
2.6 Operational semantics

The process algebra is a quotient structure. We consider as identical processes that are
structurally equivalent. The structural equivalence ≡ is defined by:

P‖Q ≡ Q‖P
P‖(Q‖R) ≡ (P‖Q)‖R

!P ≡ P‖!P
νn. P ≡ νn′. P{n 7→ n′} if n′ /∈ fn(P ) ∪ bn(P )

(νn.P )‖Q ≡ νn. (P‖Q) if n /∈ fn(Q)
P‖0 ≡ P

νn. νn′. P ≡ νn′. νn. P

Communications are synchronous, but (as long as there is no private channel) they always
occur with the environment. We sketch here a labeled transition semantics. For, we consider
generalized processes, which consist of a frame and a process. More precisely, a general process
is an expression

νn.({x1 7→ t1; · · · ;xk 7→ tk}‖P )

where P is a process and t1, . . . , tk are terms.

P ≡ Q P −→ P ′

Q −→ P ′

νn.(σ‖out(c, s).P‖Q → σ ⊎ {x 7→ s}‖P‖Q) if x /∈ Dom(σ)

νn. (σ‖in(c, s). P‖Q) → νn. (σ‖Pθ‖Q) if νn.σ ⊢ sθ

σ |= φ

νn. (σ‖ if φ then P else Q) → νn. (σ ‖ P )

σ 6|= φ

νn. (σ‖ if φ then P else Q) → νn. (σ ‖ Q)

Example 5 We develop the transition system from

P = (νna. PA(a, d, na))‖(νnb. PB(a, b, nb))‖out(c, sk(d)).0

For convenience, the names na, nb are pushed out and, even if we don’t write it explicitly,
these names are understood as restricted.

The process PA may move first, yielding

P → P1 = νna, νnb. ( {x1 7→ {a, na}
p

pk(d)
}

‖ (in(c, {na, y}
p

pk(a)
.out(c, {y}p

pk(b)
).0

‖ PB(a, b, nb)
‖ out(c, sk(d)))

The process PB may also move first, and the resulting general process depends on an input
t1 such that ∅ ⊢ {a, t1}

p

pk(b)

12



P → P2 = νna, νnb. ( PA(a, d, na)
‖ out(c, {t1, nb}

p

pk(a)
.in(c, {nb}

p

pk(b)
).0

‖ out(c, sk(d)))

The last process may also move first, yielding

P → P3 = νna, νnb. ( {x1 7→ sk(d)}
‖ PA(a, d, na)
‖ PB(a, b, nb))

From the process P1, there are again three possible transitions:

P1 → P11 = νna, νnb. ( {x1 7→ {a, na}
p

pk(d)
}

‖ (out(c, {t2}
p

pk(b)
).0

‖ PB(a, b, nb)
‖ out(c, sk(d)))

If νna, nb.{a, na}
p

pk(d)
⊢ {na, t2}

p

pk(a)
.

P1 → P12 = νna, νnb. ( {x1 7→ {a, na}
p

pk(d)
}

‖ (in(c, {na, y}
p

pk(a)
.out(c, {y}p

pk(b)
).0

‖ out(c, {t3, nb}
p

pk(a)
.in(c, {nb}

p

pk(b)
).0

‖ out(c, sk(d)))

If νna, nb.{a, na}
p

pk(d)
⊢ {a, t3}

p

pk(b)
.

P1 → P13 = νna, νnb. ( {x1 7→ {a, na}
p

pk(d)
;x2 7→ sk(d)}

‖ (in(c, {na, y}
p

pk(a)
.out(c, {y}p

pk(b)
).0

‖ PB(a, b, nb))

We do not continue here the full transition sequence, which is too large to be displayed
(there are around 300 nodes in the full tree).

Exercise 5

In the above example, give the complete transition sequence that yields the attack.

In the above example, we see that the transition system might actually be infinite: t1, t2, t3
are arbitrary terms that satisfy some deducibility conditions.

Such deducibility conditions can be simplified (and decided). This the the subject of the
next section on bounded process verification.

2.7 Trace security properties

The basic property: secrecy. In any reachable process, what is supposed to remain secret
cannot be deduced from the frame.

13



Example 6 If we consider the scenarios of example 4,

• For the process

P01 = (νna. PA(a, d, na))‖(νnb. PB(a, b, nb))‖out(c, sk(d)).0

we typically wish that

P01
∗

−→ νn.(σ‖Q) =⇒ νn.σ 6⊢ nb

Since nb is generated in a process involving two uncorrupted agents. (We cannot however
require the secrecy of na)

• Consider now

P02 = (νna. in(c, xb). PA(a, xb, na))‖(νnb. in(c, xa). PB(xa, b, nb))‖out(c, sk(d)).0

Neither na nor nb can be required to remain secret: this depends on the inputs xa and xb.
Expressing the secrecy requires a honesty predicate or a disequality test. For instance:

P02
∗

−→ νn.(σ‖Q) ∧ xb 6= d =⇒ νn.σ 6⊢ na

• For the process

P03 =!((νna. in(c, xb). PA(a, xb, na))‖(νnb. in(c, xa). PB(xa, b, nb)))‖out(c, sk(d)).0

we need extra material in order to express the secrecy: we wish that, in any copy of
the process, in which xb 6= d, then na is secret. Be careful that xb is actually a local
variable of the thread and should actually be renamed in each copy. Similarly, na, nb are
renamed in each instance of the thread.

There are again several ways of specifying the desired properties (we will see later how
this is performed in ProVerif): we may split the processes in those for which xb is bound
to a honest party and those in which xb = d and then forget about the different copies
in the specification:

P ′

03 = !((νna. in(c, xb). if xb 6= d then PA(a, xb, na))‖(νnb. in(c, xa). PB(xa, b, nb))‖
(νn′

a. in(c, d). PA(a, d, n′

a))‖(νn′

b. in(c, d). PB(d, b, n′

b)))‖
out(c, sk(d)).0

na, nb are members of a set Nh and n′

a, n
′

b /∈ Nh. Then we require that

P ′

03
∗

−→ νn.(σ‖Q) =⇒ ∀n ∈ n ∩ Nh.νn.σ 6⊢ n

Another possibility, which is more general and allows to express more security properties
consist in enriching the process algebra in two ways:

– Each copy of a thread first gets an identification on a private channel. This id is
sent back on a public channel. In this way we can refer to each copy of a thread in
a unique way.
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– The local variables of the threads are recorded in the process calculus. In this way,
we may refer to the variable xi

b, generated in the process whose id is i.

– Each thread records in its local memory the names that are local to the process. In
this way, we may refer to the name ni

a, that is generated by the process whose pid
is i.

Then we require for instance:

P03
∗

−→ νn.(σ‖Q) =⇒ ∀i. (xi
b = d ∨ νn.σ 6⊢ ni

a)

We will see later how this is implemented (in a simple way) in ProVerif.

Other trace properties such as agreement properties, refer to relations between different
local variables.

Example 7 Coming back again to the above process P03, we can express that the parties
agree on na, nb:

∀i. (xi
b = b ∧ xi 6=⊥=⇒ ∃j.xi = nj

b ∧ xj
a = a)

In other words, each time x is bound in the ith copy of the thread PA such that xi
b = b,

then there is a copy j of the thread PB, with xj
a = a, in which the parties share the same value

nj
b.

This property has to hold at any point of time (any reachable state must satisfy the prop-
erty).

It is known as a non-injective agreement property: there are stronger agreement proper-
ties, that would require the mapping from ids i to ids j to be injective. There are also weaker
agreement properties, in which the actual agreement values are not required to be identical,
but only their existence is required.

Such properties are encoded in, e.g., ProVerif by adding events in the processes, that send
(on a private channel) the committed value. Somehow, we introduce a referee process who
gets the values and compare them.

In the following section, we forget about replication. Then the security properties are
much easier to specify, as we will see.

3 Bounded process verification

Assume processes without replication. Then the transition system is finite in depth but might
be infinitely branching, as we saw in the example 5. The idea then is to represent in a simple
symbolic way the set of terms t1, t2, t3 that satisfy the required conditions.

This is what we formalize now.

3.1 Deducibility constraints

Definition 3.1 A Deducibility constraint system is a conjunction T1

?
⊢ t1 ∧ . . .∧Tn

?
⊢ tn ∧E

in which T1, . . . , Tn are finite sets of constructor terms, t1, . . . , tn are constructor terms, E is
a finite set of equations between constructor terms and such that
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• T1 ⊆ T2 · · · ⊆ Tn

• for every i, V(Ti) ⊆ V(t1, . . . , ti−1)

Intuitively, the sets Ti correspond to messages that have been sent on the network, while
t1, . . . , tn are the messages that are expected by the processes, hence have to be constructed
by the environment.

The first condition, called monotonicity reflects the fact that the set of messages that
have been sent on the network can only increase. (In other words, the ordering on the atomic
deducibility constraints is a temporal ordering of actions).

The second condition (called origination) reflects the properties of our simple processes:
variables that occur in a message sent on the network must appear before in messages received
from the network.

Thanks to these two properties, for any variable x that occurs in the pure deducibility
constraint part C (and not only in the equational part E), there is a unique Tx such that

x /∈ V(Tx) and Tx is minimal with respect to inclusion among the sets T such that T
?
⊢ u ∈ C

and x ∈ V(u).
Such constraint systems may be enriched with equations/disequations between non-constructor

terms or other constraints, that correspond to the conditions in the process calculus. We con-
sider (for now) only these simple constraints. If we have time, we will show some extensions.

Definition 3.2 Given an intruder deduction relation ⊢, a substitution σ is a solution of a

deducibility constraint system T1

?
⊢ t1 ∧ . . . ∧ Tn

?
⊢ tn ∧ E if, for every i, Tiσ ⊢ tiσ and, for

any equation s = t in E, sσ ↓= tσ ↓.

Example 8 Consider the constraints corresponding to one of the possible NS symbolic trace.
For self-containedness, we give explicitly the free names to the attacker and assume that all
names that are not explicitly given are (supposedly) secret:

a, b, d, sk(d), {a, na}
p

pk(d)

?
⊢ {a, x}p

pk(b)

a, b, d, sk(d), {a, na}
p

pk(d)
, {x, nb}

p

pk(a)

?
⊢ {na, y}

p

pk(a)

The failure of the secrecy of nb is given by the additional constraint:

a, b, d, sk(d), {a, na}
p

pk(d)
, {x, nb}

p

pk(a)
, {y}p

pk(d)

?
⊢ nb

Example 9 Consider the example of the exercise 2 (the trace yielding an attack).

Let T0 = {sk(c), a, b, c, {
〈

a, {s}pk(b)

〉

}pk(b)}

T0

?
⊢ {

〈

a, {x1}pk(b)

〉

}pk(b)

T0, {
〈

b, {x1}pk(a)

〉

}pk(a)

?
⊢ {

〈

c, {x2}pk(a)

〉

}pk(a)

T0, {
〈

b, {x1}pk(a)

〉

}pk(a), {
〈

a, {x2}pk(c)

〉

}pk(c)

?
⊢ {

〈

c, {x3}pk(a)

〉

}pk(a)

T0, {
〈

b, {x1}pk(a)

〉

}pk(a), {
〈

a, {x2}pk(c)

〉

}pk(c), {
〈

a, {x3}pk(c)

〉

}pk(c)

?
⊢ s

16



Exercise 6

What are the solutions of

T0

?
⊢ {

〈

a, {x1}pk(b)

〉

}pk(b)

Example 10 We may specify the violation of agreement properties. For instance in the NS
protocol, we consider two instances of PA: PA(a, b, na), PA(a, d, n′a) and PB(a, b, nb).

{a, n′

a}
p

pk(d)
, a, b, d, sk(d)

?
⊢ {a, x}p

pk(b)

{a, n′

a}
p

pk(d)
, a, b, d, sk(d), {x, nb}

p

pk(a)

?
⊢ {n′

a, y}
p

pk(a)

{a, n′

a}
p

pk(d)
, a, b, d, sk(d), {x, nb}

p

pk(a)
, {y}p

pk(b)

?
⊢ {nb}

p

pk(b)

The agreement (on na) is violated if the above constraint system, together with x 6= na is
satisfiable. Indeed, in such a case, b believes that he agreed with a on the value x, while a
believes that she agreed with b on na, and the two values are distinct.
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