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Introduction

The standard timed automaton model [AD90,AD94]

Example
7_<y§7'5
repairing
problem, x:=0 ¥ Tepair
2<yAx<56
y:=0
failsafe
23 problem 15.6 delayed
safe —> safe —— alarm —— alarm failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
V.

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Introduction

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, e price to pay,
@ memory usage, o benefits,

e bandwidth, o temperature,
]

~ timed automata are not powerful enough!

@ A possible solution: use hybrid automata

Theorem [HKPV95]
The reachability problem is undecidable in hybrid automata. J

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
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Introduction

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, @ price to pay,
e memory usage, o benefits,

o bandwidth, o temperature,
]

~ timed automata are not powerful enough!

@ A possible solution: use hybrid automata

Theorem [HKPV95]
The reachability problem is undecidable in hybrid automata. J

@ An alternative: priced/weighted timed automata [ALPO1,BFH+01]
~ hybrid variables are observer variables
(they do not constrain a priori the system)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed
automata (HSCC'01).
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Introduction

A simple example of weighted timed automata (WTA)
[ALPO1,BFH+-01]

Example (with a linear observer)
-3 +6 —6
T @ A
x:=0 x=1
delay(% delay(%
Run (£, 0) =25 (4. 1y 5 (1, 1) £, (2 (4, 2)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC 01).
[BFH01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. ost reachability in priced timed automata (HSCC'01).
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delay(
Run (£, 0) =2 (4. 1y -5 (11, 1)

[ALPO1,BFH-+01]

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC 01).

[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager.

lity in priced timed automata (HSCC'01).
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Beyond linear observers...
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[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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Introduction

Relevant questions

@ Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

~> an abundant literature since 2001 (for the linear observers only)
~ cf tutorial of Kim G. Larsen

@ Scheduling under energy constraints (resource management): are
there scheduling policies/strategies when energy is constrained?
[BFLMS08]
~ An example: an oil pump control system [CJL+09]

+2.2 litres/second- -

Reservoir

A \]

Machine/Consumer

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC'09).
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Resourcement management

Scheduling /feasible runs under energy constraints

Example
—3 +6 —6
4 (1) /
0 \*1) 2
x:=0 x=1
0 1
“energy is in [0,1] with a weak upper bound”

o Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)
o Lower-and-weak-upper-bound problem (L+W)
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Resourcement management

Results for the untimed case (only discrete costs)

is there a feasible
infinite run?

~

are all runs feasible?

~

is there a winning strategy?

~

exist. problem univ. problem games
L eP eP < U:_Q:ZUP
L+W cP ep € N;}:;:;’NP
L+U ENPPS_:?:jE cP EXPTIME-c.

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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Resourcement management

Results for the 1-clock case (linear observer)

exist. problem univ. problem games

L+W

L+U

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC'10).
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Resourcement management

Results for the general (n-clock) case (linear observer)

exist. problem univ. problem games

L+W

L+U

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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Focus on the single-clock framework

Outline

3. Focus on the single-clock framework
Why is that hard to solve the L+4U-problem?
The L(+W)-problem
Solving the L4+W-problem (and even more) along a unit path
What about exponential observers?
Solving the general problem
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The single-clock L+U-games are undecidable. J

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1

2¢ . 3@

when entering the corresponding module.

e=5—

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

~>  We present a generic construction
for incrementing/decrementing the counters.
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Why is that hard to solve the L+U-problem?

Generic module for incrementing/decrementing

o 5 —6 +30 +30 o
= rm 'm1' 'mz' 'm3. m =
| GLLY) | G ) | G ) |G J

; x:=0 ix: 0
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Why is that hard to solve the L+U-problem?
Generic module for incrementing/decrementing

-6 —6 +30 +30 —a
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; x:=0 | x:=0
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—6 +30

Why is that hard to solve the L4U-problem?

Generic module for incrementing/decrementing

—6 +30 —a
x=0 ) (=) () () C—=1
Y \ J \ J | ) J
; x:=0 | x:=0
Y
+5 -5
x=1 x=1
_module ok _module ok
energy
5—e | @ o=3: increment ¢
@ a=2: increment c,
@ o=12: decrement ¢
@ «=18: decrement c,
0
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The results in the single-clock framework

The L(4+W)-problem

exist. problem univ. problem games
L eP eP ;
€ EXPTIME € EXPTIME '
ebP eP
L+W € EXPTIME € EXPTIME !
L+U ? ? undecidable
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Idea: delay in the most profitable location
~> the corner-point abstraction
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Idea: delay in the most profitable location
~> the corner-point abstraction

lx:_O x=1 I

\ _
,—»[{0},0]—0>[(0,1),0]—3>[(0,1),1]—0>[{1},1]

0 0 0

[{o},o]—0>[(0,1),0]i6>[(0,1),1]—0>[{1},1]

0 0 0 0

[{0},0]—0>[(0,1)7o];6>[(0,1)A,1]—0>[{1},1]

Example
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The L(4+W)-problem

L- and L4+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Theorem [BFLMS08]

The corner-point abstraction is sound and complete for single-clock PTA
with a linear observer and with no discrete costs. Hence the existential L-
and L4+W-problems are in P in that case.

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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The L(4+W)-problem

L- and L4+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

2 -3
— () 4

x=1,x:=0
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The L(4+W)-problem

L- and L4+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

2 -3
= () +4

x=1,x:=0
+2 0 +2 0
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The L(4+W)-problem

L- and L4+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.
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The L(4+W)-problem

L- and L4+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.




The L(4+W)-problem

L- and L4+W-cases: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

~> requires new developments!
v
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Solving the L+W-problem (and even more) along a unit path

Outline

1. Introduction
2. Resourcement management

3. Focus on the single-clock framework

Solving the L4+W-problem (and even more) along a unit path

4. Conclusion
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Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

N~ RN LN~
@ >0 () >2 N\  >a (& >1 @

24/42



Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

N~ RN LN~
@ >0 () >2 N\  >a (& >1 @

@ starting with initial credit 0, it is not possible to reach the last
location;
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Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

N N > LN~
@ >0 () >2 N\  >a (& >1 @

@ starting with initial credit 0, it is not possible to reach the last
location;

@ starting with credit 1, we can exit with credit 5;
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Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

N N > LN~
@ >0 () >2 N\  >a (& >1 @

@ starting with initial credit 0, it is not possible to reach the last
location;

@ starting with credit 1, we can exit with credit 5;
@ starting with credit 3, it is possible to exit with final credit 13.
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Solving the L+W-problem (and even more) along a unit path

Annotated unit path

should take 1 t.u.

SN U = UL~ . =1
»@ = 2 = 8 -
>0 NV > A > J >

@ starting with initial credit 0, it is not possible to reach the last
location;

@ starting with credit 1, we can exit with credit 5;
@ starting with credit 3, it is possible to exit with final credit 13.

~» we will compute the energy function
“initial credit — maximal final credit”
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Solving the L+W-problem (and even more) along a unit path
Simplifying annotated unit paths
4 123 L3

P1 f\ p2 O_
-- n r [E8)
O >b N/ >b

If (for some reason) no time should elapse in {3, then this path is
equivalent (regarding the final cost) to

O pit+p2 O_
- rn &} -
>max(by,b2—p1)
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Solving the L+W-problem (and even more) along a unit path

Simplifying annotated unit paths

=0

£y

1

P1

14

‘I’zi P2
> S >b,

3

If (for some reason) no time should elapse in {3, then this path is
equivalent (regarding the final cost) to

-0

Example

p1t+p2

>max(by,b2—p1)

_)@ x=0 +2 (\2 -1 m_3 0 mS +1 x=1 5
>0 NV > J > J > O
is equivalent to
—0 42 =i 41 =i
»@ a (2) (s) — (o)
>0 >5 O/ >
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Solving the L+W-problem (and even more) along a unit path

Simplifying annotated unit paths

0 1 14

3
PN P2 O’
-- r r. r: -
@ >0 o) > :
If (for some reason) no time should elapse in {3, then this path is
equivalent (regarding the final cost) to

OO
- n &} -—
>max(by,b2—p1)

Example

x=0 +2
0
>0

is equivalent to

x=0 +2
~©
>0

G M ° M~ t1 x=
O >1 @
r\ -1 f\ +1 x=1
® = O— O,

v

~» we can select locations with increasing rates
(if some rate is positive...)
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Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

An annotated unit path
=0 Po P1 P2 Pn—1 Pn =1
N0 ElLY G WLENG W N LG
>by N >by >by by >b,

is in normal form if one of the following cases holds:

e n =1 (trivial normal form);

@ the rates r; are positive and increasing, and b;_1 + p;_1 < b; for
all 1 </ < n—1 (positive normal form);

@ the rates r; are negative and decreasing, and b;_1 + pi_1 > b; for
all 1 < i < n—1 (negative normal form).
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Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

Example

x=0 +1r-\ +3 m —2 m 0 m-&-l x=1
O —0O0——060——0O0—060—"=-0

is not in normal form.
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Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths

Example
=0 +1 +3 —2
->@ X () (5)
>0 () >3 o/  >a
is not in normal form.
=0 +1 +1
>0 O >3

is in (positive) normal form.

©

0 +1  x=1
OO
>7  \_J >4

©
“2

=0
>7  \_J >4
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Solving the L+W-problem (and even more) along a unit path

Normal form for unit paths
Example

x=0 +1m +3 f\ —2 f\ 0 f\+1 x=1
O —0O0——060——0O0—060—"=-0

is not in normal form.

=0 +1 +1
-©=20
>0 \o/ >3

is in (positive) normal form.

©
0
|

Lemma

Any annotated unit path can be transformed into an equivalent (w.r.t.
maximal final cost) normal form path.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

=0 +l, N\ 4l N\ 0 N+l x=1
-»@X 3 6 8 (o)
>0 N/ >3 U >7 \J >4
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

-0 +1 +1 0
OO0
>0 \o/ >3 o >7
1
2

: _ 2
topt 2

x=1
0

@ compute optimal delays top in €1 to £, _1;
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
_»@ i U W o N o .
>0 N/ >3 U >7 \J >4
G =2
£ _

@ compute optimal delays top in €1 to £, _1;
@ compute optimal possible delays t* in £1 to £, 1;
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
=0 +1 7 +1 N\ 0 M\ 1
-»@ = 3 6 8
>0 o/ >3 OV > U >
topt: — % % _
t*: = 0

x=1
0

@ compute optimal delays top in €1 to £, _1;
@ compute optimal possible delays t* in £1 to £, 1;

28/42



Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
=0 1N N 0 A\ 1 x=1
-»@ = 3 6 8 a (o)
>0 o/ >3 OV > U >
topt: — % % —_ _
t*: = % 0 =

@ compute optimal delays top in €1 to £, _1;

@ compute optimal possible delays t* in £1 to £, 1;
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

: _ 2
topt 2

=0 Fle N+l N\ 0 N\ x=1
»@X 3 6 8 (o)
>0 o/ >3 OV > U >
1
2
1
2

@ compute optimal delays top in €1 to £, _1;

@ compute optimal possible delays t* in £1 to £, 1;
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
=0+l L N 0 NHL x=l
»@ = 3 6 8 = (o)
>0 o/ >3 OV > U >
topt: — % % — _
t*: = % % 0 =

minimal initial credit required: % yields final credit 8.

@ compute optimal delays top in 1 to £,_1;

@ compute optimal possible delays t* in £1 to £, 1;
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

=0 4+l N+l N 0 AN x=1
-»@X 3 6 8 (o)
>0 o/ >3 OV > U >

: _ 2
topt 2

NI
|
|

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;

@ compute other points on the energy function curve.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

=0 4+l N+l N 0 AN x=1
-»@X 3 6 8 (o)
>0 o/ >3 OV > U >

: _ 2
topt 2

NI
|
|

N =
N
o

I

initial credit
3+0

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;

@ compute other points on the energy function curve.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

: _ 2
topt 2

=0 4+l N+l N 0 AN x=1
-»@X 3 6 8 (o)
>0 o/ >3 OV > U >
1
2
1
2

N

initial credit
3+0

N[ =
|
Wl

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;
@ compute other points on the energy function curve.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

: _ 2
topt 2

N

initial credit

=0 4+l N+l N 0 AN x=1
-»@X 3 6 8 (o)
>0 o/ >3 OV > U >
1
2
1
2
1 1
1 2
5 +0

N[ =
|
Wl

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;

@ compute other points on the energy function curve.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
=0+l LN 0 A\ L x=1
-»@X 3 6 8 al (o)
>0 o/ >3 OV > U >
topt: — % % — _
t*: — % % 0 —
initial credit 1 s 1 5
T+6 273 2 3
@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;
@ compute other points on the energy function curve.
v
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

: _ 2
topt 2

N

initial credit
3+0

final credit

»@Xzo SO — ) —(G)E X=1®
>0 o/ >3 o > U >

1

2

1

2

1

’ 8+%5

N[ =
Wl
W[

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;
@ compute other points on the energy function curve.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example

=0 4+l N+l N 0 AN x=1
-»@X 3 6 8 (o)
>0 o/ >3 OV > U >

topt: — % % — _
t*: = % % 0 =
initial credit 0 1 1 final credit

2 2 2 12

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;

@ compute other points on the energy function curve.
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Computing optimal delays

Solving the L+W-problem (and even more) along a unit path

Example
_»@ =0 L\ L 0\t x=l O
>0 o/ >3 o > U >
topt: — % % — _
t*: — % % 0 _
initial credit 0 15 1.8 final credit
2496 276 276 1248

@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;

@ compute other points on the energy function curve.
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
=0 4+l N 4l N A\ 1 x=1
-»@X 3 6 0 8 al (o)
>0 o/ >3 OV > U >
topt: — % % — _
t*: — % % 0 —
initial credit final credit
0 0 1
5 16
@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;
@ compute other points on the energy function curve.
v
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Example
= 1 1 1 x=
_»@xo 1) () 0 (=L o
>0 o/ >3 o >7 > O
topt: — % % — _
t*: — % % 0 —
initial credit final credit
0 0 1
546 16+
@ compute optimal delays top in 1 to £,_1;
@ compute optimal possible delays t* in £1 to £, 1;
@ compute other points on the energy function curve.
v
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Solving the L+W-problem (and even more) along a unit path

Computing optimal delays

Original automaton:
=0 1 3 -2 0 =1 1
OO O O=705=5:0
Normal-form automaton:
=0 1 1 0 e=1 1
GD(d S0\ 53 69 >7 G§(d 24QD
Wout
o
16 1
144
B
121
104
sl @
point | wip | Wout
6 o [1/2] 8
B 2 | 12

44 5 5 | 16
2
0 Wi

0 1 2 3 4 5 6

v
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What about exponential observers?

Outline

1. Introduction
2. Resourcement management

3. Focus on the single-clock framework

What about exponential observers?

4. Conclusion
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What about exponential observers?

» Time is almost over?
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What about exponential observers?

Restricted unit path

31/42



What about exponential observers?

Restricted unit path

x=0 0 f\ -3 r_\ —1 m —4 x=1
-)@ >0 () >3 & >1 (& >4 @

@ starting with initial credit 0, it is not possible to reach the final
location;
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What about exponential observers?

Restricted unit path

x=0 0 f\ -3 r_\ —1 r\ —4 x=1
-)@ >0 () >3 & >1 (& >4 @

@ starting with initial credit 0, it is not possible to reach the final
location;

@ starting with credit 1 and spending 1 t.u. in @ we have credit

exp(2) ~ 7.39 when exiting @ which is not sufficient to reach the
final location;
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What about exponential observers?

Restricted unit path

x=0 0 f\ -3 r_\ —1 r\ —4 x=1
-)@ >0 () >3 & >1 (& >4 @

@ starting with initial credit 0, it is not possible to reach the final
location;

@ starting with credit 1 and spending 1 t.u. in @ we have credit

exp(2) ~ 7.39 when exiting @ which is not sufficient to reach the
final location;

@ starting with credit 1,

e spending 0.8 t.u. in @ we have credit exp(2 % 0.8) ~ 4.95;

e we reach with credit around 0.95;

o spending the remaining 0.2 t.u. there, we exit the path with credit
approx. 0.72.
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What about exponential observers?

Normal form for exponential observers

A restricted unit path

x=0 Po P1 P2 Pn—1 Pn x=1
OO D

is in normal form if one of the following cases holds:

@ n =1 (trivial normal form);

@ the rates r; are positive and increasing, and

Pi-i-rfi—1-ri _ Ppi-li-riq1
<

ri—1—1r ri — riqa

for all 2 < j < n—1 (positive normal form);
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What about exponential observers?

Normal form for exponential observers

A restricted unit path

x=0 Po P1 P2 Pn—1 Pn x=1
DO DO

is in normal form if one of the following cases holds:

e n =1 (trivial normal form);

@ the rates r; are positive and increasing, and

Pi—i-fi—i-fi _ Pililiq1
<

ri—1— 1 ri — riga

for all 2 <j < n—1 (positive normal form);

Lemma

Any restricted unit path can be transformed into an equivalent (w.r.t.
maximal final credit) normal form path.
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What about exponential observers?

Normal form for exponential observers — Intuition

Cin Pi Cout
............. >

opt opt
t; fii1

We have ) )
it g1 toP
Cout = (Cin - €75 + p;) - €415
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What about exponential observers?

Normal form for exponential observers — Intuition

Cin Pi Cout
............. >

opt opt
[Py ti1—0

We have

(40Pt : opt _ ¢
Cout — (Cin : er,(t, +9) + P:) ! erlﬂ(ti“ %
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What about exponential observers?

Normal form for exponential observers — Intuition

Cin Pi Cout
............. >

t t
t?P +6 t?):l*"
We have

. ( +OPt . opt _ ¢

Cout = (Cin : er,(t,- +9) + P:) ! erlﬂ(ti“ %

OCout A(tPH40) | i (t2P—6)
= rigp - e\ -e i+1
00

(tP 45 (2P =6
_(ri+1(Cin'er(' )+pi)_er+1( 1 0)
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What about exponential observers?

Normal form for exponential observers — Intuition

Cin Pi Cout
............. >

t t .
t?P +6 t?):l*"
We have
(40Pt ' opt _ ¢
Cout = (Cin : er,(t,- +9) + P:) ! erlﬂ(ti“ %
acO”t it rig1toP] it rigntoP
85 :r’-qn.e': . et :+1_(r’-+1(cin.e': +pl-).e/+ i+1

=0
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What about exponential observers?

Normal form for exponential observers — Intuition

Cin Pi Cout
............. >

t t
t?P +6 t?):l*"
We have
. ( +OPt . opt _ ¢
Cout = (Cin : er,(t,- +9) + P:) ! erlﬂ(ti“ %
Hence

r,'t;)pt — Pi - ri+1

Cin - €
ri — riy1
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What about exponential observers?

Normal form for exponential observers — Intuition

We have

Hence

Lemma

Cin Pi Cout
............. >

opt opt
[Py ti1—0

(40Pt : opt _ ¢
Cout — (Cin : er,(t, +9) + P:) ! erlﬂ(ti“ %

r,'1.‘:-)pt — Pi - rit1

Cnh - €
fi = rit1

The optimal credit with which to exit is Ll

ri—rig1’
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What about exponential observers?

Normal form for exponential observers — Intuition

Cin Pi Cout
............. >

o =0
We have
. ( +OPt . opt _ ¢
Cout — (Cin : er,(t, +9) + P:) ! erlﬂ(ti“ %
Hence . it
4oP it rie1
Cin . er'ti — i
ri — riy1
Lemma

Optimal runs spend no time in if Bl 4 g ) > Pifin

7 = ri—figza’
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What about exponential observers?

Computing optimal delays

Example
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What about exponential observers?

Computing optimal delays

Example

copt = 5
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What about exponential observers?

Computing optimal delays

Example
@XZO L W R W S o x:l@
>0 N/ >3 \J >1 \J >4
copt _ 5 % _ _
£OPt. _ _ _
J
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What about exponential observers?

Computing optimal delays

Example
x=0 0 /7 -3 M\ -1 m\ —4  x=1
O 0O0——00—F—00-"-0
copt _ 5 % _ _

8/3
i = L.n(33) - -

34/42



What about exponential observers?

Computing optimal delays

Example

copt = 5

o - (@) (D) - -
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What about exponential observers?

Computing optimal delays

Example
=0 0 -3 —1 —4 =1
O D——O)——(==20)
>0 N/ >3 \J >1 \J >4
copt _ 5 % _ _
Lon(x 1 8/3

£oPt: - 3 In(2)  L-m(2R) - -
Lemma
The optimal strategy is to delay t,‘-’pt as long as possible.
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What about exponential observers?

Computing optimal delays

Example
O O0—=—0—=-0==0

>0 N/ >3 \J >1 \J >4

copt _ 5 % _ _
1 5 8/3

o = (@) (D) - -

. 1 4

gmin. _ §|n(%) _
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What about exponential observers?

Computing optimal delays

Example
=000
copt _ 5 8 _ _
o - (@) (D) - -
G - 32 L) §-In(gr) -
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Computing optimal delays

What about exponential observers?

Example
MO O O Ot O
coPt - 5 8 - _
ot - 1n(2)  l.n(3R) _ _
§min. — 32 1.3 1 In(5h) _

The minimal initial credit to reach the final location is

1/4 2/5
Cmin:5.e_2. E / . i / N
5 3
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Computing optimal delays

What about exponential observers?

Example
-2 O——O——00==0

>0 o/ >3 \J >1 \J >4

copt _ 5 % _ _
1 5 1 8/3

£ - 3:In(2)  1oin(%) - -

A 1 5 8/3 1 4

- 2 @) 3P & () -

Starting with credit k - cpin (between cyin and 5):
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What about exponential observers?

Computing optimal delays

Example
MO O O e Ot O
coPt - 5 8 - _
£oPt: - 3:In(2)  1.n(3®) — _
§min. — 32 L.m(E) 1 In(5h) _

Starting with credit k - cpin (between cyin and 5):

e we spend 3 In(=>—) in location @;

in
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What about exponential observers?

Computing optimal delays

Example
- O0—=0=—060=-0
copt _ 5 % _ _
£oPt; - 3:n(Z)  Lm(P) - -
o= Lan(E) LnCP) b -

Starting with credit k - cpin (between cyin and 5):

—2—) = tmin — 3 - In(k) in location @;

e we spend 3 In(
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What about exponential observers?

Computing optimal delays

Example
MO O O e Ot O
coPt - 5 8 - _
£oPt: - 3:In(2)  1.n(3®) — _
§min. — 32 L.m(E) 1 In(5h) _

Starting with credit k - cpin (between cyin and 5):

@ we spend %In(k_fmin) = tmin — 3 - In(k) in location @;

e we transfer 1 -In(k) t.u. to location ;
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What about exponential observers?

Computing optimal delays

Example
MO O O e Ot O
coPt - 5 8 — _
£oPt: - 3:In(2)  1.n(3®) — _
§min. — 32 L.m(E) 1 In(5h) _

Starting with credit k - cpin (between cyin and 5):

@ we spend %In(k_fmin) = tmin — 3 - In(k) in location @;

e we transfer 1 -In(k) t.u. to location ;
o the final credit is 4 - €827 (k) — 4.

34/42



Computing optimal delays

What about exponential observers?

Example
OO DD

>0 o/ >3 \J >1 \J >4

copt _ 5 % _ _
1 5 1 8/3

£ - 3:In(2)  1oin(%) - -

A 1 5 8/3 1 4

- 2 @) 3P & () -

Starting with credit k - cpin (between cyin and 5):

e we spend 3 In(

—2—) = tmin — 3 - In(k) in location @;

e we transfer 1 -In(k) t.u. to location ;

4
o the final credit is 4 - €83k 4 = 4. (ﬂ) — 4,

Cmin
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What about exponential observers?

Computing optimal delays

Theorem

Given a restricted unit path and an initial credit, we can compute in
polynomial time the optimal final credit (in closed form).
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What about exponential observers?

Computing optimal delays

Theorem

Given a restricted unit path and an initial credit, we can compute in
polynomial time the optimal final credit (in closed form).

Moreover the energy function:

@ is piecewise of the form « - (¢, — ﬂ)"'/’f + 7, with r; > rj;

@ has continuous derivative.
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Computing optimal delays

Example

e=0 0 -3 =i =1 —4
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What about exponential observers?
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Solving the general problem

Basic simplifications

For the sake of simplicity, we restrict to closed timed automata. '
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Solving the general problem
Basic simplifications

Lemma
We can assume that there is a global invariant x < 1, and that there are

only three kind of transitions:

0<x<1 x=1
o0———0O or O—’O or O—)x:=0 O
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Example
x<2 0<y<1
y=1
~ 2,0 D - -
y:=0
0<y<1

x>2
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Solving the general problem

Handling non-resetting cycles

Lemma

For each location ¢, we can compute a value wzeno(¢) such that there is
an infinite non-resetting feasible run from ¢ with initial credit w iff
w > WZeno(e)-
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Solving the general problem

Handling non-resetting cycles

Lemma

For each location ¢, we can compute a value wzeno(¢) such that there is
an infinite non-resetting feasible run from ¢ with initial credit w iff
w > WZeno(e)-

Lemma

From an automaton A, we can compute an equivalent automaton A’
labelled with wzen, and not containing any non-resetting cycle.
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Solving the general problem

Main result for the L4W-problem

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock PTA

@ either with a linear observer;

@ or with an exponential observer with non-positive discrete costs.

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC'10).
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Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock PTA

@ either with a linear observer;

@ or with an exponential observer with non-positive discrete costs.

@ transform the automaton into an automaton with energy functions;
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Solving the general problem

Main result for the L4W-problem

Theorem [BFLM10]

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock PTA

@ either with a linear observer;

@ or with an exponential observer with non-positive discrete costs.

@ transform the automaton into an automaton with energy functions;

@ check if simple cycles can be iterated, or if a Zeno cycle can be
reached (use of Wzeno).

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC'10).
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Conclusion

Conclusion & future work

@ The energy management problem:

@ nice problem statement
o has inspired some developments in mean-payoff games

e non-trivial to solve in generall!
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Conclusion

Conclusion & future work

@ The energy management problem:

@ nice problem statement
o has inspired some developments in mean-payoff games
e non-trivial to solve in generall!

@ The single-clock framework:
e computation of (infinite) schedules satisfying some simple energy
constraints (energy should remain > 0 — the L-problem)
e surprisingly decidable for exponential observers?
e required an optimization algorithm along unit paths
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Conclusion & future work

@ Many open problems:

e can we go beyond linear and exponential observers?

(In particular can we handle observers that mix linear and exponential
evolutions?)

o what if there are upper bounds on the observer variable?

(L4+U-problem)

e what if there are more than one clock?
o what if there is an interacting environment (games)?

exist. problem

univ. problem

games

exist. problem

univ. problem

Conclusion
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