Devoir de Calculabilité

À remettre au plus tard le 17 octobre 2013

Partie 1: machines à compteurs

On notera 2^S l'ensemble des parties de l'ensemble S et, si S,T sont deux ensembles, S^T l'ensemble des applications de T dans S.

Une machine à compteurs est un tuple (Q, q_0, n, δ) où Q est un ensemble fini d'états, $q_0 \in Q$ est un état initial, $n \in \mathbb{N}$ et δ est une application de $Q \times 2^{\{1,\dots,n\}}$ dans $(Q \cup \{\mathbf{accept}, \mathbf{reject}\}) \times \{-1, 0, 1\}^{\{1,\dots,n\}}$ telle que, si $\delta(q, E) = (q', f)$, alors, pour tout $i \in E$, $f(i) \in \{0, 1\}$

Une configuration de la machine est constituée d un état $q \in Q$ et d'un n-uple $(r_1, \ldots, r_n) \in \mathbb{N}^n$.

Si γ est une configuration de la machine M, la configuration suivante γ' (et on note $\gamma \vdash_M \gamma'$) est définie par:

soit
$$\gamma = (q, r_1, ..., r_n)$$
 et $E = \{i \in \{1, ..., n\} \mid r_i = 0\}$. Soit $\delta(q, E) = (q', f)$. $\gamma' = (q', r'_1, ..., r'_n)$ avec $r'_i = r_i + f(i)$ pour $i = 1, ..., n$

Question 1

Soit $k \in \mathbb{N}$, $k \ge 1$ Donner une machine à deux compteurs M_k qui, sur la configuration initiale (q_0, r_10) , s'arrête dans la configuration (**accept**, s, q) où q et s sont respectivement le quotient et le reste de la division euclidienne de r_1 par k.

Question 2

Si M est une machine de Turing sur l'alphabet Σ et $k=|\Sigma|+1$, on associe à chaque configuration $\gamma=(q,w,w')$ de la machine de Turing le tuple $\overline{\gamma}=(q,c(w),0,c(\widetilde{w'}),0)$ où c(w) est l'entier représenté en base k par w et \widetilde{w} est l'image miroir de w, définie par récurrence par $\widetilde{\epsilon}=\epsilon$ et $\widetilde{a\cdot w}=\widetilde{w}\cdot a$.

Montrer que, pour toute machine de Turing M, on peut construire une machine à 4 compteurs \overline{M} telle que, $\gamma \vdash_M \gamma'$ ssi $\overline{\gamma} \vdash_{\overline{M}}^* \overline{\gamma'}$.

En déduire que le problème suivant est indécidable:

Donnée: une machine à 4 compteurs M et un entier n

Question: M s'arrête sur la configuration initiale $(q_0, n, 0, 0, 0)$?

Question 3

En codant 4 entiers a,b,c,d par $2^a\times 3^b\times 5^c\times 7^d,$ montrer que le problème suivant est indécidable:

Donnée: une machine à 2 compteurs M

Question: M s'arrête sur la configuration initiale $(q_0, 0, 0)$?

Partie 2: jeux finis

Une arène de jeu \mathcal{A} est un ensemble $(\Sigma^*)^k$ ou \mathbb{N}^k , $k \in \mathbb{N}, k \geq 1$. Un jeu fini à deux joueurs A et B est la donnée de:

- Un ensemble décidable $\mathcal{C} \subseteq \mathcal{A}$ de configurations du jeu
- Une configuration initiale $c_0 \in \mathcal{C}$
- Deux sous-ensembles calculables $W_A, W_B \subseteq \mathcal{C}$ de positions gagnantes pour resp. A et B.
- Deux relations calculables $R_A, R_B \subseteq A^2$ telles que,
 - 1. si $c \in \mathcal{C}$ et $(c, c') \in R_A \cup R_B$, alors $c' \in \mathcal{C}$
 - 2. si $c \in \mathcal{C} \setminus W_B$ (resp. $c \in \mathcal{C} \setminus W_A$) il existe au moins un c' tel que $(c, c') \in R_A$ (resp. $(c, c') \in R_B$)
 - 3. si $c \in W_A$ (resp. $c \in W_B$), alors, pour tout $c' \in \mathcal{C}$, $(c,c') \notin R_B$ (resp. $(c,c') \notin R_A$).

Une partie est une suite finie ou infinie $c_0, \ldots, c_n, \ldots \in \mathcal{C}$ de configurations du jeu, telle que, si i est pair et $c_i \notin W_B$, alors $(c_i, c_{i+1}) \in R_A$ et si i est impair et $c_i \notin W_A$, alors $(c_i, c_{i+1}) \in R_B$.

A (resp. B) gagne la partie c_0, \ldots, c_n si $c_n \in W_A$ et n est impair (resp. $c_n \in W_B$ et n est pair).

Une *stratégie* pour le joueur A (resp. le joueur B) est une application f de $C \setminus W_B$ (resp. $C \setminus W_A$) dans C telle que, pour tout $c \in C \setminus W_B$, $(c, f(c)) \in R_A$ (resp. pour tout $c \in C \setminus W_A$, $(c, f(c)) \in R_B$).

Une partie $c_0, ... c_n$... est jouée suivant la stratégie f du joueur A (resp du joueur B) si pour tout i pair tel que $c_i \notin W_B$ (resp. pour tout i impair tel que $c_i \notin W_A$), $c_{i+1} = f(c_i)$.

Une stratégie f pour le joueur A (resp. B) est gagnante si toute toute partie jouée suivant la stratégie de A (resp. B) est finie et gagnante pour A (resp. B).

Nous étudions ici le problème de décision de l'existence d'une stratégie gagnante pour un joueur dans différentes restrictions de ces jeux.

Question 1

- 1. Donner un exemple de jeu pour lequel aucun des deux joueurs n'a de stratégie gagnante
- 2. Donner un exemple de jeu pour lequel A possède une stratégie gagnante, mais il n'y a pas de borne à la longueur d'une partie jouée suivant cette stratégie.

Question 2

Montrer que le problème de l'existence d'une stratégie gagnante pour le joueur A est indécidable, même lorsque $A = \mathbb{N}$, $C = \mathbb{N}$, $R_B = \{(n,n) \mid n \in \mathbb{N}, n \neq 1\}$, $W_B = \emptyset$, $W_A = \{1\}$, $C_0 = 0$. (Formellement, la donnée est un jeu satisfaisant les hypothèses ci-dessus et la question est l'existence d'un stratégie gagnante pour A).

En déduire que, étant donné un jeu, la question de savoir si l'un des joueurs a une stratégie gagnante est indécidable.

Question 3

Montrer que le problème de l'existence d'une stratégie gagnante pour le joueur A est indécidable, même lorsque $W_B \cup \{c_0\} = \mathcal{C} = \mathcal{A} = \mathbb{N}$ et $R_A = \mathbb{N} \times \mathbb{N}$, $R_B = (\mathbb{N} \setminus W_A) \times \mathbb{N}$ (autrement dit, pour les parties qui se jouent en un seul coup).

Question 4

Montrer que l'existence d'une stratégie gagnante pour le joueur A est indécidable, même si l'on fixe R_A, R_B, W_A, W_B . (Autrement dit, il existe des valeurs de $R_A^0, R_B^0, W_A^0, W_B^0$ telles que le problème dont la donnée est "un jeu tel que $R_A = R_A^0, R_B = R_B^0, W_A = W_A^0, W_B = W_B^0$ ", et la question est "A possède une stratégie gagnante" est indécidable).

Question 5

Donner un exemple de jeu pour lequel B a une stratégie gagnante, mais n'a aucune stratégie gagnante calculable.

Partie 3: un type de jeu particulier

On considère ici une arène $\mathcal{A} = \mathbb{N}^k$. Les jeux considérés sont tels que $\mathcal{A} = \mathcal{C}$, $W_A = \{(1, \dots, 0)\}$, $W_B = \{(0, 0, \dots, 0)\}$, $c_0 = (1, 0, \dots, 0)$, R_A, R_B sont donnés par un ensemble fini de vecteurs $\mathcal{V}_A, \mathcal{V}_B \subseteq \mathbb{Z}^k$:

$$R_A = \{(v, v + v_A) \mid v \in \mathbb{N}^k, v + v_A \in \mathbb{N}^k, v_A \in \mathcal{V}_A\}$$

$$R_B = \{(v, v + v_B) \mid v \in \mathbb{N}^k, v + v_B \in \mathbb{N}^k, v_B \in \mathcal{V}_B\}$$

Un tel jeu sera appelé jeu d'addition de vecteurs.

Montrer que le problème suivant est indécidable:

Donnée: k et un jeu d'addition de vecteurs dans lequel $R_A, R_B \subseteq \{-1, 0, 1\}^k$

Question: A a une stratégie gagnante

Indication: On pourra réduire le problème de l'arrêt des machines à deux compteurs (sur la donnée 0); A simule les transitions de la machine et B sanctionne les déviations (applications incorrecte d'une transition). Par ailleurs, on pourra remarquer que toute information de taille bornée peut être encodée par des vecteurs de bits. On note \mathcal{B}_m l'ensemble des vecteurs de bits de longueur m dont exactement un bit est non nul (donc \mathcal{B}_m contient m éléments). Si $\beta, \beta' \in \mathcal{B}_m$ sont distincts et $\beta_0 \in \mathcal{B}_m$, $(\beta - \beta') + \beta_0 \geq 0$ si et seulement si $\beta_0 = \beta'$.

Question supplémentaire (hors devoir) Montrer que le problème suivant est indécidable:

Donnée: un jeu d'addition de vecteurs dans lequel k=6

Question: A a une stratégie gagnante