

is a simple proof

Lemma 4.3 Let T1 ⊆ T2 ⊆ . . . ⊆ Tn be a sequence of sets of terms and u be a term such that
Ti " u. There exists a simple proof Π of Ti " u.

Proof : Let i be a minimal index for which there is a proof of Ti " u. Thanks to Lemma 4.1,
there is a local proof Π0 of Ti " u. We prove the lemma by induction on the size of Π0.

Base case: Π0 is reduced to a leaf. In such a case, Π0 is a simple proof.
Induction step: Consider the last rule in the proof of u:

Π0 =






Π1

u1
· · ·

Πn

un
R

u

For every j = 1, ..., n, we have that Πj is a proof of Ti " uj . By induction hypothesis, there are
simple proofs Π′

j of uj . If u appears as a node in some of these proofs, let Π be the corresponding
subproof and we get the desired result. Otherwise, let

Π =






Π′
1

u1
· · ·

Π′
n

un
R

u

The proof Π is a simple proof of u. !

4.3. DECISION PROCEDURE 39

Lemma 4.4 Let C be an unsolved constraint system, θ be a solution of C and Ti

?
" ui be a

minimal unsolved constraint of C. Let u be a term. If there is a simple proof of Tiθ " u having
the last rule an axiom or a decomposition then there is t ∈ st(Ti)! X such that tθ = u.

Proof : Let Π be a simple proof of Tiθ " u such that its last rule is an axiom or a decomposition.
Let j be the minimal index such that Tjθ " u. Note that j ≤ i and by definition of a simple
proof, we have that Π is also a simple proof of Tjθ " u.

We prove the lemma, by induction on Π.

• The last rule is an axiom. Then u ∈ Tjθ. There is t ∈ Tj (thus t ∈ st(Tj)) such that

tθ = u. If t is a variable then Tt

?
" t is a constraint in C with Tt " Tj (see the definition

of a constraint system). Hence Ttθ " tθ, that is Ttθ " u, which contradicts the minimality
of j. Thus, as required, t is not a variable.

• The last rule is a decomposition. Suppose that it is a symmetric decryption. That is,
there is w such that Tjθ " senc(u,w), and Tjθ " w. By simplicity of the proof, the last rule
applied when obtaining senc(u,w) is an axiom or a decomposition, otherwise the same
node would appear twice. Then, applying the induction hypothesis we have that there is
t ∈ st(Tj) ! X such that tθ = senc(u,w). It follows that t = senc(t′, t′′) with t′θ = u. If
t′ is a variable then Tt′θ " t′θ. That is Tt′θ " u, which again contradicts the minimality
of j. Hence t′ is not variable, as required.

For the other decomposition rules the same reasoning holds. !

Lemma 4.5 Every simple proof is local

The proof is left as an exercise.

Lemma 4.6 Let C = T0

?
" x0, . . . , Ti−1

?
" xi−1, Ti

?
" u, . . . be a constraint system and σ be a

solution of C such that

1. Ti does not contain two distinct subterms t1, t2 with t1σ = t2σ,

2. u is a non-variable subterm of Ti.

Then T ′
i " u, where T ′

i = Ti ∪ {x | (T
?
" x) ∈ C, T " Ti}.

Proof : Let j be minimal such that Tjσ " uσ. Thus j ≤ i and Tj ⊆ Ti. Consider a simple
proof Π of Tjσ " uσ. We reason by induction on the depth of Π.

Base case: Π is reduced to a leaf. Then there is t ∈ Tj such that tσ = uσ. By hypothesis 1, we
deduce that t = u. Hence, we have that u ∈ Tj and thus T ′

i " u, as required.

Induction step: We analyse the different cases, depending on the last rule R of Π:

• Case R is a composition rule. Assume for example that R = SE. In such a case, we have
that:

Π =






Π1

v1

Π2

v2

senc(v1, v2)

with uσ = senc(v1, v2). Since u is not a variable, u = senc(u1, u2), u1σ = v1, and u2σ = v2.
If u1 (resp. u2) is a variable then u1 (resp. u2) belongs to fv(Ti) since u ∈ st(Ti). Again,
this implies u1 ∈ T ′

i (resp. u2 ∈ T ′
i). Otherwise, u1 (resp. u2) is not a variable. Then, by

induction hypothesis, T ′
i " u1 (resp. T ′

i " u2). Hence in both cases we have that T ′
i " u1

and T ′
i " u2. This allows us to conclude that T ′

i " u.

40 CHAPTER 4. DEDUCIBILITY CONSTRAINTS

• Case R = SD. In such a case, there is w such that Tjσ " senc(uσ,w), and Tjσ " w:

Π =






Π1

senc(uσ,w)

Π2

w

uσ

By simplicity, the last rule of the proof Π1 is a decomposition or an axiom. By Lemma 4.4,
there is t ∈ st(Tj)!X such that tσ = senc(uσ,w). Let t = senc(t1, t2) with t1σ = uσ, and
t2σ = w. By induction hypothesis, T ′

i " t. Since t1σ = uσ, by hypothesis 1, we have that
t1 = u.

Now, if t2 is a variable, and since t2 ∈ fv(Ti), we have that Tt2 " Ti and thus t2 ∈ T ′
i . If

t2 is not a variable, then, from Tjσ " t2σ and by induction hypothesis, T ′
i " t2. So, in any

case, T ′
i " t2.

Hence, we have both that T ′
i " senc(u, t2) and T ′

i " t2, from which we conclude that T ′
i " u,

by symmetric decryption.

• Case R = PKD. In such a case, there is w such that Tjσ " sk(w) and Tjσ " aenc(uσ,w).
As in the previous case, there is t ∈ st(Tj)!X such that tσ = aenc(uσ,w). By induction
hypothesis, T ′

i " t. Let t = aenc(t1, t2). As in the previous case, we have that t1σ = uσ,
and thus t1 = u (thanks to hypothesis 1).

The last rule in the proof of Tjσ " sk(w) is a decomposition (no composition rule can
yield a term headed with sk()). Then, by Lemma 4.4 (Tj satisfies the hypotheses of the
lemma since Tj ⊆ Ti), there is a non-variable subterm w1 ∈ st(Tj) such that w1σ = sk(w).
Let w1 = sk(w2). By induction hypothesis, T ′

j " sk(w2). Moreover, since w2σ = t2σ, by
hypothesis 2, we have that w2 = t2,

Finally, from T ′
i " aenc(u,w2) and T ′

i " sk(w2), we conclude that T ′
i " u.

The proof is similar for the other decomposition rules. !

Proposition 4.2 (Completeness for one step) If C is an unsolved deducibility constraint
system and θ is a solution of C, then there is a deducibility constraint system C′, a substitution
σ, and a solution θ′ of C′ such that C "σ C′ and θ = σθ′.

Proof : Let C be an unsolved constraint system and θ be a solution of C. We show that there
is a constraint system C′ and a solution θ′ of C′ such that C "σ C′ and θ = σθ′.

Consider a minimal unsolved constraint Ti

?
" ui such that ui is not a variable. We have that

Tiθ " uiθ. Consider a simple proof Π of Tiθ " uiθ. We analyse the different cases depending on
the last rule of Π.

1. The last rule is a composition. Suppose that it is the pairing rule. That is, there are
w1, w2 such that Tiθ " w1, Tiθ " w2 and 〈w1, w2〉 = uiθ. Since ui is not a variable there
exists u′, u′′ such that ui = 〈u′, u′′〉. Hence we can apply the simplification rule Rf in order
to obtain C′. Since u′θ = w1 and u′′θ = w2, the substitution θ is also a solution to C′. For
the other composition rules the same reasoning holds.

2. The last rule is an axiom or a decomposition. Applying Lemma 4.4 we obtain that there
is t ∈ st(Ti)! X such that tθ = uiθ. We can have the following two possibilities:

(a) If t (= ui then we apply the simplification rule R2.

(b) Otherwise, if t = ui, then ui ∈ st(Ti) and we already know that ui is not a variable.
We consider two cases:

4.4. FURTHER READINGS 41

i. There are two distinct terms t1, t2 ∈ st(T) such that t1θ = t2θ. Then we apply
the simplification rule R3.

ii. Otherwise, the simplification rule R1 can be applied (Lemma 4.6). !

4.3.3 Complexity

The termination stated in Theorem 4.1 does not provide with tight complexity bounds. In fact,
applying the simplification rules may lead to branches of exponential length in the size of the
constraint system [113]. Inspecting the completeness proof, there is still some room for choosing
a strategy to ensure that the length of each branch is polynomially bounded in C (while keeping
completeness). Note that correctness is independent of the order of the rules application.

Moreover, for any suitable representation of terms, we have that |uσ, vσ| < |u, v| where
σ = mgu(u, v). Hence, if we use a DAG representation of terms, when C "∗

σ C′, we have that
the size of C′ is polynomially bounded in the size of C. As a consequence, the security problem
is in co-NP and it is actually co-NP-complete [234]. The NP-hardness can be established with
a reduction from 3-SAT.

4.4 Further Readings

Many parts of this section are borrowed from [113]. Hence, more details can be found in this
paper. Another decision procedure based on constraint simplification rules has been proposed
by J. Millen and V. Shmatikov [205]. Many results (e.g. [114, 41]) have been obtained within
this framework. In particular, this framework has been extended by several authors to deal
with algebraic properties of cryptographic primitives.

4.5 Exercises

Exercice 9
Say whether each couple of terms are unifiable or not. If so, give a most general unifier (mgu).

1. 〈x, b〉 and 〈a, y〉,

2. aenc(x, a) and aenc(b, x),

3. 〈x, y〉 and 〈〈y, y〉, a〉,

4. z and 〈x, y〉.

Exercice 10 (#)
Consider the following inference system:

x y

〈x, y〉

〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

Let T = {senc(s, 〈k1, k2〉), senc(k1, k3), k3, k2}.

1. Enumerate all the subterms of T .

2. The term s is deducible from T . Give a derivation witnessing this fact.

3. Among the subterms of T , give those that are deducible.

4. Give a term u that is not a subterm of T and such that T " u.

42 CHAPTER 4. DEDUCIBILITY CONSTRAINTS

Exercice 11 (# # #)
Consider the following inference system:

x y

〈x, y〉

〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

In order to decide whether a term s is deducible from a set of terms T in the inference
system described above, we propose the following algorithm:

Algorithm:

1. Apply as much as possible the decryption and the projection rules. This leads to a set of
terms called analz(T).

2. Check whether s can be obtained by applying the encryption and the pairing rules. The
(infinite) set of terms obtained by applying the composition rules is denoted synth(analz(T)).

If s ∈ synth(analz(T)) then the algorithm return yes. Otherwise, it returns no.

1. Show that this algorithm terminates.

2. Show that this algorithm is sound, i.e. if the algorithm returns yes then T " s.

3. The algorithm is not complete, i.e. there exist T and s such that T " s, and for which
the algorithm returns no. Find an example illustrating this fact.

4. Give an hypothesis on T that allows one to restore completeness.

5. Show that the algorithm is complete when this hypothesis is fulfilled.

Exercice 12 (#)
We consider the following inference system allowing us to model asymmetric encryption.

x y

aenc(x, y)

aenc(x, pk(z)) sk(z)

x

z

pk(z)

Is this inference system local, or not? If so, give a proof. If not, give a derivation witnessing
this fact.

Exercice 13 (##)
Consider the following inference system allowing us to model digital signature.

x sk(z)

sign(x, sk(z))

sign(x, sk(z)) vk(z)

x

z

vk(z)

1. This inference system is not local according to Definition 4.2. Give an example witnessing
this fact.

2. Show that the intruder deduction problem is decidable.
You can use the technique described in this chapter and extend the notion of subterm to
restore the locality property.

Exercice 14 (#)
We consider the signature and the inference system given in Example 4.1. Let T0 = {a, b, c, sk(c), aenc(〈a, aenc(

and C = {T0

?
" aenc(〈a, aenc(x1, b)〉, b)}. What are the solutions of C?

