
Chapter 4

Deducibility Constraints

In this chapter, we present the NP-complete decision procedure for a bounded number of sessions
by H. Comon-Lundh et al. [113]. In this setting (i.e. finite number of sessions), deducibility
constraint systems have become the standard model for verifying security properties, with a
special focus on secrecy. Starting with a paper by J. Millen and V. Shmatikov [205], many
results (e.g. [114, 41]) have been obtained within this framework.

Here, we consider only symmetric/asymmetric encryptions, and pairing. We show that any
deducibility constraint system can be transformed in (possibly several) much simpler deducibil-
ity constraint systems that are called solved forms, preserving all solutions of the original system,
and not only its satisfiability. In other words, the deducibility constraint system represents in
a symbolic way all the possible sequences of messages that are produced, following the protocol
rules, whatever are the intruder’s actions. This set of symbolic traces is infinite in general.
Solved forms are a simple (and finite) representation of such traces. The procedure preserves all
solutions. Hence, we can represent for instance, all attacks on the secrecy and not only decide if
there exists one. Moreover, presenting the decision procedure using a small set of simplification
rules yields more flexibility for further extensions and modifications.

4.1 Intruder Deduction problem

4.1.1 Preliminaries

An inference rule is a rule of the form
u1 . . . un

u0
where u0, u1, . . . , un are terms (with

variables). An inference system is a set of inference rules.

Example 4.1 The following inference system IDY represents the deduction capabilities of an
attacker. We consider the signature F = {senc, aenc, � , �, sk} and the underlying rewriting
system R is empty. There are several possible ways of defining the intruder capabilities, we
choose here the “implicit destructors” formulation, in which the destructors do not appear. This
leads to an inference system that is slightly different from the one proposed in Section 3.1.3.
For sake of simplicity, we make a confusion between the identity of an agent and his public key.

x y

P
�x, y�

x y

PKE
aenc(x, y)

x y

SE
senc(x, y)

�x, y�
Left

x

�x, y�
Right

y

aenc(x, y) sk(y)
PKD

x

senc(x, y) y

SD
x

The rules P, SE, and PKE are composition rules whereas the rules Left, Right, SD, and PKD
are decomposition rules.

33



34 CHAPTER 4. DEDUCIBILITY CONSTRAINTS

Definition 4.1 (proof) Let I be an inference system. A proof Π of T � u in I is a tree such
that:

• every leaf of Π is labelled with a term v such that v ∈ T ,

• for every node labelled with v0 having n sons labelled with v1, . . . , vn , there is an instance
of an inference rule with conclusion v0 and hypotheses v1, . . . , vn. We say that Π ends
with this instance if the node is the root of Π,

• the root is labelled with u.

We denote by Hyp(Π) the set of labels of the leaves of a proof Π and Conc(Π) is the label
of the root of Π. Steps(Π) is the set of labels of all nodes of Π. The size of a proof Π is the
number of nodes in it. A proof Π of T � u is minimal if it does not exist any proof Π� of T � u

having a size strictly smaller than the size of Π.

Example 4.2 Let φ = new a, b, s. {�senc(s,�a,b�),a�/x1 ,
senc(b,a)

/x2}. We may ask whether s is
deducible from φ, i.e. does there exist a proof of �senc(s, �a, b�), a�, senc(b, a) � s. Such a proof
is given below:

�senc(s, �a, b�), a�
senc(s, �a, b�)

�senc(s, �a, b�), a�
a

senc(b, a)

�senc(s, �a, b�), a�
a

b

�a, b�
s

The problem whether an intruder can gain certain information s from a set of knowledge T ,
i.e. whether there is a proof of T � s is called the intruder deduction problem.

Intruder deduction problem (for a fixed inference system I)

INPUT: a finite set of terms T , and a term s (the secret).

OUTPUT: Does there exist a proof of T � s?

This definition is in-line with the concept of deduction introduced in Section 3.1.3. Here, we
do not explicitly rely on the concept of frame. Note that for deduction, the ordering in which
the messages have been sent is not relevant. Moreover, restriction on names are not necessary.
It is assumed that each name is restricted.

4.1.2 Decidability via Locality

To show that the intruder deduction problem is decidable (in PTIME) for an inference system I,
we use the notion of locality introduced by D. McAllester [201].

Definition 4.2 (locality) Let I be an inference system. The system I is local if whenever
T � u in I, there exists a proof Π of T � u such that Steps(Π) ⊆ st(T ∪ {u}).

Given an inference system I, to establish that the intruder deduction problem is decidable,
it is actually sufficient to prove that:

1. a locality result for the inference system I: checking the existence of a proof of T � u

amounts to checking the existence of a local proof that only contains subterms of u and T

(there is a polynomial number of subterms),



4.2. DEDUCIBILITY CONSTRAINTS 35

2. a one-step-deducibility result to ensure that we can test (in PTIME) whether a term is
deducible in one step from a set of terms by using an instance of one of the inference rules.
This result trivially holds for the inference system presented in Example 4.1.

Then, the existence of a local proof of T � u can be checked in polynomial time by saturation
of T with terms deducible in one-step. Thanks to locality, the number of iteration to obtain a
saturated set is bounded by the number of terms that can be involved in a local proof. This
yields a PTIME algorithm.

Lemma 4.1 (locality) Let T be a set of terms and u be a term. A minimal proof Π of T � u

only contains terms in st(T ∪ {u}), i.e. Steps(Π) ⊆ st(T ∪ {u}). Moreover, if Π is reduced to a
leaf or ends with a decomposition rule, then we have that Steps(Π) ⊆ st(T ).

Proof : Let Π be a minimal proof of T � u. We prove the result by induction on the size of
the proof Π.

Base case: In such a case, the proof Π is reduced to a leaf and we easily conclude.
Induction step: We have that:

Π =






Π1

u1 · · ·
Πn

un
R

u

We distinguish several cases depending on the last inference rule of Π.

• If R is a composition rule, then u1, . . . , un are subterms of u and we easily conclude by
relying on our induction hypothesis.

• If R is a projection rule (say proj1), then u1 = �u, v� for some v. In such a case, by
minimality of Π, we know that Π1 does not end with a composition rule. Hence, by
relying on our induction hypothesis, we have that Steps(Π1) ⊆ st(T ), and thus u1 ∈ st(T ).
Moreover, we have that u ∈ st(u1), and thus u ∈ st(T ). This allows us to conclude that
Steps(Π) ⊆ st(T ).

The cases where Π ends with a decryption rule (symmetric and asymmetric) can be done in
a similar way. �

Proposition 4.1 The intruder deduction problem is decidable in PTIME for IDY. Actually,
this problem is PTIME complete.

The PTIME-hardness can be proved by a reduction from HORNSAT.

The concept of locality has been used to establish decidability of several inference systems.
For instance, we may want to model digital signature, exclusive or operator, commutative
encryption, . . .

4.2 Deducibility constraints

Assume processes without replication. Then the transition system is finite in depth but might
be infinitely branching, as we saw in Example 3.14. The idea then is to represent in a simple
symbolic way the set of terms that satisfy the required conditions. This is what we formalise
now.



36 CHAPTER 4. DEDUCIBILITY CONSTRAINTS

Definition 4.3 A Deducibility constraint system is either ⊥ or a conjunction of deducibility
constraints of the form:

T1

?
� u1 ∧ . . . ∧ Tn

?
� un

in which T1, . . . , Tn are finite sets of terms, u1, . . . , un are terms. Moreover, we assume that the
constraints can be ordered in such a way that:

• monotonicity: ∅ �= T1 ⊆ T2 · · · ⊆ Tn

• origination: for every i, we have that fv(Ti) ⊆ fv(u1, . . . , ui−1)

Intuitively, the sets Ti correspond to messages that have been sent on the network, while
u1, . . . , un are the messages that are expected by the processes, hence have to be constructed
by the environment. The first condition, called monotonicity reflects the fact that the set of
messages that have been sent on the network can only increase. In other words, the ordering
on the atomic deducibility constraints is a temporal ordering of actions. The second condition
(called origination) reflects the properties of our processes: variables that occur in a message
sent on the network must appear before in messages received from the network.

Definition 4.4 (Tx) Let C = T1

?
� u1 ∧ . . . ∧ Tn

?
� un be a deducibility constraint system

and x be a variable that occurs in C. Tx is the minimal set (w.r.t. inclusion) among the sets

T1, . . . , Tn such that T
?
� u ∈ C and x ∈ fv(u).

Thanks to the monotonicity and the origination properties, for any x ∈ fv(C), the set Tx

exists and is uniquely defined.

Such constraint systems may be enriched with equations/disequations between terms or
other constraints, that correspond to the conditions in the process calculus. We consider (for
now) only these simple constraints.

Definition 4.5 (solution) Let I be an inference system. A substitution σ is a solution of a

deducibility constraint system C = T1

?
� u1 ∧ . . . ∧ Tn

?
� un if there exists a proof of Tiσ � uiσ in

I for every i ∈ {1, . . . , n}.

Example 4.3 Consider the constraints corresponding to one of the possible Needham-Schroeder
symbolic trace. We give explicitly the free names to the attacker and assume that all names that
are not explicitly given are (supposedly) secret:

C =̂





a, b, d, sk(d), aenc(�a,Na�, d)

?
� aenc(�a, x�, b)

a, b, d, sk(d), aenc(�a,Na�, d), aenc(�x,Nb�, a)
?
� aenc(�Na, y�, a)

The failure of the secrecy of Nb (for this scenario) is given by the additional constraint:

a, b, d, sk(d), aenc(�a,Na�, d), aenc(�x,Nb�, a), aenc(y, d)
?
� Nb

A solution of C in IDY is σ = {x �→ Na, y �→ Nb}.

4.3 Decision Procedure

We describe here a non-deterministic simplification procedure. It can be simplified in many
respects, but we will see that the problem of deciding whether a constraint system has at least
one solution is NP-complete anyway (for the IDY inference system given in Example 4.1). Many
parts of this section, including the set of simplification rules, are borrowed from [113].



4.3. DECISION PROCEDURE 37

4.3.1 Simplification Rules

We prove that any deducibility constraint system can be transformed into simpler ones, called
solved. Such simplified constraints are then used to decide the security properties.

R1 C ∧ T

?
� u � C if T ∪ {x | (T �

?
� x) ∈ C, T � � T}�u

R2 C ∧ T

?
� u �σ Cσ ∧ Tσ

?
� uσ if t ∈ st(T ),σ = mgu(t, u), t �= u

t, u not variables

R3 C ∧ T

?
� u �σ Cσ ∧ Tσ

?
� uσ if t1, t2 ∈ st(T ),σ = mgu(t1, t2), and t1 �= t2

R4 C ∧ T

?
� u � ⊥ if fv(T ∪ {u}) = ∅ and T �� u

Rf C ∧ T

?
� f(u, v) � C ∧ T

?
� u ∧ T

?
� v for f ∈ {� , �, senc, aenc}

Figure 4.1: Simplification rules.

All the rules are indexed by a substitution (when there is no index then the identity sub-
stitution is assumed). We write C �∗

σ C� if there are constraint systems C1, . . . , Cn such that
C �σ0 C1 �σ1 . . . �σn C� and σ = σ0σ1 . . .σn. We denote by σ = mgu(u, v) a most general
unifier of u and v, such that fv(vσ, uσ) ⊆ fv(v, u).

A constraint system is called solved if it is different from ⊥ and if each of its constraints is of

the form T

?
� x, where x is a variable. Note that the empty constraint system is solved. Solved

constraint systems are particularly simple since they always have a solution. Indeed, let T1 be
the smallest (w.r.t. inclusion) left-hand side of a constraint. From the definition of a constraint
system we have that T1 �= ∅ and has no variable. Then the substitution τ defined by xτ = t1

where t1 ∈ T1 for every variable x, is a solution since T � xθ for any constraint T

?
� x of the

solved constraint system.
Given a constraint system C, we say that Ti is a minimal unsolved left-hand side of C if Ti

is a left-hand side of C and for all T
?
� u ∈ C such that T � Ti, we have that u is a variable.

Lemma 4.2 The simplification rules transform a deducibility constraint system into a deducibil-
ity constraint system.

Theorem 4.1 Let C be an unsolved constraint system.

1. (Termination) There is no infinite chain C �σ1 C1 . . . �σn Cn.

2. (Correctness) If C �∗
σ C� for some constraint system C� and some substitution σ and if θ

is a solution of C� then σθ is a solution of C.

3. (Completeness) If θ is a solution of C, then there exist a solved constraint system C� and
substitutions σ, θ� such that θ = σθ

�, C �∗
σ C� and θ

� is a solution of C�.

Termination and correctness are quite easy to show. For termination, it is easy to see
that the number of variables is non-increasing. Furthermore, this number strictly decreases by
the rules R2 and R3. Any other rule strictly reduces the total size of the right hand sides of
the constraint (here, the “size” is the number of symbols in the term). Completeness is more
involved and its proof is detailed in Section 4.3.2. Getting a polynomial bound on the length
of simplification sequences requires to consider a particular strategy.


