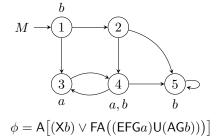
M1 MPRI

Exam on the first part of the Verification module

Monday 10^{th} November, 2014

Lecture and exercise notes are allowed. Answers can be written in English or French.

Question 1 (3 marks)


For each model and each formula, say if the model satisfies the formula, and give a short explanation.

$$M_1 \longrightarrow \underbrace{1}_{a} \underbrace{2}_{b} \qquad M_2 \longrightarrow \underbrace{1}_{a} \underbrace{2}_{b} \qquad M_3 \longrightarrow \underbrace{1}_{a} \underbrace{2}_{b}$$

- $\phi_1 = \mathsf{AGF}b$
- $\phi_2 = \mathsf{EGF}b$
- $\phi_3 = \mathsf{AFEG}a$
- $\phi_4 = \mathsf{AGEF}b$

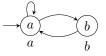
Question 2 (4 marks)

For every state subformula of ϕ , give the set of states of M which satisfy it. No explanation is needed.

Question 3 (2 marks)

Are the following formulae equivalent? Give each time a short proof or a counterexample.

- $\mathsf{EF}a$ and $\mathsf{EFEX}a$
- $\mathsf{AGF}a$ and $\mathsf{AGFX}a$
- $a \to \mathsf{EF}a$ and $(\mathsf{E}a) \to (\mathsf{AF}a)$
- $A((Ga) \to (Fb))$ and $AG(a \to (Fb))$


Question 4 (3 marks)

What is the complexity of checking whether two LTL formulae are equivalent? Give a proof.

Question 5 (2 marks)

We consider a finite Kripke structure M where the set of atomic propositions is the set of states, and in every state s, $\ell(s) = \{s\}$.

- 1. Define an LTL formula of size linear in the size of M, that characterizes the set of infinite runs of M.
- 2. Illustrate your construction on the following Kripke structure.

Question 6 (6 marks)

We denote LTL_F^+ the set of LTL formulae with no negation and no other temporal modality than F.

- 1. (4 marks) Prove that the existential model-checking problem for LTL_F^+ is in NP.
- 2. (2 marks)

By reduction from the SAT problem, prove that the existential model checking problem for $\rm LTL_F^+$ is NP-hard.