
Energy management in timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Uli Fahrenberg, Kim G. Larsen,

Nicolas Markey and Jǐŕı Srba

1/42

Introduction

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

2/42

Introduction

The standard timed automaton model [AD90,AD94]

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Example

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

3/42

Introduction

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

Modelling resources in timed systems

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed

automata (HSCC’01).

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)

4/42

Introduction

A simple example of weighted timed automata (WTA)

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

[ALP01,BFH+01]

Example (with a linear observer)

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

Run (ℓ0, 0)
delay(1

6)−−−−−→ (ℓ0,
1
6) → (ℓ1,

1
6)

delay(1
2)−−−−−→ (ℓ1,

2
3) → (ℓ2,

2
3) . . .

5/42

Introduction

A simple example of weighted timed automata (WTA)

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

[ALP01,BFH+01]

Example (with a linear observer)

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

Run (ℓ0, 0)
delay(1

6)−−−−−→ (ℓ0,
1
6) → (ℓ1,

1
6)

delay(1
2)−−−−−→ (ℓ1,

2
3) → (ℓ2,

2
3) . . .

5/42

Introduction

Beyond linear observers...

rate: 0%

Bank A:
rate: 2% Bank B:

rate: 5%

Bank C:
rate: 6%

−50

−50

−100 −20

−150

−100

−100
6/42

Introduction

Beyond linear observers...

Example

We also consider PTA with an exponential observer:

ℓ0

−3

ℓ1

+6

ℓ2

−6
−1

x=1x :=0

0
0

1

2

3

4

1

Rate −3 in location ℓ0 means

∂ cost

∂ time
= −3× cost

cost = cost0 ⋅ e−3×t

6/42

Introduction

Beyond linear observers...

Example

We also consider PTA with an exponential observer:

ℓ0

−3

ℓ1

+6

ℓ2

−6
−1

x=1x :=0

0
0

1

2

3

4

1

Rate −3 in location ℓ0 means

∂ cost

∂ time
= −3× cost

cost = cost0 ⋅ e−3×t

6/42

Introduction

Beyond linear observers...

Example

We also consider PTA with an exponential observer:

ℓ0

−3

ℓ1

+6

ℓ2

−6
−1

x=1x :=0

0
0

1

2

3

4

1

Rate −3 in location ℓ0 means

∂ cost

∂ time
= −3× cost

cost = cost0 ⋅ e−3×t

6/42

Introduction

Relevant questions

Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

; an abundant literature since 2001 (for the linear observers only)
; cf tutorial of Kim G. Larsen

Scheduling under energy constraints (resource management): are
there scheduling policies/strategies when energy is constrained?

[BFLMS08]

; An example: an oil pump control system [CJL+09]

7/42

Introduction

Relevant questions

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

; an abundant literature since 2001 (for the linear observers only)
; cf tutorial of Kim G. Larsen

Scheduling under energy constraints (resource management): are
there scheduling policies/strategies when energy is constrained?

[BFLMS08]

; An example: an oil pump control system [CJL+09]

7/42

Introduction

Relevant questions

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC’09).

Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

; an abundant literature since 2001 (for the linear observers only)
; cf tutorial of Kim G. Larsen

Scheduling under energy constraints (resource management): are
there scheduling policies/strategies when energy is constrained?

[BFLMS08]

; An example: an oil pump control system [CJL+09]

7/42

Resourcement management

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

8/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”

“energy is in [0,3]”

“energy is in [0,2]”“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1
lost!

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”

“energy is in [0,2]”

“energy is in [0,1]”“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”

“energy is in [0,1]”

“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1
lost!

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”

“energy is in [0,1]”

“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Scheduling/feasible runs under energy constraints

Example

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

“energy is ≥0”“energy is in [0,3]”“energy is in [0,2]”“energy is in [0,1]”

“energy is in [0,1] with a weak upper bound”

Lower-bound problem (L)

Lower-and-upper-bound problem (L+U)

Lower-and-weak-upper-bound problem (L+W)

9/42

Resourcement management

Results for the untimed case (only discrete costs)

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

is there a feasible
infinite run?

are all runs feasible?

is there a winning strategy?

10/42

Resourcement management

Results for the 1-clock case (linear observer)

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).
[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

11/42

Resourcement management

Results for the general (n-clock) case (linear observer)

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

L

L+W

L+U

exist. problem univ. problem games

? ? ?

? ? ?

? ? undecidable

12/42

Focus on the single-clock framework

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

13/42

Why is that hard to solve the L+U-problem?

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

14/42

Why is that hard to solve the L+U-problem?

The results in the single-clock framework

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

15/42

Why is that hard to solve the L+U-problem?

The results in the single-clock framework

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

15/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[0,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[0,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[0,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[0,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.5,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.5,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.5,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.5,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.75,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.75,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.75,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

[1.75,2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

etc...

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

in the limit [2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

in the limit [2]

16/42

Why is that hard to solve the L+U-problem?

L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

1

in the limit [2]

16/42

Why is that hard to solve the L+U-problem?

The results in the single-clock framework

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

17/42

Why is that hard to solve the L+U-problem?

The results in the single-clock framework

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

17/42

Why is that hard to solve the L+U-problem?

1 clock: L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

18/42

Why is that hard to solve the L+U-problem?

1 clock: L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

18/42

Why is that hard to solve the L+U-problem?

1 clock: L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

18/42

Why is that hard to solve the L+U-problem?

1 clock: L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

18/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

19/42

The L(+W)-problem

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

20/42

The L(+W)-problem

The results in the single-clock framework

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

21/42

The L(+W)-problem

The results in the single-clock framework

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

21/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x="
e∼1

+6

x="
e∼1

+6

x=1−"
e∼7

−6

x=1−"
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x="
e∼1

+6

x="
e∼1

+6

x=1−"
e∼7

−6

x=1−"
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x="
e∼1

+6

x="
e∼1

+6

x=1−"
e∼7

−6

x=1−"
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Example

−3 +6 −6

x=1x :=0

−3

x=0
e=1

−3

x=0.3
e=0.1

+6

x=0.3
e=0.1

+6

x=0.8
e=3.1

−6

x=0.8
e=3.1

−6

x=1
e=1.9

−0.9 0 +3 0 −1.2

−3

x=0
e=1

−3

x="
e∼1

+6

x="
e∼1

+6

x=1−"
e∼7

−6

x=1−"
e∼7

−6

x=1
e∼7

∼0 0 +6 0 ∼0

{0},0

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

(0,1),1

{1},1

{1},1

{1},1

0 −3 0

0 +6 0

0 −6 0

0

0

0

0

0

0

0
0

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

Idea: delay in the most profitable location
; the corner-point abstraction

Theorem [BFLMS08]

The corner-point abstraction is sound and complete for single-clock PTA
with a linear observer and with no discrete costs. Hence the existential L-
and L+W-problems are in P in that case.

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

; requires new developments!

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

{0},0

{0},0

(0,1),0

(0,1),0

(0,1),1

(0,1),1

{1},1

{1},1

0 +2 0

0 +4 0

−3 −3 −3 −3

0

+2

; requires new developments!

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

0
0

1 2 3 4

1

2

3

4

lost!

0
0

1 2 3 4

1

2

3

4

; requires new developments!

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

0
0

1 2 3 4

1

2

3

4

lost! 0
0

1 2 3 4

1

2

3

4

; requires new developments!

22/42

The L(+W)-problem

L- and L+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

+2 +4
−3

x=1,x :=0

+2

0
0

1 2 3 4

1

2

3

4

lost! 0
0

1 2 3 4

1

2

3

4

; requires new developments!

22/42

Solving the L+W-problem (and even more) along a unit path

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

23/42

Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

starting with initial credit 0, it is not possible to reach the last
location;

starting with credit 1, we can exit with credit 5;

starting with credit 3, it is possible to exit with final credit 13.

; we will compute the energy function
“initial credit 7→ maximal final credit”

24/42

Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

starting with initial credit 0, it is not possible to reach the last
location;

starting with credit 1, we can exit with credit 5;

starting with credit 3, it is possible to exit with final credit 13.

; we will compute the energy function
“initial credit 7→ maximal final credit”

24/42

Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

starting with initial credit 0, it is not possible to reach the last
location;

starting with credit 1, we can exit with credit 5;

starting with credit 3, it is possible to exit with final credit 13.

; we will compute the energy function
“initial credit 7→ maximal final credit”

24/42

Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

starting with initial credit 0, it is not possible to reach the last
location;

starting with credit 1, we can exit with credit 5;

starting with credit 3, it is possible to exit with final credit 13.

; we will compute the energy function
“initial credit 7→ maximal final credit”

24/42

Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

starting with initial credit 0, it is not possible to reach the last
location;

starting with credit 1, we can exit with credit 5;

starting with credit 3, it is possible to exit with final credit 13.

; we will compute the energy function
“initial credit 7→ maximal final credit”

24/42

Solving the L+W-problem (and even more) along a unit path

Simplifying annotated unit paths

r1

ℓ1

r2

ℓ2

r3

ℓ3
p1

≥b1

p2

≥b2

If (for some reason) no time should elapse in ℓ2, then this path is
equivalent (regarding the final cost) to

r1 r3
p1+p2

≥max(b1,b2−p1)

Example

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

is equivalent to

0 2 8 0
+2x=0

≥0

−1

≥5

+1 x=1

≥1

; we can select locations with increasing rates
(if some rate is positive...)

25/42

Solving the L+W-problem (and even more) along a unit path

Simplifying annotated unit paths

r1

ℓ1

r2

ℓ2

r3

ℓ3
p1

≥b1

p2

≥b2

If (for some reason) no time should elapse in ℓ2, then this path is
equivalent (regarding the final cost) to

r1 r3
p1+p2

≥max(b1,b2−p1)

Example

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

is equivalent to

0 2 8 0
+2x=0

≥0

−1

≥5

+1 x=1

≥1

; we can select locations with increasing rates
(if some rate is positive...)

25/42

Solving the L+W-problem (and even more) along a unit path

Simplifying annotated unit paths

r1

ℓ1

r2

ℓ2

r3

ℓ3
p1

≥b1

p2

≥b2

If (for some reason) no time should elapse in ℓ2, then this path is
equivalent (regarding the final cost) to

r1 r3
p1+p2

≥max(b1,b2−p1)

Example

0 2 −3 8 0
+2x=0

≥0

−1

≥2

0

≥4

+1 x=1

≥1

is equivalent to

0 2 8 0
+2x=0

≥0

−1

≥5

+1 x=1

≥1

; we can select locations with increasing rates
(if some rate is positive...)

25/42

Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

An annotated unit path

0 r1 r2 rn 0
x=0 p0

≥b0

p1

≥b1

p2

≥b2

pn−1

≥bn−1

x=1pn

≥bn

is in normal form if one of the following cases holds:

n = 1 (trivial normal form);

the rates ri are positive and increasing, and bi−1 + pi−1 < bi for
all 1 ≤ i ≤ n − 1 (positive normal form);

the rates ri are negative and decreasing, and bi−1 + pi−1 > bi for
all 1 ≤ i ≤ n − 1 (negative normal form).

26/42

Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

Example

0 3 5 6 8 0
+1x=0

≥0

+3

≥3

−2

≥4

0

≥7

+1 x=1

≥4

is not in normal form.

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

is in (positive) normal form.

Lemma

Any annotated unit path can be transformed into an equivalent (w.r.t.
maximal final cost) normal form path.

27/42

Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

Example

0 3 5 6 8 0
+1x=0

≥0

+3

≥3

−2

≥4

0

≥7

+1 x=1

≥4

is not in normal form.

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

is in (positive) normal form.

Lemma

Any annotated unit path can be transformed into an equivalent (w.r.t.
maximal final cost) normal form path.

27/42

Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

Example

0 3 5 6 8 0
+1x=0

≥0

+3

≥3

−2

≥4

0

≥7

+1 x=1

≥4

is not in normal form.

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

is in (positive) normal form.

Lemma

Any annotated unit path can be transformed into an equivalent (w.r.t.
maximal final cost) normal form path.

27/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0

−

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0

−

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0

−

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2

0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: −

1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3

1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�

initial credit
2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

0 3 6 8 0
+1x=0

≥0

+1

≥3

0

≥7

+1 x=1

≥4

topt: − 2
3

1
2 − −

t∗: − 1
2

1
2 0 −

minimal initial credit required: 1
2 , yields final credit 8.

initial credit
1
2 + �

1
2 − �

3
1
2

�
3

final credit
8 + 8

3�
initial credit

2

0 1
2

1
2

final credit
12

initial credit
2 + �

0 1
2 − �

6
1
2 + �

6

final credit
12 + 8

6�

initial credit
5

0 0 1
final credit

16

initial credit
5 + �

0 0 1
final credit
16 + �

compute optimal delays topt in ℓ1 to ℓn−1;

compute optimal possible delays t∗ in ℓ1 to ℓn−1;

compute other points on the energy function curve.

28/42

Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
Original automaton:

0 3
1

≥ 0

c=0

{c}
5

3

≥ 3
6

−2

≥ 4
8

0

≥ 7
0

1

≥ 4

c=1

{c}

Normal-form automaton:

0 3
1

≥ 0

c=0

{c}
6

1

≥ 3
8

0

≥ 7
0

1

≥ 4

c=1

{c}

�

�

win

wout

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

point win wout
� 1/2 8

� 2 12

 5 16

29/42

What about exponential observers?

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

30/42

What about exponential observers?

Restricted unit path

Time is almost over?

0 2 −3 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

starting with initial credit 0, it is not possible to reach the final
location;

starting with credit 1 and spending 1 t.u. in
2

, we have credit

exp(2) ∼ 7.39 when exiting
2

, which is not sufficient to reach the
final location;

starting with credit 1,

spending 0.8 t.u. in
2

, we have credit exp(2 ∗ 0.8) ∼ 4.95;

we reach
8

with credit around 0.95;
spending the remaining 0.2 t.u. there, we exit the path with credit
approx. 0.72.

31/42

What about exponential observers?

Restricted unit path

0 2 −3 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

starting with initial credit 0, it is not possible to reach the final
location;

starting with credit 1 and spending 1 t.u. in
2

, we have credit

exp(2) ∼ 7.39 when exiting
2

, which is not sufficient to reach the
final location;

starting with credit 1,

spending 0.8 t.u. in
2

, we have credit exp(2 ∗ 0.8) ∼ 4.95;

we reach
8

with credit around 0.95;
spending the remaining 0.2 t.u. there, we exit the path with credit
approx. 0.72.

31/42

What about exponential observers?

Restricted unit path

0 2 −3 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

starting with initial credit 0, it is not possible to reach the final
location;

starting with credit 1 and spending 1 t.u. in
2

, we have credit

exp(2) ∼ 7.39 when exiting
2

, which is not sufficient to reach the
final location;

starting with credit 1,

spending 0.8 t.u. in
2

, we have credit exp(2 ∗ 0.8) ∼ 4.95;

we reach
8

with credit around 0.95;
spending the remaining 0.2 t.u. there, we exit the path with credit
approx. 0.72.

31/42

What about exponential observers?

Restricted unit path

0 2 −3 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

starting with initial credit 0, it is not possible to reach the final
location;

starting with credit 1 and spending 1 t.u. in
2

, we have credit

exp(2) ∼ 7.39 when exiting
2

, which is not sufficient to reach the
final location;

starting with credit 1,

spending 0.8 t.u. in
2

, we have credit exp(2 ∗ 0.8) ∼ 4.95;

we reach
8

with credit around 0.95;
spending the remaining 0.2 t.u. there, we exit the path with credit
approx. 0.72.

31/42

What about exponential observers?

Restricted unit path

0 2 −3 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

starting with initial credit 0, it is not possible to reach the final
location;

starting with credit 1 and spending 1 t.u. in
2

, we have credit

exp(2) ∼ 7.39 when exiting
2

, which is not sufficient to reach the
final location;

starting with credit 1,

spending 0.8 t.u. in
2

, we have credit exp(2 ∗ 0.8) ∼ 4.95;

we reach
8

with credit around 0.95;
spending the remaining 0.2 t.u. there, we exit the path with credit
approx. 0.72.

31/42

What about exponential observers?

Normal form for exponential observers

A restricted unit path

0 r1 r2 rn 0
x=0 p0 p1 p2 pn−1 x=1pn

is in normal form if one of the following cases holds:

n = 1 (trivial normal form);

the rates ri are positive and increasing, and

pi−1 ⋅ ri−1 ⋅ ri
ri−1 − ri

<
pi ⋅ ri ⋅ ri+1

ri − ri+1

for all 2 ≤ i ≤ n − 1 (positive normal form);

32/42

What about exponential observers?

Normal form for exponential observers

A restricted unit path

0 r1 r2 rn 0
x=0 p0 p1 p2 pn−1 x=1pn

is in normal form if one of the following cases holds:

n = 1 (trivial normal form);

the rates ri are positive and increasing, and

pi−1 ⋅ ri−1 ⋅ ri
ri−1 − ri

<
pi ⋅ ri ⋅ ri+1

ri − ri+1

for all 2 ≤ i ≤ n − 1 (positive normal form);

Lemma

Any restricted unit path can be transformed into an equivalent (w.r.t.
maximal final credit) normal form path.

32/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti

ri+1

topti+1

cin coutpi

We have
cout = (cin ⋅ eri t

opt
i + pi) ⋅ eri+1t

opt
i+1

∂cout
∂�

= ricin ⋅ eri (t
opt
i +�) ⋅ eri+1(t

opt
i+1−�)

− (ri+1(cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

33/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti +�

ri+1

topti+1−�

cin coutpi

We have

cout = (cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

∂cout
∂�

= ricin ⋅ eri (t
opt
i +�) ⋅ eri+1(t

opt
i+1−�)

− (ri+1(cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

33/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti +�

ri+1

topti+1−�

cin coutpi

We have

cout = (cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

∂cout
∂�

= ricin ⋅ eri (t
opt
i +�) ⋅ eri+1(t

opt
i+1−�)

− (ri+1(cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

33/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti +�

ri+1

topti+1−�

cin coutpi

We have

cout = (cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

∂cout
∂�

= ricin ⋅ eri t
opt
i ⋅ eri+1t

opt
i+1 − (ri+1(cin ⋅ eri t

opt
i + pi) ⋅ eri+1t

opt
i+1

= 0

33/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti +�

ri+1

topti+1−�

cin coutpi

We have

cout = (cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

Hence
cin ⋅ eri t

opt
i =

pi ⋅ ri+1

ri − ri+1

Lemma

The optimal credit with which to exit
ℓi

is pi ⋅ri+1

ri−ri+1
.

33/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti +�

ri+1

topti+1−�

cin coutpi

We have

cout = (cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

Hence
cin ⋅ eri t

opt
i =

pi ⋅ ri+1

ri − ri+1

Lemma

The optimal credit with which to exit
ℓi

is pi ⋅ri+1

ri−ri+1
.

33/42

What about exponential observers?

Normal form for exponential observers – Intuition

ri

topti +�

ri+1

topti+1−�

cin coutpi

We have

cout = (cin ⋅ eri (t
opt
i +�) + pi) ⋅ eri+1(t

opt
i+1−�)

Hence
cin ⋅ eri t

opt
i =

pi ⋅ ri+1

ri − ri+1

Lemma

Optimal runs spend no time in
ℓi

if pi−1⋅ri
ri−1−ri

+ pi−1 ≥ pi ⋅ri+1

ri−ri+1
.

33/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) −

−

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3)

−

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) −

−

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3)

−

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)

− −

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3)

−

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: −

1
2 ⋅ ln(5

cin
)

1
5 ⋅ ln(8/32) − −

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3)

−

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3)

−

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3)

−

Lemma

The optimal strategy is to delay topti as long as possible.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: −

1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)

1
8 ⋅ ln(4

5/3) −

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

The minimal initial credit to reach the final location is

cmin = 5 ⋅ e−2 ⋅
(
12

5

)1/4

⋅
(
4

3

)2/5

.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

Starting with credit k ⋅ cmin (between cmin and 5):

we spend 1
2 ln(

5
k⋅cmin

) in location
2

;

we transfer 1
2 ⋅ ln(k) t.u. to location

8
;

the final credit is 4 ⋅ e8⋅ 12 ⋅ln(k) − 4.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

Starting with credit k ⋅ cmin (between cmin and 5):

we spend 1
2 ln(

5
k⋅cmin

) in location
2

;

we transfer 1
2 ⋅ ln(k) t.u. to location

8
;

the final credit is 4 ⋅ e8⋅ 12 ⋅ln(k) − 4.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

Starting with credit k ⋅ cmin (between cmin and 5):

we spend 1
2 ln(

5
k⋅cmin

) = tmin − 1
2 ⋅ ln(k) in location

2
;

we transfer 1
2 ⋅ ln(k) t.u. to location

8
;

the final credit is 4 ⋅ e8⋅ 12 ⋅ln(k) − 4.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

Starting with credit k ⋅ cmin (between cmin and 5):

we spend 1
2 ln(

5
k⋅cmin

) = tmin − 1
2 ⋅ ln(k) in location

2
;

we transfer 1
2 ⋅ ln(k) t.u. to location

8
;

the final credit is 4 ⋅ e8⋅ 12 ⋅ln(k) − 4.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

Starting with credit k ⋅ cmin (between cmin and 5):

we spend 1
2 ln(

5
k⋅cmin

) = tmin − 1
2 ⋅ ln(k) in location

2
;

we transfer 1
2 ⋅ ln(k) t.u. to location

8
;

the final credit is 4 ⋅ e8⋅ 12 ⋅ln(k) − 4.

34/42

What about exponential observers?

Computing optimal delays

Example

0 2 5 8 0
0x=0

≥0

−3

≥3

−1

≥1

−4 x=1

≥4

copt − 5 8
3 − −

topt: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32) − −

tmin: − 1
2 ⋅ ln(5

cin
) 1

5 ⋅ ln(8/32)
1
8 ⋅ ln(4

5/3) −

Starting with credit k ⋅ cmin (between cmin and 5):

we spend 1
2 ln(

5
k⋅cmin

) = tmin − 1
2 ⋅ ln(k) in location

2
;

we transfer 1
2 ⋅ ln(k) t.u. to location

8
;

the final credit is 4 ⋅ e8⋅ 12 ⋅ln(k) − 4 = 4 ⋅
(

cin
cmin

)4

− 4.

34/42

What about exponential observers?

Computing optimal delays

Theorem
Given a restricted unit path and an initial credit, we can compute in
polynomial time the optimal final credit (in closed form).

Moreover the energy function:

is piecewise of the form � ⋅ (cin − �)ri/rj + , with ri ≥ rj ;

has continuous derivative.

35/42

What about exponential observers?

Computing optimal delays

Theorem
Given a restricted unit path and an initial credit, we can compute in
polynomial time the optimal final credit (in closed form).

Moreover the energy function:

is piecewise of the form � ⋅ (cin − �)ri/rj + , with ri ≥ rj ;

has continuous derivative.

35/42

What about exponential observers?

Computing optimal delays

Example

Original automaton:

0 2
0c=0

{c}
5

−3
8

−1
0

−4c=1

{c}

Normal-form automaton:

0 2
0c=0

{c}
5

−3
8

−1
0

−4c=1

{c}

�

�

win

wout

0 1 2 3 4 5 6
0

875

1750

2625

3500

4375

5250

6125

point win wout

�
e−2∗5∗(12/5)1/4∗(4/3)2/5

≈ 0.944951
0

� 5
e8∗5/3∗(3/4)8/5−4

≈ 3131.47

 17/3
e8∗5/3−4

≈ 4964.26

interval equation of the curve

� – � wout =
5

3
⋅
(

win

e−2 ∗ 5 ∗ (4/3)2/5

)4

− 4

� – wout =
5

3
⋅
(
win − 3

e−5 ∗ 8/3

)8/5

− 4

 – +∞ wout = (win − 4) ⋅ e8 − 4

1

Original automaton:

0 2
0c=0

{c}
5

−3
8

−1
0

−4c=1

{c}

Normal-form automaton:

0 2
0c=0

{c}
5

−3
8

−1
0

−4c=1

{c}

�

�

win

wout

0 1 2 3 4 5 6
0

875

1750

2625

3500

4375

5250

6125

point win wout

�
e−2∗5∗(12/5)1/4∗(4/3)2/5

≈ 0.944951
0

� 5
e8∗5/3∗(3/4)8/5−4

≈ 3131.47

 17/3
e8∗5/3−4

≈ 4964.26

interval equation of the curve

� – � wout =
5

3
⋅
(

win

e−2 ∗ 5 ∗ (4/3)2/5

)4

− 4

� – wout =
5

3
⋅
(
win − 3

e−5 ∗ 8/3

)8/5

− 4

 – +∞ wout = (win − 4) ⋅ e8 − 4

1
36/42

Solving the general problem

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

37/42

Solving the general problem

Basic simplifications

Remark
For the sake of simplicity, we restrict to closed timed automata.

38/42

Solving the general problem

Basic simplifications

Lemma
We can assume that there is a global invariant x ≤ 1, and that there are
only three kind of transitions:

0≤x≤1

or
x=0

or
x=1

x :=0

38/42

Solving the general problem

Basic simplifications

Lemma
We can assume that there is a global invariant x ≤ 1, and that there are
only three kind of transitions:

0≤x≤1

or
x=0

or
x=1

x :=0

Example

ℓ

x≤2

x≥2

; ℓ,0 ℓ,1 ℓ,2 ℓ,3

0≤y≤1 0≤y≤1 y=0

y=1

y :=0

0≤y≤1 0≤y≤1

y=1

y :=0

y=1

y :=0

y=1

y :=0

r r ′
0≤x≤1

x :=0

pi ; r 0 r ′
0≤x≤1 x=1

x :=0

pi

38/42

Solving the general problem

Basic simplifications

Lemma
We can assume that there is a global invariant x ≤ 1, and that there are
only three kind of transitions:

0≤x≤1

or
x=0

or
x=1

x :=0

Example

ℓ

x≤2

x≥2

; ℓ,0 ℓ,1 ℓ,2 ℓ,3

0≤y≤1 0≤y≤1 y=0

y=1

y :=0

0≤y≤1 0≤y≤1

y=1

y :=0

y=1

y :=0

y=1

y :=0

r r ′
0≤x≤1

x :=0

pi ; r 0 r ′
0≤x≤1 x=1

x :=0

pi

38/42

Solving the general problem

Handling non-resetting cycles

Lemma

For each location ℓ, we can compute a value wZeno(ℓ) such that there is
an infinite non-resetting feasible run from ℓ with initial credit w iff
w ≥ wZeno(ℓ).

Lemma

From an automaton A, we can compute an equivalent automaton A′

labelled with wZeno and not containing any non-resetting cycle.

39/42

Solving the general problem

Handling non-resetting cycles

Lemma

For each location ℓ, we can compute a value wZeno(ℓ) such that there is
an infinite non-resetting feasible run from ℓ with initial credit w iff
w ≥ wZeno(ℓ).

Lemma

From an automaton A, we can compute an equivalent automaton A′

labelled with wZeno and not containing any non-resetting cycle.

39/42

Solving the general problem

Main result for the L+W-problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

either with a linear observer;

or with an exponential observer with non-positive discrete costs.

transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of wZeno).

40/42

Solving the general problem

Main result for the L+W-problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

either with a linear observer;

or with an exponential observer with non-positive discrete costs.

transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of wZeno).

40/42

Solving the general problem

Main result for the L+W-problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

either with a linear observer;

or with an exponential observer with non-positive discrete costs.

transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

x :=0

x :=0

f

f

check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of wZeno).

40/42

Solving the general problem

Main result for the L+W-problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

either with a linear observer;

or with an exponential observer with non-positive discrete costs.

transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of wZeno).

40/42

Solving the general problem

Main result for the L+W-problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

either with a linear observer;

or with an exponential observer with non-positive discrete costs.

transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of wZeno).

40/42

Solving the general problem

Main result for the L+W-problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

either with a linear observer;

or with an exponential observer with non-positive discrete costs.

transform the automaton into an automaton with energy functions;

x :=0

x :=0

x :=0

x :=0

f

f

check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of wZeno).

40/42

Conclusion

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework
Why is that hard to solve the L+U-problem?
The L(+W)-problem
Solving the L+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem

4. Conclusion

41/42

Conclusion

Conclusion & future work

The energy management problem:

nice problem statement
has inspired some developments in mean-payoff games
non-trivial to solve in general!

The single-clock framework:

computation of (infinite) schedules satisfying some simple energy
constraints (energy should remain ≥ 0 – the L-problem)
surprisingly decidable for exponential observers?
required an optimization algorithm along unit paths

42/42

Conclusion

Conclusion & future work

The energy management problem:

nice problem statement
has inspired some developments in mean-payoff games
non-trivial to solve in general!

The single-clock framework:

computation of (infinite) schedules satisfying some simple energy
constraints (energy should remain ≥ 0 – the L-problem)
surprisingly decidable for exponential observers?
required an optimization algorithm along unit paths

42/42

Conclusion

Conclusion & future work

Many open problems:

can we go beyond linear and exponential observers?
(In particular can we handle observers that mix linear and exponential

evolutions?)

what if there are upper bounds on the observer variable?
(L+U-problem)

what if there are more than one clock?
what if there is an interacting environment (games)?
. . .

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

L

L+W

L+U

exist. problem univ. problem games

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

∈ P
∈ EXPTIME

∈ P
∈ EXPTIME ?

? ? undecidable

L

L+W

L+U

exist. problem univ. problem games

? ? ?

? ? ?

? ? undecidable

42/42

	Introduction
	Resourcement management
	Focus on the single-clock framework
	Why is that hard to solve the L+U-problem?
	The L(+W)-problem
	Solving the L+W-problem (and even more) along a unit path
	What about exponential observers?
	Solving the general problem

	Conclusion

