Energy management in timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Uli Fahrenberg, Kim G. Larsen, Nicolas Markey and Jiří Srba

Outline

1. Introduction

- 2. Resourcement management
- 3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem Solving the L+W-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

The standard timed automaton model [AD90, AD94]

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

• System resources might be relevant and even crucial information

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits,
- temperature,

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,

- price to pay,
- benefits,
- temperature,

• ...

 \rightsquigarrow timed automata are not powerful enough!

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,

- price to pay,
- benefits,
- temperature,

• ...

 \rightsquigarrow timed automata are not powerful enough!

• A possible solution: use hybrid automata

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,

- price to pay,
- benefits,
- temperature,

- ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

The thermostat example

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,

- price to pay,
- benefits,
- temperature,

- ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

The thermostat example

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,

- price to pay,
- benefits,
- temperature,

• ...

 \rightsquigarrow timed automata are not powerful enough!

• A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,

- price to pay,
- benefits,
- temperature,

• ...

 \rightsquigarrow timed automata are not powerful enough!

• A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]
 → hybrid variables are observer variables
 (they do not constrain *a priori* the system)

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

A simple example of weighted timed automata (WTA) [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

A simple example of weighted timed automata (WTA) [ALP01,BFH+01]

[[]ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romiin, Vaandrager, Minimum-cost reachability in priced timed automata (HSCC'01).

Example

We also consider PTA with an exponential observer:

Example

We also consider PTA with an exponential observer:

Rate -3 in location ℓ_0 means

$$\frac{\partial \cot}{\partial \text{ time}} = -3 \times \cot$$
$$\cot = \cot_0 \cdot e^{-3 \times t}$$

We also consider PTA with an exponential observer:

Rate -3 in location ℓ_0 means

$$\frac{\partial \operatorname{cost}}{\partial \operatorname{time}} = -3 \times \operatorname{cost}$$
$$\operatorname{cost} = \operatorname{cost}_0 \cdot e^{-3 \times t}$$

Relevant questions

- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, *etc*)
 - \rightsquigarrow an abundant literature since 2001 (for the linear observers only) \rightsquigarrow cf tutorial of Kim G. Larsen

Relevant questions

- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, *etc*)
 - \sim an abundant literature since 2001 (for the linear observers only) $\sim cf$ tutorial of Kim G. Larsen
- Scheduling under energy constraints (resource management): are there scheduling policies/strategies when energy is constrained? [BFLMS08]

Relevant questions

- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, *etc*)
 - \sim an abundant literature since 2001 (for the linear observers only) $\sim cf$ tutorial of Kim G. Larsen
- Scheduling under energy constraints (resource management): are there scheduling policies/strategies when energy is constrained? [BFLMS08]
 - \sim An example: an oil pump control system [CJL+09]

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08). [CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC'09).

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem Solving the L+W-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)

• Lower-and-upper-bound problem (L+U)

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)

• Lower-and-upper-bound problem (L+U)

• Lower-and-upper-bound problem (L+U)

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)

• Lower-and-upper-bound problem (L+U)

• Lower-and-upper-bound problem (L+U)

• Lower-and-upper-bound problem (L+U)

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)

- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)
- Lower-and-weak-upper-bound problem (L+W)

Results for the untimed case (only discrete costs)

	is there a <i>feasible</i> infinite run?	are all runs <i>feasible</i> ? is	there a winning strategy
	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).

Results for the 1-clock case (linear observer)

	exist. problem	univ. problem	games
L	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\stackrel{\in}{\in} P\\ \in EXPTIME$?
L+W	$\in P$ $\in EXPTIME$	$\in P$ $\in EXPTIME$?
L+U	?	?	undecidable

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08). [BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC'10).

Results for the general (*n*-clock) case (linear observer)

	exist. problem	univ. problem	games
L	?	?	?
L+W	?	?	?
L+U	?	?	undecidable

Outline

1. Introduction

- 2. Resourcement management
- 3. Focus on the single-clock framework

Why is that hard to solve the **L+U**-problem? The **L(+W)**-problem Solving the **L+W**-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

Outline

1. Introduction

- 2. Resourcement management
- 3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem?

The L(+W)-problem Solving the L+W-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

The results in the single-clock framework

	exist. problem	univ. problem	games
L	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\in P$ $\in EXPTIME$?
L+W	$\in P$ $\in EXPTIME$	$\in P$ $\in EXPTIME$?
L+U	?	?	undecidable

The results in the single-clock framework

	exist. problem	univ. problem	games
L	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\stackrel{\in}{\in} P\\ \in EXPTIME$?
L+W	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\stackrel{\in}{\in} P\\ \in EXPTIME$?
L+U	?	?	undecidable

The results in the single-clock framework

	exist. problem	univ. problem	games
L	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\in P$ $\in EXPTIME$?
L+W	$\in P$ $\in EXPTIME$	$\in P$ $\in EXPTIME$?
L+U	?	?	undecidable

The results in the single-clock framework

	exist. problem	univ. problem	games
L	$\stackrel{\in}{\in} P\\\inEXPTIME$	$\stackrel{\in}{\in} P\\ \in EXPTIME$?
L+W	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\stackrel{\in}{\in} P\\ \in EXPTIME$?
L+U	?	?	undecidable

1 clock: L+U-games

Theorem

The single-clock **L**+**U**-games are undecidable.

1 clock: L+U-games

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.
1 clock: L+U-games

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

1 clock: L+U-games

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

 → We present a generic construction for incrementing/decrementing the counters.

- $\alpha=3$: increment c_1
- $\alpha=2$: increment c_2
- $\alpha = 12$: decrement c_1
- $\alpha = 18$: decrement c_2

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem

Solving the **L+W**-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

The results in the single-clock framework

	exist. problem	univ. problem	games
L	$\in P$ $\in EXPTIME$	$\in P$ $\in EXPTIME$?
L+W	$\in P$ $\in EXPTIME$	$\in P$ $\in EXPTIME$?
L+U	?	?	undecidable

The results in the single-clock framework

	exist. problem	univ. problem	games
L	$\in P$ $\in EXPTIME$	$\stackrel{\in}{\in} P\\ \in EXPTIME$?
L+W	$\stackrel{\in}{\in} P\\ \in EXPTIME$	$\stackrel{\in}{\in} P\\\inEXPTIME$?
L+U	?	?	undecidable

Idea: delay in the most profitable location

Idea: delay in the most profitable location

Idea: delay in the most profitable location

Idea: delay in the most profitable location

Idea: delay in the most profitable location

Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Theorem [BFLMS08]

The corner-point abstraction is sound and complete for single-clock PTA with a linear observer and with no discrete costs. Hence the existential L-and L+W-problems are in P in that case.

Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

Idea: delay in the most profitable location

 \sim the corner-point abstraction

Remark The corner-point abstraction is not correct with discrete costs.

Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Remark The corner-point abstraction is not correct with discrete costs. -3 x = 1, x := 0lost! \sim requires new developments!

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem

Solving the L+W-problem (and even more) along a unit path

What about exponential observers?

Solving the general problem

4. Conclusion

• starting with initial credit 0, it is not possible to reach the last location;

- starting with initial credit 0, it is not possible to reach the last location;
- starting with credit 1, we can exit with credit 5;

- starting with initial credit 0, it is not possible to reach the last location;
- starting with credit 1, we can exit with credit 5;
- starting with credit 3, it is possible to exit with final credit 13.

- starting with initial credit 0, it is not possible to reach the last location;
- starting with credit 1, we can exit with credit 5;
- starting with credit 3, it is possible to exit with final credit 13.

 \rightsquigarrow we will compute the energy function

"initial credit \mapsto maximal final credit"

Simplifying annotated unit paths

If (for some reason) no time should elapse in ℓ_2 , then this path is equivalent (regarding the final cost) to

$$\xrightarrow{p_1+p_2} \xrightarrow{p_1+p_2} \xrightarrow{r_3} \xrightarrow{r_3$$

Simplifying annotated unit paths

If (for some reason) no time should elapse in ℓ_2 , then this path is equivalent (regarding the final cost) to

$$\xrightarrow{p_1+p_2} \xrightarrow{p_1+p_2} \xrightarrow{r_3} \xrightarrow{r_3}$$

Simplifying annotated unit paths

If (for some reason) no time should elapse in ℓ_2 , then this path is equivalent (regarding the final cost) to

$$\xrightarrow{p_1+p_2} \xrightarrow{p_1+p_2} \xrightarrow{r_3} \xrightarrow{r_3}$$

 \sim we can select locations with increasing rates

(if some rate is positive...)

Normal form for unit paths

An annotated unit path $\rightarrow \underbrace{0}_{\geq b_0} \underbrace{x=0}_{p_0} \underbrace{p_0}_{r_1} \underbrace{p_1}_{\geq b_1} \underbrace{p_2}_{\geq b_2} \underbrace{p_{n-1}}_{\geq b_2} \underbrace{p_n}_{\geq b_{n-1}} \underbrace{p_n}_{\geq b_n} \underbrace{x=1}_{p_n} \underbrace{0}$

is in normal form if one of the following cases holds:

• n = 1 (trivial normal form);

- the rates r_i are positive and increasing, and b_{i−1} + p_{i−1} < b_i for all 1 ≤ i ≤ n − 1 (positive normal form);
- the rates r_i are negative and decreasing, and $b_{i-1} + p_{i-1} > b_i$ for all $1 \le i \le n-1$ (negative normal form).

Normal form for unit paths

Normal form for unit paths

Normal form for unit paths

Lemma

Any annotated unit path can be transformed into an equivalent (w.r.t. maximal final cost) normal form path.

• compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

Example

Original automaton:

Normal-form automaton:

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem Solving the L+W-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

✤ Time is almost over?

• starting with initial credit 0, it is not possible to reach the final location;

- starting with initial credit 0, it is not possible to reach the final location;
- starting with credit 1 and spending 1 t.u. in (2), we have credit $exp(2) \sim 7.39$ when exiting (2), which is not sufficient to reach the final location;

- starting with initial credit 0, it is not possible to reach the final location;
- starting with credit 1 and spending 1 t.u. in (2), we have credit $exp(2) \sim 7.39$ when exiting (2), which is not sufficient to reach the final location;
- starting with credit 1,
 - spending 0.8 t.u. in (2), we have credit exp $(2 * 0.8) \sim 4.95$;
 - we reach 💛 with credit around 0.95;
 - spending the remaining 0.2 t.u. there, we exit the path with credit approx. 0.72.

Normal form for exponential observers

- n = 1 (trivial normal form);
- the rates r_i are positive and increasing, and

$$\frac{p_{i-1} \cdot r_{i-1} \cdot r_i}{r_{i-1} - r_i} < \frac{p_i \cdot r_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

for all $2 \le i \le n-1$ (positive normal form);

Normal form for exponential observers

for all $2 \le i \le n-1$ (positive normal form);

Lemma

Any restricted unit path can be transformed into an equivalent (w.r.t. maximal final credit) normal form path.

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i t_i^{\text{opt}}} + p_i) \cdot e^{r_{i+1} t_{i+1}^{\text{opt}}}$$

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

$$c_{\mathsf{out}} = (c_{\mathsf{in}} \cdot e^{r_i(t_i^{\mathsf{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\mathsf{opt}} - \delta)}$$

$$\frac{\partial c_{\text{out}}}{\partial \delta} = r_i c_{\text{in}} \cdot e^{r_i (t_i^{\text{opt}} + \delta)} \cdot e^{r_{i+1} (t_{i+1}^{\text{opt}} - \delta)} - (r_{i+1} (c_{\text{in}} \cdot e^{r_i (t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1} (t_{i+1}^{\text{opt}} - \delta)}$$

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

$$\frac{\partial c_{\text{out}}}{\partial \delta} = r_i c_{\text{in}} \cdot e^{r_i t_i^{\text{opt}}} \cdot e^{r_{i+1} t_{i+1}^{\text{opt}}} - (r_{i+1} (c_{\text{in}} \cdot e^{r_i t_i^{\text{opt}}} + p_i) \cdot e^{r_{i+1} t_{i+1}^{\text{opt}}}$$
$$= 0$$

We have

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

Hence

$$c_{\rm in} \cdot e^{r_i t_i^{\rm opt}} = \frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

We have

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

Hence

$$c_{\rm in} \cdot e^{r_i t_i^{\rm opt}} = \frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

Lemma

The optimal credit with which to exit $\underbrace{\ell_i}_{r_i - r_{i+1}}$ is $\frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$.

We have

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

Hence

$$c_{\rm in} \cdot e^{r_i t_i^{\rm opt}} = \frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

Lemma

Optimal runs spend no time in
$$\underbrace{\ell_i}_{r_{i-1}-r_i}$$
 if $\frac{p_{i-1}\cdot r_i}{r_{i-1}-r_i} + p_{i-1} \ge \frac{p_i\cdot r_{i+1}}{r_i-r_{i+1}}$.

Lemma

The optimal strategy is to delay t_i^{opt} as long as possible.

The minimal initial credit to reach the final location is

$$c^{\min} = 5 \cdot e^{-2} \cdot \left(\frac{12}{5}\right)^{1/4} \cdot \left(\frac{4}{3}\right)^{2/5}$$

• we spend
$$\frac{1}{2} \ln(\frac{5}{k \cdot c_{\min}})$$
 in location (2);

• we spend
$$\frac{1}{2}\ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} - \frac{1}{2} \cdot \ln(k)$$
 in location ⁽²⁾

• we spend
$$\frac{1}{2} \ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} - \frac{1}{2} \cdot \ln(k)$$
 in location
• we transfer $\frac{1}{2} \cdot \ln(k)$ t.u. to location
(3);

Starting with credit $k \cdot c_{\min}$ (between c_{\min} and 5):

- we spend $\frac{1}{2} \ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} \frac{1}{2} \cdot \ln(k)$ in location (2);
- we transfer $\frac{1}{2} \cdot \ln(k)$ t.u. to location (8);

• the final credit is $4 \cdot e^{8 \cdot \frac{1}{2} \cdot \ln(k)} - 4$.

- we spend $\frac{1}{2} \ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} \frac{1}{2} \cdot \ln(k)$ in location (2);
- we transfer $\frac{1}{2} \cdot \ln(k)$ t.u. to location (8);
- the final credit is $4 \cdot e^{8 \cdot \frac{1}{2} \cdot \ln(k)} 4 = 4 \cdot \left(\frac{c_{\text{in}}}{c_{\text{min}}}\right)^4 4$.

Theorem

Given a restricted unit path and an initial credit, we can compute in polynomial time the optimal final credit (in closed form).

Theorem

Given a restricted unit path and an initial credit, we can compute in polynomial time the optimal final credit (in closed form).

Moreover the energy function:

- is piecewise of the form $\alpha \cdot (c_{in} \beta)^{r_i/r_j} + \gamma$, with $r_i \ge r_j$;
- has continuous derivative.

Outline

1. Introduction

2. Resourcement management

3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem Solving the L+W-problem (and even more) along a unit path What about exponential observers?

Solving the general problem

4. Conclusion

Remark

For the sake of simplicity, we restrict to closed timed automata.

Lemma

We can assume that there is a global invariant $x \le 1$, and that there are only three kind of transitions:

Lemma We can assume that there is a global invariant $x \leq 1$, and that there are only three kind of transitions: $0 \le x \le 1$ x=0x=1or or x := 0Example *x*≤2 $0 \le y \le 1$ $0 \le y \le 1$ y=0y=1y=1y=1 \sim y := 0y := 0y:=0 $0 \le y \le 1$ $x \ge 2$ $0 \le y \le 1$

y=1y:=0

Lemma We can assume that there is a global invariant $x \leq 1$, and that there are only three kind of transitions: $0 \le x \le 1$ x=0x=1or or x := 0Example $0 \le x \le 1$ 0≤x≤1 G 0 x=1 p_i \sim (r')x = 0

Handling non-resetting cycles

Lemma

For each location ℓ , we can compute a value $w_{\text{Zeno}}(\ell)$ such that there is an infinite non-resetting feasible run from ℓ with initial credit w iff $w \geq w_{\text{Zeno}}(\ell)$.

Handling non-resetting cycles

Lemma

For each location ℓ , we can compute a value $w_{\text{Zeno}}(\ell)$ such that there is an infinite non-resetting feasible run from ℓ with initial credit w iff $w \geq w_{\text{Zeno}}(\ell)$.

Lemma

From an automaton \mathcal{A} , we can compute an equivalent automaton \mathcal{A}' labelled with w_{Zeno} and not containing any non-resetting cycle.

Theorem [BFLM10]

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.

Theorem [BFLM10]

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;

Theorem [BFLM10]

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;

Theorem [BFLM10]

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;

Theorem [BFLM10]

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the constraint \geq 0 can be decided in EXPTIME in single-clock PTA

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;

 check if simple cycles can be iterated, or if a Zeno cycle can be reached (use of w_{Zeno}).

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC'10).

Outline

1. Introduction

- 2. Resourcement management
- 3. Focus on the single-clock framework

Why is that hard to solve the L+U-problem? The L(+W)-problem Solving the L+W-problem (and even more) along a unit path What about exponential observers? Solving the general problem

4. Conclusion

Conclusion & future work

• The energy management problem:

- nice problem statement
- has inspired some developments in mean-payoff games
- non-trivial to solve in general!

Conclusion & future work

• The energy management problem:

- nice problem statement
- has inspired some developments in mean-payoff games
- non-trivial to solve in general!
- The single-clock framework:
 - computation of (infinite) schedules satisfying some simple energy constraints (energy should remain ≥ 0 the L-problem)
 - surprisingly decidable for exponential observers?
 - required an optimization algorithm along unit paths

Conclusion & future work

Many open problems:

- can we go beyond linear and exponential observers?
 (In particular can we handle observers that mix linear and exponential evolutions?)
- what if there are upper bounds on the observer variable? (L+U-problem)
- what if there are more than one clock?
- what if there is an interacting environment (games)?
- . . .

	exist. problem	univ. problem	games
L	€P	€P	∈ UP ∩ coUP P-hard
L+W	€P	€P	∈ NP ∩ coNP P-hard
L+U	€ PSPACE NP-hard	€P	EXPTIME-c.

	exist. problem	univ. problem	games
L	€ P € EXPTIME	€ P € EXPTIME	?
L+W	€ P € EXPTIME	€ P € EXPTIME	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	?	?	?
L+W	?	?	?
L+U	?	?	undecidable