
On the verification and control
of timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Two main parts:

1 An introduction to timed systems (this morning)

2 Modelling resources in timed systems (this afternoon)

1/1

An introduction to timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

1/94

Introduction

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

2/94

Introduction

Time!

Context: verification of critical systems

Time

naturally appears in real systems (for ex. protocols, embedded
systems)

appears in properties (for ex. bounded response time)

“Will the airbag oben within 5ms after the car crashes?”

; Need of models and specification languages integrating timing aspects

3/94

Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b ⋅ ⋅ ⋅ = (a b)!

4/94

Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b ⋅ ⋅ ⋅ = (a b)!

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) ⋅ ⋅ ⋅

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

4/94

Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b ⋅ ⋅ ⋅ = (a b)!

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) ⋅ ⋅ ⋅

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in ℕ

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

4/94

Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b ⋅ ⋅ ⋅ = (a b)!

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) ⋅ ⋅ ⋅

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in ℕ

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Dense-time semantics: dates are e.g. taken in ℚ+, or in ℝ+

Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

4/94

Introduction

A case for dense-time

Time domain: discrete (e.g. ℕ) or dense (e.g. ℚ+ or ℝ+)

A compositionality problem with discrete time

Dense-time is a more general model than discrete time

But, can we not always discretize?

5/94

Introduction

A digital circuit [Alu91]

[Alu91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Discussion in the context of reachability problems for asynchronous
digital circuits [BS91]

6/94

Introduction

A digital circuit [Alu91]

[Alu91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Discussion in the context of reachability problems for asynchronous
digital circuits [BS91]

Start with x=0 and y=[101] (stable configuration)

6/94

Introduction

A digital circuit [Alu91]

[Alu91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Discussion in the context of reachability problems for asynchronous
digital circuits [BS91]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

6/94

Introduction

A digital circuit [Alu91]

[Alu91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Discussion in the context of reachability problems for asynchronous
digital circuits [BS91]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

6/94

Introduction

A digital circuit [Alu91]

[Alu91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Discussion in the context of reachability problems for asynchronous
digital circuits [BS91]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

6/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

7/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

7/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→
1

[01100000]
y2
−→
1.5

[00100000]
y3,y5
−→
2

[00001000]
y5,y7
−→
3

[00000010]
y7,y8
−→
4

[00000001]

7/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→
1

[01100000]
y2
−→
1.5

[00100000]
y3,y5
−→
2

[00001000]
y5,y7
−→
3

[00000010]
y7,y8
−→
4

[00000001]

[11100000]
y1,y2,y3
−→
1

[00000000]

7/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→
1

[01100000]
y2
−→
1.5

[00100000]
y3,y5
−→
2

[00001000]
y5,y7
−→
3

[00000010]
y7,y8
−→
4

[00000001]

[11100000]
y1,y2,y3
−→
1

[00000000]

[11100000]
y1
−→
1

[01111000]
y2,y3,y4,y5
−→
2

[00000000]

7/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→
1

[01100000]
y2
−→
1.5

[00100000]
y3,y5
−→
2

[00001000]
y5,y7
−→
3

[00000010]
y7,y8
−→
4

[00000001]

[11100000]
y1,y2,y3
−→
1

[00000000]

[11100000]
y1
−→
1

[01111000]
y2,y3,y4,y5
−→
2

[00000000]

[11100000]
y1,y2
−→
1

[00100000]
y3,y5,y6
−→
2

[00001100]
y5,y6
−→
3

[00000000]

7/94

Introduction

Is discretizing sufficient? An example [Alu91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→
1

[01100000]
y2
−→
1.5

[00100000]
y3,y5
−→
2

[00001000]
y5,y7
−→
3

[00000010]
y7,y8
−→
4

[00000001]

[11100000]
y1,y2,y3
−→
1

[00000000]

[11100000]
y1
−→
1

[01111000]
y2,y3,y4,y5
−→
2

[00000000]

[11100000]
y1,y2
−→
1

[00100000]
y3,y5,y6
−→
2

[00001100]
y5,y6
−→
3

[00000000]

7/94

Introduction

Is discretizing sufficient?

[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Theorem [BS91]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k).

8/94

Introduction

Is discretizing sufficient?

[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Theorem [BS91]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k).

Claim
Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

8/94

Introduction

Is discretizing sufficient?

[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Theorem [BS91]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k).

Claim
Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists. (see later)

8/94

Introduction

Is discretizing sufficient?

[BS91] Brzozowski, Seger. Advances in asynchronous circuit theory BEATCS’91.

Theorem [BS91]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k).

Claim
Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists. (see later)

Hence, we better consider a dense-time domain!

8/94

The timed automaton model

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

9/94

The timed automaton model

A plethora ot models...

... for real-time systems:

timed circuits,
time(d) Petri nets,
timed process algebra,
timed automata,
...

... and for real-time properties:

timed observers,
real-time logics: MTL, TPTL, TCTL, QTL, MITL...

10/94

The timed automaton model

A plethora ot models...

... for real-time systems:

timed circuits,
time(d) Petri nets,
timed process algebra,
timed automata,
...

... and for real-time properties:

timed observers,
real-time logics: MTL, TPTL, TCTL, QTL, MITL...

10/94

The timed automaton model

Timed automata [AD90]

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c ∣ x − y ∼ c ∣ g ∧ g

where ∼∈ {<,≤,=,≥, >}

11/94

The timed automaton model

Timed automata [AD90]

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c ∣ x − y ∼ c ∣ g ∧ g

where ∼∈ {<,≤,=,≥, >}

11/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

x 0

y 0

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

x 0 23

y 0 23

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm

x 0 23 0

y 0 23 23

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

x 0 23 0 15.6

y 0 23 23 38.6

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

delayed

−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe

⋅⋅⋅ 15.6

0

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

delayed

−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3
−−→ failsafe

⋅⋅⋅ 15.6 17.9

0 2.3

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

delayed

−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3
−−→ failsafe

repair

−−−−→ repairing

⋅⋅⋅ 15.6 17.9 17.9

0 2.3 0

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

delayed

−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3
−−→ failsafe

repair

−−−−→ repairing
22.1
−−→ repairing

⋅⋅⋅ 15.6 17.9 17.9 40

0 2.3 0 22.1

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

delayed

−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3
−−→ failsafe

repair

−−−−→ repairing
22.1
−−→ repairing

done
−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

12/94

The timed automaton model

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23
−→ safe

problem

−−−−−→ alarm
15.6
−−→ alarm

delayed

−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3
−−→ failsafe

repair

−−−−→ repairing
22.1
−−→ repairing

done
−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run read the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9), (done, 63).
12/94

The timed automaton model

Timed automata semantics

A = (Σ, L,X ,) is a TA

Configurations: (ℓ, v) ∈ L× TX where T is the time domain

v is called the (clock) valuation

Timed transition system:

action transition: (ℓ, v) a (ℓ′, v ′) if ∃ℓ g,a,r
ℓ′ ∈ A s.t.§

v ∣= g

v ′ = v [r ← 0]

delay transition: (ℓ, v)
�(d)

(ℓ, v + d) if d ∈ T

13/94

The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

14/94

The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)! , �) ∣ ∀i , �2i−1 = i and �2i − �2i−1 > �2i+2 − �2i+1}

14/94

The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)! , �) ∣ ∀i , �2i−1 = i and �2i − �2i−1 > �2i+2 − �2i+1}

Discrete-time: Ldiscrete = ∅

14/94

The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)! , �) ∣ ∀i , �2i−1 = i and �2i − �2i−1 > �2i+2 − �2i+1}

Discrete-time: Ldiscrete = ∅

However, it does result from the following parallel composition:

x = 1, a, x := 0

b, y := 0

y < 1
b

y := 0

ab∥ ∥

14/94

The timed automaton model

Classical verification problems

reachability of a control state

S ∼ S ′: bisimulation, etc...

L(S) ⊆ L(S ′): language inclusion

S ∣= ' for some formula ': model-checking

S ∥ AT + reachability: testing automata

. . .

15/94

The timed automaton model

Classical temporal logics

[Pnu77] Pnueli. The temporal logic of programs (FoCS’77).
[EC82] Emerson, Clarke. Using branching time temporal logic to synthesize synchronization skeletons (Science of Computer Programming 1982).

Path formulas:

G' “Always”

F' “Eventually”

'U'′ “Until”

X' “Next”

State formulas:

A E

; LTL: Linear Temporal Logic [Pnu77],
CTL: Computation Tree Logic [EC82]

16/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

17/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

17/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:
“any problem is followed by an alarm within 20 time units”?

17/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:
“any problem is followed by an alarm within 20 time units”?

Temporal logics with subscripts. ex: CTL +

���� E'U∼k

A'U∼k

17/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:
“any problem is followed by an alarm within 20 time units”?

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

17/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:
“any problem is followed by an alarm within 20 time units”?

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

17/94

The timed automaton model

Adding time to temporal logics

[ACD90] Alur, Courcoubetis, Dill. Model-checking for real-time systems (LICS’90).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (Information and Computation).
[HNSY94] Henzinger, Nicollin, Sifakis, Yovine. Symbolic model-checking for real-time systems (ACM Transactions on Computational Logic).

Classical temporal logics allow us to express that
“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:
“any problem is followed by an alarm within 20 time units”?

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

; TCTL: Timed CTL [ACD90,ACD93,HNSY94]

17/94

The timed automaton model

The train crossing example (1)

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App
!, x i

:= 0

20 < xi < 30,a,xi := 0

10 < xi < 20,Exit!

18/94

The timed automaton model

The train crossing example (2)

The gate:

Open Lowering,Hg10

CloseRaising,Hg < 10

GoDown?,Hg := 0

Hg < 10,a

GoUp?,Hg := 0

Hg < 10,a

19/94

The timed automaton model

The train crossing example (3)

The controller:

c0c1,Hc ≤ 20 c2,Hc ≤ 10
App?,Hc := 0Exit?,Hc := 0

Exit? Exit?

App?Hc = 20,GoUp! Hc ≤ 10,GoDown!

App?

20/94

The timed automaton model

The train crossing example (4)

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App
. App! . App? App

Exit! . . Exit? Exit
. Exit! . Exit? Exit
a . . . a
. a . . a
. . a . a
. . GoUp? GoUp! GoUp
. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ∥ Train2 ∥ Gate ∥ Controller)

NB: the parallel composition does not add expressive power!

21/94

The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

22/94

The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

22/94

The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

22/94

The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

¬EF (gate.Close ∧E(gate.Close U>5 min ¬gate.Close))

22/94

The timed automaton model

Another example: A Fischer protocol

[AL94] Abad́ı, Lamport. An old-fashioned recipe for real time (ACM Transactions on Programming Languages and Systems).

A mutual exclusion protocol with a shared variable id [AL94].

23/94

The timed automaton model

Another example: A Fischer protocol

[AL94] Abad́ı, Lamport. An old-fashioned recipe for real time (ACM Transactions on Programming Languages and Systems).

A mutual exclusion protocol with a shared variable id [AL94].

Process i :
a : await (id = 0);
b : set id to i ;
c : await (id = i);
d : enter critical section.

; a max. delay k1 between a and b

a min. delay k2 between b and c

23/94

The timed automaton model

Another example: A Fischer protocol

[AL94] Abad́ı, Lamport. An old-fashioned recipe for real time (ACM Transactions on Programming Languages and Systems).

A mutual exclusion protocol with a shared variable id [AL94].

Process i :
a : await (id = 0);
b : set id to i ;
c : await (id = i);
d : enter critical section.

; a max. delay k1 between a and b

a min. delay k2 between b and c

; See the demo with the tool Uppaal
(can be downloaded freely on http://www.uppaal.com/)

23/94

Timed automata, decidability issues

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

24/94

Timed automata, decidability issues

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem: is the language accepted by a timed automaton
empty?

basic reachability/safety properties (final states)

basic liveness properties (!-regular conditions)

25/94

Timed automata, decidability issues

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

25/94

Timed automata, decidability issues

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

25/94

Timed automata, decidability issues

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

25/94

Timed automata, decidability issues

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

Method: construct a finite abstraction

25/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

26/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

“compatibility” between regions and constraints

26/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

26/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

26/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

26/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

27/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

27/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
�(d)

27/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
�(d)

∃d ′ > 0
�(d ′)

27/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
�(d)

∃d ′ > 0
�(d ′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

27/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
�(d)

∃d ′ > 0
�(d ′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0,R0)
a1 (ℓ1,R1)

a2 (ℓ2,R2)
a3 . . .

with vi ∈ Ri for all i .

27/94

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
�(d)

∃d ′ > 0
�(d ′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0,R0)
a1 (ℓ1,R1)

a2 (ℓ2,R2)
a3 . . .

with vi ∈ Ri for all i .

27/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

28/94

Timed automata, decidability issues

The region abstraction

8<:2<x<3

1<y<2

{x}<{y}

y

0 x1 2 3

1

2

3

28/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

time successors

28/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

reset of clock y

28/94

Timed automata, decidability issues

The region abstraction

y

0 x1 2 3

1

2

3

reset of clock x

28/94

Timed automata, decidability issues

The region graph

A finite graph representing time elapsing and reset of clocks:

time elapsing

reset to 0

29/94

Timed automata, decidability issues

Region automaton ≡ finite bisimulation quotient

timed automaton
N

region graph

30/94

Timed automata, decidability issues

Region automaton ≡ finite bisimulation quotient

timed automaton
N

region graph

ℓ g ,a,C :=0 ℓ′ is transformed into:

(ℓ,R) a (ℓ′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

30/94

Timed automata, decidability issues

Region automaton ≡ finite bisimulation quotient

timed automaton
N

region graph

ℓ g ,a,C :=0 ℓ′ is transformed into:

(ℓ,R) a (ℓ′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

ℒ(reg. aut.) = UNTIME(ℒ(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . .) = a1a2 . . .

30/94

Timed automata, decidability issues

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

ℒ(reg. aut.) = UNTIME(ℒ(timed aut.))

31/94

Timed automata, decidability issues

An example [AD94]

0 1 x

1

y

32/94

Timed automata, decidability issues

PSPACE membership

The size of the region graph is in O(∣X ∣!.2∣X ∣)

One configuration: a discrete location + a region

33/94

Timed automata, decidability issues

PSPACE membership

The size of the region graph is in O(∣X ∣!.2∣X ∣)

One configuration: a discrete location + a region

a discrete location: log-space

33/94

Timed automata, decidability issues

PSPACE membership

The size of the region graph is in O(∣X ∣!.2∣X ∣)

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

33/94

Timed automata, decidability issues

PSPACE membership

The size of the region graph is in O(∣X ∣!.2∣X ∣)

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

; requires polynomial space

33/94

Timed automata, decidability issues

PSPACE membership

The size of the region graph is in O(∣X ∣!.2∣X ∣)

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

; requires polynomial space

By guessing a path of length at most exponential: needs only to
store two consecutive configurations

33/94

Timed automata, decidability issues

PSPACE membership

The size of the region graph is in O(∣X ∣!.2∣X ∣)

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

; requires polynomial space

By guessing a path of length at most exponential: needs only to
store two consecutive configurations

; in NPSPACE, thus in PSPACE

33/94

Timed automata, decidability issues

PSPACE-hardness

ℳ LBTM
w0 ∈ {a, b}

∗

ª
; Aℳ,w0

s.t.ℳ accepts w0 iff the final state
of Aℳ,w0

is reachable

Cjw0

{xj , yj}

Cj contains an “a” if xj = yj
Cj contains a “b” if xj < yj

(these conditions are invariant by time elapsing)

LBTM: linearly bounded Turing machine (a witness for PSPACE-complete problems)

34/94

Timed automata, decidability issues

PSPACE-hardness (cont.)

If q �,�′,� q′ is a transition ofℳ, then for each position i of the tape,
we have a transition

(q, i) g ,r :=0 (q′, i ′)

where:

g is xi = yi (resp. xi < yi) if � = a (resp. � = b)

r = {xi , yi} (resp. r = {xi}) if �
′ = a (resp. �′ = b)

i ′ = i + 1 (resp. i ′ = i − 1) if � is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init t=1,r0:=0 (q0, 1) where r0 = {xi ∣ w0[i] = b} ∪ {t}

Termination: (qf , i) end

35/94

Timed automata, decidability issues

The case of single-clock timed automata

[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).

Exercise [LMS04]

Think of the special case of single-clock timed automata. Can we do
better than PSPACE?

36/94

Timed automata, decidability issues

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking
reachability/Büchi-like properties.

37/94

Timed automata, decidability issues

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking
reachability/Büchi-like properties.

However...
everything can not be reduced to finite automata...

37/94

Timed automata, decidability issues

A model not far from undecidability

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).
[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Some bad news...

Language universality is undecidable [AD90]

Language inclusion is undecidable [AD90]

Complementability is undecidable [Tri03,Fin06]

...

38/94

Timed automata, decidability issues

A model not far from undecidability

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).
[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Some bad news...

Language universality is undecidable [AD90]

Language inclusion is undecidable [AD90]

Complementability is undecidable [Tri03,Fin06]

...

An example of non-determinizable/non-complementable timed aut.:

a

a, x := 0

a

x = 1, a

a

38/94

Timed automata, decidability issues

A model not far from undecidability

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).
[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Some bad news...

Language universality is undecidable [AD90]

Language inclusion is undecidable [AD90]

Complementability is undecidable [Tri03,Fin06]

...

An example of non-determinizable/non-complementable timed aut.:
[AM04]

a, b

a, x := 0

x ∕= 1, a, b

38/94

Timed automata, decidability issues

A model not far from undecidability

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).
[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Some bad news...

Language universality is undecidable [AD90]

Language inclusion is undecidable [AD90]

Complementability is undecidable [Tri03,Fin06]

...

An example of non-determinizable/non-complementable timed aut.:
[AM04]

a, b

a, x := 0

x ∕= 1, a, b

UNTIME
�
L ∩ {(a∗b∗, �) ∣ all a′s happen before 1 and no two a′s simultaneously}

�
is

not regular (exercise!)

38/94

Timed automata, decidability issues

The two-counter machine

Definition

A two-counter machine is a finite set of instructions over two counters (c
and d):

Incrementation:
(p): c := c + 1; goto (q)

Decrementation:
(p): if c > 0 then c := c − 1; goto (q) else goto (r)

Theorem [Minsky 67]

The halting problem for two counter machines is undecidable.

39/94

Timed automata, decidability issues

Undecidability of universality

Theorem [AD90]

Universality of timed automata is undecidable.

b1 b2 b3 b4

1 t.u. = 1 config

c c c

value of c

d d d d c c c c d d d d

1 t.u.

c c c c d d d

decrementation of d

one configuration is encoded in one time unit

number of c ’s: value of counter c

number of d ’s: value of counter d

one time unit between two corresponding c ’s (resp. d ’s)

; We encode “non-behaviours” of a two-counter machine

40/94

Timed automata, decidability issues

Example

Module to check that if instruction i does not decrease counter c, then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

bi , x := 0 x < 1, c, x := 0

x = 1, ¬c

x ∕= 1

41/94

Timed automata, decidability issues

Example

Module to check that if instruction i does not decrease counter c, then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

bi , x := 0 x < 1, c, x := 0

x = 1, ¬c

x ∕= 1

The union of all small modules is not universal
iff

The two-counter machine has a recurring computation

41/94

Timed automata, decidability issues

Partial conclusion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] ⋅ ⋅ ⋅

42/94

Timed automata, decidability issues

Partial conclusion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] ⋅ ⋅ ⋅

model-checking of branching-time properties (TCTL, timed
�-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

42/94

Timed automata, decidability issues

Partial conclusion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] ⋅ ⋅ ⋅

model-checking of branching-time properties (TCTL, timed
�-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

42/94

Timed automata, decidability issues

Partial conclusion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] ⋅ ⋅ ⋅

model-checking of branching-time properties (TCTL, timed
�-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

42/94

Timed automata, decidability issues

Partial conclusion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] ⋅ ⋅ ⋅

model-checking of branching-time properties (TCTL, timed
�-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

⋅ ⋅ ⋅

42/94

Timed automata, decidability issues

Partial conclusion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] ⋅ ⋅ ⋅

model-checking of branching-time properties (TCTL, timed
�-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

⋅ ⋅ ⋅

Note however that it might be hard to prove there is a finite
bisimulation quotient!

42/94

How far can we extend the model and preserve decidability?

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

43/94

How far can we extend the model and preserve decidability?

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

44/94

How far can we extend the model and preserve decidability?

A general model: hybrid systems

[Hen96] Henzinger. The theory of hybrid automata (LICS’96).

[Hen96]

What is a hybrid system?

a discrete control (the mode of the system)
+ a continuous evolution within a mode (given by variables)

45/94

How far can we extend the model and preserve decidability?

A general model: hybrid systems

[Hen96] Henzinger. The theory of hybrid automata (LICS’96).

[Hen96]

What is a hybrid system?

a discrete control (the mode of the system)
+ a continuous evolution within a mode (given by variables)

Example (The thermostat)

A simple thermostat, where T (the temperature) depends on the time:

Off

Ṫ = −0.5T
(T ≥ 18)

On

Ṫ = 2.25− 0.5T
(T ≤ 22)

T ≤ 19

T ≥ 21

45/94

How far can we extend the model and preserve decidability?

The thermostat example

Off

Ṫ = −0.5T
(T ≥ 18)

On

Ṫ = 2.25− 0.5T
(T ≤ 22)

T ≤ 19

T ≥ 21

46/94

How far can we extend the model and preserve decidability?

The thermostat example

Off

Ṫ = −0.5T
(T ≥ 18)

On

Ṫ = 2.25− 0.5T
(T ≤ 22)

T ≤ 19

T ≥ 21

22

18

21

19

2 4 6 8 10 time

46/94

How far can we extend the model and preserve decidability?

Ok...

47/94

How far can we extend the model and preserve decidability?

Ok...

Easy...

47/94

How far can we extend the model and preserve decidability?

Ok...

Easy...

47/94

How far can we extend the model and preserve decidability?

Ok...

Easy... Easy...

47/94

How far can we extend the model and preserve decidability?

Ok... but?

Easy... Easy...

constraint

constraint

47/94

How far can we extend the model and preserve decidability?

Ok... but?

Easy... Easy...

constraint

constraint

Hard!

47/94

How far can we extend the model and preserve decidability?

What about decidability?

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable about hybrid automata? (STOC’95).

; almost everything is undecidable

Negative results [HKPV95]

The class of hybrid systems with clocks and only one variable having
possibly two slopes k1 ∕= k2 is undecidable.

The class of stopwatch automata is undecidable.

48/94

How far can we extend the model and preserve decidability?

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

49/94

How far can we extend the model and preserve decidability?

Role of diagonal constraints

x − y ∼ c and x ∼ c

50/94

How far can we extend the model and preserve decidability?

Role of diagonal constraints

x − y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

50/94

How far can we extend the model and preserve decidability?

Role of diagonal constraints

x − y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

Expressiveness: no additional expressive power

50/94

How far can we extend the model and preserve decidability?

Role of diagonal constraints (cont.)

[BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the expressive power of silent transitions in timed automata (Fundamenta Informaticae).

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c; proof in [BDGP98]

51/94

How far can we extend the model and preserve decidability?

Role of diagonal constraints (cont.)

[BC05] Bouyer, Chevalier. On conciseness of extensions of timed automata (Journal of Automata, Languages and Combinatorics).

Exercise [BC05]

Consider, for every positive integer n, the timed language:

ℒn = {(a, t1) . . . (a, t2n) ∣ 0 < t1 < ⋅ ⋅ ⋅ < t2n < 1}

1 Construct a timed automaton with diagonal constraints which
recognizes ℒn. What is the size of this automaton?

2 Idem without diagonal constraints. Can you do better?

3 Conclude.

52/94

How far can we extend the model and preserve decidability?

Adding silent actions

g , ",C := 0
[BDGP98]

53/94

How far can we extend the model and preserve decidability?

Adding silent actions

g , ",C := 0
[BDGP98]

Decidability: yes
(actions have no influence on region automaton construction)

53/94

How far can we extend the model and preserve decidability?

Adding silent actions

g , ",C := 0
[BDGP98]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1, a, x := 0

x = 1, ", x := 0

53/94

How far can we extend the model and preserve decidability?

Adding additive constraints

[BD00] Bérard, Dufourd. Timed automata and additive clock constraints (Information Proecessing Letters).

x + y ∼ c and x ∼ c [BD00]

54/94

How far can we extend the model and preserve decidability?

Adding additive constraints

[BD00] Bérard, Dufourd. Timed automata and additive clock constraints (Information Proecessing Letters).

x + y ∼ c and x ∼ c [BD00]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

54/94

How far can we extend the model and preserve decidability?

Adding additive constraints

[BD00] Bérard, Dufourd. Timed automata and additive clock constraints (Information Proecessing Letters).

x + y ∼ c and x ∼ c [BD00]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

Expressiveness: more expressive! (even using two clocks)

{(an, t1 . . . tn) ∣ n ≥ 1 and ti = 1− 1
2i
}

x + y = 1, a, x := 0

54/94

How far can we extend the model and preserve decidability?

Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd d dd d d d d d d

c is unchanged c is incremented

d is decremented

; simulation of ∙ decrementation of a counter
∙ incrementation of a counter

We will use 4 clocks:
∙ u, “tic” clock (each time unit)
∙ x0, x1, x2: reference clocks for the two counters

“xi reference for c” ≡ “the last time xi has been reset is
the last time action c has been performed”

55/94

How far can we extend the model and preserve decidability?

Undecidability proof (cont.)

Incrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 > 2, c, x2 := 0

ref for c is x0 ref for c is x2

Decrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 = 2, c, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0

56/94

How far can we extend the model and preserve decidability?

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Four clocks (or more): undecidable!

57/94

How far can we extend the model and preserve decidability?

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Three clocks: open question

Four clocks (or more): undecidable!

57/94

How far can we extend the model and preserve decidability?

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

58/94

How far can we extend the model and preserve decidability?

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

58/94

How far can we extend the model and preserve decidability?

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

Only decrementation also leads to undecidability

Incrementation of counter x

z = 1, z := 0 z = 0, y := y − 1z = 0

Decrementation of counter x

x ≥ 1 z = 0, x := x − 1z = 0

x = 0

58/94

How far can we extend the model and preserve decidability?

Decidability

y := 0 y := 1 x − y < 1

1

1

0

image by y := 1

; the bisimulation property is not met

The classical region automaton construction is not correct.

59/94

How far can we extend the model and preserve decidability?

Decidability (cont.)

A ; Diophantine linear inequations system
; is there a solution?
; if yes, belongs to a decidable class

Examples:

constraint x ∼ c c ≤ maxx

constraint x − y ∼ c c ≤ maxx,y

update x :∼ y + c maxx ≤ maxy +c

and for each clock z , maxx,z ≥ maxy ,z + c , maxz,x ≥ maxz,y − c

update x :< c c ≤ maxx
and for each clock z , maxz ≥ c +maxz,x

The constants (maxx) and (maxx,y) define a set of regions.

60/94

How far can we extend the model and preserve decidability?

Decidability (cont.)

y := 0 y := 1 x − y < 1

8>><>>:
maxy ≥ 0
maxx ≥ 0 + maxx,y
maxy ≥ 1
maxx ≥ 1 + maxx,y
maxx,y ≥ 1

implies

8><>: maxx = 2
maxy = 1
maxx,y = 1
maxy ,x = −1

The bisimulation property is met.
1 2

1

0 x

y

61/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

62/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

∙∙

62/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

∙∙

62/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

∙

∙

62/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

∙

∙

62/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

62/94

How far can we extend the model and preserve decidability?

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

etc...

62/94

How far can we extend the model and preserve decidability?

Decidability (cont.)

[BDFP00] Bouyer, Dufourd, Fleury, Petit. Updatable timed automata (Theoretical Computer Science).

Diagonal-free constraints General constraints

x := c , x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x − 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d

y + c <: x :< z + d Undecidable

[BDFP00]

63/94

How far can we extend the model and preserve decidability?

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

64/94

How far can we extend the model and preserve decidability?

The example of alternating timed automata

[LW05] Lasota, Walukiewicz. Alternating timed automata (FoSSaCS’05).
[OW05] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (LICS’05).

Alternating timed automata ≡ ATA
[LW05,OW05]

65/94

How far can we extend the model and preserve decidability?

The example of alternating timed automata

[LW05] Lasota, Walukiewicz. Alternating timed automata (FoSSaCS’05).
[OW05] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (LICS’05).

Alternating timed automata ≡ ATA
[LW05,OW05]

Example

“No two a’s are separated by 1 unit of time”8><>: ℓ0, a, true 7→ ℓ0 ∧ (x := 0, ℓ1)
ℓ1, a, x ∕= 1 7→ ℓ1
ℓ1, a, x = 1 7→ ℓ2
ℓ2, a, true 7→ ℓ2

8<: ℓ0 initial state
ℓ0, ℓ1 final states
ℓ2 losing state

65/94

How far can we extend the model and preserve decidability?

The example of alternating timed automata

[LW05] Lasota, Walukiewicz. Alternating timed automata (FoSSaCS’05).
[OW05] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (LICS’05).

Alternating timed automata ≡ ATA
[LW05,OW05]

Example

“No two a’s are separated by 1 unit of time”8><>: ℓ0, a, true 7→ ℓ0 ∧ (x := 0, ℓ1)
ℓ1, a, x ∕= 1 7→ ℓ1
ℓ1, a, x = 1 7→ ℓ2
ℓ2, a, true 7→ ℓ2

8<: ℓ0 initial state
ℓ0, ℓ1 final states
ℓ2 losing state

ℓ0 ℓ1 ℓ2
x := 0

a

x ∕= 1, a

x = 1, a

a

65/94

How far can we extend the model and preserve decidability?

[Sch02] Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity (Information Processing Letters).

nice closure properties

66/94

How far can we extend the model and preserve decidability?

[Sch02] Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity (Information Processing Letters).

nice closure properties
; universality is as difficult as reachability

66/94

How far can we extend the model and preserve decidability?

[Sch02] Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity (Information Processing Letters).

nice closure properties
; universality is as difficult as reachability

more expressive than timed automata

66/94

How far can we extend the model and preserve decidability?

[Sch02] Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity (Information Processing Letters).

nice closure properties
; universality is as difficult as reachability

more expressive than timed automata

Theorem
Emptiness of ATA is undecidable.

Emptiness of one-clock ATA is decidable, but non-primitive recursive.

Emptiness for Büchi properties of one-clock ATA is undecidable.

Emptiness of one-clock ATA with "-transitions is undecidable.

66/94

How far can we extend the model and preserve decidability?

[Sch02] Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity (Information Processing Letters).

nice closure properties
; universality is as difficult as reachability

more expressive than timed automata

Theorem
Emptiness of ATA is undecidable.

Emptiness of one-clock ATA is decidable, but non-primitive recursive.

Emptiness for Büchi properties of one-clock ATA is undecidable.

Emptiness of one-clock ATA with "-transitions is undecidable.

Lower bound: simulation of a lossy channel system... [Sch02]

66/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

↓

{ (ℓ0, 1.4) , (ℓ1, 0) , (ℓ1, .6) , (ℓ1, 1.1) }

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

↓

{ (ℓ0, 1.4) , (ℓ1, 0) , (ℓ1, .6) , (ℓ1, 1.1) }

↓

{ (ℓ0, 1.8) , (ℓ1, 0) , (ℓ1, .4) , (ℓ2, 1) , (ℓ1, 1.5) }

67/94

How far can we extend the model and preserve decidability?

Example

ℓ0 ℓ1 ℓ2
a

x := 0

x ∕= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

↓

{ (ℓ0, 1.4) , (ℓ1, 0) , (ℓ1, .6) , (ℓ1, 1.1) }

↓

{ (ℓ0, 1.8) , (ℓ1, 0) , (ℓ1, .4) , (ℓ2, 1) , (ℓ1, 1.5) }

↓

{ (ℓ0, 2) , (ℓ1, 0) , (ℓ1, .2) , (ℓ1, .6) , (ℓ2, 1.2) , (ℓ1, 1.7) }
67/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

{(ℓ′, 0)}

0.8

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

{(ℓ′, 0)}

0.8

68/94

How far can we extend the model and preserve decidability?

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

{(ℓ′, 0)}

0.8

Abstracted into: {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

68/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

{(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)}

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

{(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)}

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

{(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)}

{(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)}

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

{(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)}

{(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)}

{(ℓ, 1), (ℓ′, 2)} ⋅ {(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)}

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

{(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)}

{(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)}

{(ℓ, 1), (ℓ′, 2)} ⋅ {(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)}

Transition ℓ
x>2,x :=0
−−−−−−→ ℓ′′:

69/94

How far can we extend the model and preserve decidability?

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)} ⋅ {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)} ⋅ {(ℓ′, 0)}

{(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)} ⋅ {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)} ⋅ {(ℓ, 1)}

{(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ, 0), (ℓ′, 1)}

{(ℓ, 1), (ℓ′, 2)} ⋅ {(ℓ, 2)} ⋅ {(ℓ, 1), (ℓ, 3)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)}

Transition ℓ
x>2,x :=0
−−−−−−→ ℓ′′:

{(ℓ′′, 0)} ⋅ {(ℓ, 1), (ℓ′, 2)} ⋅ {(ℓ, 1)} ⋅ {(ℓ′, 1)} ⋅ {(ℓ′, 1)}

69/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(1 ⊑

′
1 and ′1 ; ′2)⇒ (1 ;

∗ 2 and 2 ⊑
′
2)

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(1 ⊑

′
1 and ′1 ; ′2)⇒ (1 ;

∗ 2 and 2 ⊑
′
2)

+ downward-closed objective (all states are accepting)

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(1 ⊑

′
1 and ′1 ; ′2)⇒ (1 ;

∗ 2 and 2 ⊑
′
2)

+ downward-closed objective (all states are accepting)

A recipe:

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(1 ⊑

′
1 and ′1 ; ′2)⇒ (1 ;

∗ 2 and 2 ⊑
′
2)

+ downward-closed objective (all states are accepting)

A recipe:

(Higman’s lemma + Koenig’s lemma) ⇒ termination

70/94

How far can we extend the model and preserve decidability?

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(1 ⊑

′
1 and ′1 ; ′2)⇒ (1 ;

∗ 2 and 2 ⊑
′
2)

+ downward-closed objective (all states are accepting)

A recipe:

(Higman’s lemma + Koenig’s lemma) ⇒ termination

Alternative
The abstract transition system can be simulated by a kind of FIFO
channel machine.

70/94

How far can we extend the model and preserve decidability?

A digression on timed automata

r0 r1

r0

r1

x

y

71/94

How far can we extend the model and preserve decidability?

A digression on timed automata

r0 r1

r0

r1

x

y

x , y ∈ r0, {y} < {x}

(y , r0) ⋅ (x , r0)

71/94

How far can we extend the model and preserve decidability?

A digression on timed automata

r0 r1

r0

r1

x

y

x ∈ r1, y ∈ r0, {x} < {y}

(x , r1) ⋅ (y , r0)

71/94

How far can we extend the model and preserve decidability?

A digression on timed automata

r0 r1

r0

r1

x

y

x , y ∈ r1, {y} < {x}

(y , r1) ⋅ (x , r1)

71/94

How far can we extend the model and preserve decidability?

A digression on timed automata

r0 r1

r0

r1

x

y

The classical region automaton can be simulated by a channel machine
(with a single bounded channel).

71/94

How far can we extend the model and preserve decidability?

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

72/94

How far can we extend the model and preserve decidability?

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

72/94

How far can we extend the model and preserve decidability?

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

72/94

How far can we extend the model and preserve decidability?

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007]

(using channel machines with a bounded number of cycles)

72/94

How far can we extend the model and preserve decidability?

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007]

(using channel machines with a bounded number of cycles)

single-clock automata inclusion checking [Ouaknine,Worrell 2004]

72/94

How far can we extend the model and preserve decidability?

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007]

(using channel machines with a bounded number of cycles)

single-clock automata inclusion checking [Ouaknine,Worrell 2004]

⋅ ⋅ ⋅

72/94

Timed automata in practice

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

73/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

74/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

74/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

74/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

74/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

74/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

74/94

Timed automata in practice

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

74/94

Timed automata in practice

An example of computation with HyTech
command: /usr/local/bin/hytech gas burner
===
HyTech: symbolic model checker for embedded systems
Version 1.04f (last modified 1/24/02) from v1.04a of 12/6/96
For more info:

email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/˜tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info
===

Backward computation
Number of iterations required for reachability: 6
System satisfies non-leaking duration property

Location: not leaking
x >= 0 & t >= 3 & y <= 20t & y >= 0
| x + 20t >= y + 11 & y <= 20t + 19 & t >= 2 & x >= 0 & y >= 0
| y >= 0 & t >= 1 & x + 20t >= y + 22 & y <= 20t + 8 & x >= 0
| y >= 0 & x + 20t >= y + 33 & 20t >= y + 3 & x >= 0
Location: leaking
19x + y <= 20t + 19 & y >= x + 59 & x <= 1 & x >= 0
| t >= x + 2 & x <= 1 & y >= 0 & 19x + y <= 20t + 19 & x >= 0
| t >= x + 1 & x <= 1 & y >= 0 & 19x + y <= 20t + 8 & x >= 0
| 20t >= 19x + y + 3 & y >= 0 & x <= 1 & x >= 0

===
Max memory used = 0 pages = 0 bytes = 0.00 MB
Time spent = 0.02u + 0.00s = 0.02 sec total

===

75/94

Timed automata in practice

Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

x0 x1 x2
x0
x1
x2

�
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

�

DBM: Difference Bound Matrice [BM83,Dill89]

76/94

Timed automata in practice

Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

94

2

x0 x1 x2
x0
x1
x2

�
0 −3 0
9 0 4
5 2 0

�
“normal form”

DBM: Difference Bound Matrice [BM83,Dill89]

76/94

Timed automata in practice

Backward computation

Final

Init

77/94

Timed automata in practice

Backward computation

Final

Init

77/94

Timed automata in practice

Backward computation

Final

Init

77/94

Timed automata in practice

Backward computation

Final

Init

77/94

Timed automata in practice

Backward computation

Final

Init

77/94

Timed automata in practice

Note on the backward analysis of TA

ℓ ℓ′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

78/94

Timed automata in practice

Note on the backward analysis of TA

ℓ ℓ′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z

78/94

Timed automata in practice

Note on the backward analysis of TA

ℓ ℓ′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))

78/94

Timed automata in practice

Note on the backward analysis of TA

ℓ ℓ′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))

78/94

Timed automata in practice

Note on the backward analysis of TA

ℓ ℓ′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

78/94

Timed automata in practice

Note on the backward analysis of TA

ℓ ℓ′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

, the backward computation always terminates!

,, ... and it is correct!!!

78/94

Timed automata in practice

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

79/94

Timed automata in practice

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

v ∈ R (for ex. v + t ∈ R)

v ′ ≡reg. v

There exists t′ s.t. v ′ + t′ ≡reg. v + t, which implies that v ′ + t′ ∈ R and thus v ′ ∈ R.

79/94

Timed automata in practice

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

i := j .k + ℓ.m

79/94

Timed automata in practice

Forward computation

Init

Final

80/94

Timed automata in practice

Forward computation

Init

Final

80/94

Timed automata in practice

Forward computation

Init

Final

80/94

Timed automata in practice

Forward computation

Init

Final

80/94

Timed automata in practice

Forward computation

Init

Final

80/94

Timed automata in practice

Forward analysis of timed automata

ℓ ℓ′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

81/94

Timed automata in practice

Forward analysis of timed automata

ℓ ℓ′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z

81/94

Timed automata in practice

Forward analysis of timed automata

ℓ ℓ′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z

81/94

Timed automata in practice

Forward analysis of timed automata

ℓ ℓ′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g

81/94

Timed automata in practice

Forward analysis of timed automata

ℓ ℓ′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

81/94

Timed automata in practice

Forward analysis of timed automata

ℓ ℓ′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

/ the forward computation may not terminate...

81/94

Timed automata in practice

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

82/94

Timed automata in practice

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

82/94

Timed automata in practice

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

82/94

Timed automata in practice

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

82/94

Timed automata in practice

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

; an infinite number of steps...

82/94

Timed automata in practice

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ already considered, then we
don’t need to consider Z

; correct w.r.t. reachability

. . .

83/94

Timed automata in practice

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ already considered, then we
don’t need to consider Z

; correct w.r.t. reachability

activity: eliminate redundant clocks [Daws,Yovine 1996]

; correct w.r.t. reachability

q g ,a,C :=0 q′ implies Act(q) = clocks(g) ∪ (Act(q′) ∖ C)

. . .

83/94

Timed automata in practice

“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z ⊔ Z ′”.

; “semi-correct” w.r.t. reachability

84/94

Timed automata in practice

“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z ⊔ Z ′”.

; “semi-correct” w.r.t. reachability

extrapolation, an abstraction operator on zones

84/94

Timed automata in practice

An abstraction: the extrapolation operator

Approx2(Z): “the smallest zone containing Z that is defined only with
constants no more than 2”

3

x2

x1

5

2

Z

4 9�
0 −3 0
9 0 4
5 2 0

�
; The extrapolation operator ensures termination of the computation!

85/94

Timed automata in practice

An abstraction: the extrapolation operator

Approx2(Z): “the smallest zone containing Z that is defined only with
constants no more than 2”

Approx2(Z)

x2

x1

Z

2

2

�
0 −3 0
9 0 4
5 2 0

� �
0 −2 0
∞ 0 ∞
∞ 2 0

�
Approx2

; The extrapolation operator ensures termination of the computation!
85/94

Timed automata in practice

Classical algorithm, focus on correctness

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

Challenge

Choose a good constant for the extrapolation so that the forward
computation is correct. Classical algorithm, the choice goes to the
maximal constant.

86/94

Timed automata in practice

Classical algorithm, focus on correctness

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

Challenge

Choose a good constant for the extrapolation so that the forward
computation is correct. Classical algorithm, the choice goes to the
maximal constant.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

86/94

Timed automata in practice

Classical algorithm, focus on correctness

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

Challenge

Choose a good constant for the extrapolation so that the forward
computation is correct. Classical algorithm, the choice goes to the
maximal constant.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

Theorem
The classical algorithm is correct for diagonal-free timed automata.

86/94

Timed automata in practice

Classical algorithm, focus on correctness

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

Challenge

Choose a good constant for the extrapolation so that the forward
computation is correct. Classical algorithm, the choice goes to the
maximal constant.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

Theorem
The classical algorithm is correct for diagonal-free timed automata.

This theorem does not extend to timed automata using diagonal clock
constraints... [Bou03,Bou04]

86/94

Timed automata in practice

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

87/94

Timed automata in practice

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

8<: v(x1) = 0
v(x2) = d
v(x3) = 2�+ 5
v(x4) = 2�+ 5 + d

87/94

Timed automata in practice

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

8<: v(x1) = 0
v(x2) = d
v(x3) = 2�+ 5
v(x4) = 2�+ 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2�+ 5]

[2�+ 5]

87/94

Timed automata in practice

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2�+ 5]

[2�+ 5]

[2�+ 2; 2�+ 4]

[2�+ 6; 2�+ 8]

implies x1 − x2 = x3 − x4.

88/94

Timed automata in practice

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2�+ 5]

[2�+ 5]

[2�+ 2; 2�+ 4]

[2�+ 6; 2�+ 8]

implies x1 − x2 = x3 − x4.

If � is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply x1−x2 = x3−x4.

88/94

Timed automata in practice

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2�+ 5]

[2�+ 5]

[2�+ 2; 2�+ 4]

[2�+ 6; 2�+ 8]

implies x1 − x2 = x3 − x4.

If � is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply x1−x2 = x3−x4.

Hence, any choice of constant is erroneous!

88/94

Timed automata in practice

General abstractions

Criteria for a good abstraction operator Abs:

89/94

Timed automata in practice

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

89/94

Timed automata in practice

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) ∣ Z zone} is finite

89/94

Timed automata in practice

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) ∣ Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

89/94

Timed automata in practice

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) ∣ Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

soundness of the abstraction [Soundness]
the computation of (Abs ∘ Post)∗ is correct w.r.t. reachability

89/94

Timed automata in practice

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) ∣ Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

soundness of the abstraction [Soundness]
the computation of (Abs ∘ Post)∗ is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!

89/94

Timed automata in practice

Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

; k the max. constant defining one of the previous DBMs

We get that, for every zone Z ,

Z ⊆ Extrak(Z) ⊆ Abs(Z)

90/94

Timed automata in practice

Problem!

Open questions: - which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?

91/94

Timed automata in practice

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06]

92/94

Timed automata in practice

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06]

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

92/94

Timed automata in practice

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06]

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

the representation of zones can be improved [DHLP06]

92/94

Timed automata in practice

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06]

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

the representation of zones can be improved [DHLP06]

; the tool Uppaal is under development since 1995...

92/94

Conclusion

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. How far can we extend the model and preserve decidability?
Hybrid systems
Smaller extensions of timed automata
An alternative way of proving decidability

5. Timed automata in practice

6. Conclusion

93/94

Conclusion

Conclusion

Justification of the dense-time paradigm

Several technics for proving decidability of real-time systems

finite time-abstract bisimulation
well-quasi-order on the time-abstract transition system

Timed automata are implemented in several model checking tools

Other timed models have been developed and have concurrent tools:
for instance Romeo and Tina for time Petri nets

94/94

Conclusion

Conclusion

Justification of the dense-time paradigm

Several technics for proving decidability of real-time systems

finite time-abstract bisimulation
well-quasi-order on the time-abstract transition system

Timed automata are implemented in several model checking tools

Other timed models have been developed and have concurrent tools:
for instance Romeo and Tina for time Petri nets

Some current streams of research in timed systems:

quantitative model-checking,

real-time logics,

robustness, implementability issues,

timed games,

modelling of resources,

...

94/94

Conclusion

Conclusion

Justification of the dense-time paradigm

Several technics for proving decidability of real-time systems

finite time-abstract bisimulation
well-quasi-order on the time-abstract transition system

Timed automata are implemented in several model checking tools

Other timed models have been developed and have concurrent tools:
for instance Romeo and Tina for time Petri nets

Some current streams of research in timed systems:

quantitative model-checking,

real-time logics,

robustness, implementability issues,

timed games,

modelling of resources,

...

94/94

Modelling and analyzing resources
in timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

1/45

Introduction

Outline

1. Introduction

2. Modelling and optimizing resources in timed systems

3. Managing resources

4. Conclusion

2/45

Introduction

A starting example

3/45

Introduction

Natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

Can I use my computer all the way?

4/45

Introduction

A first model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

5/45

Introduction

Can I reach Pontivy from Oxford?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

This is a reachability question in a finite graph: Yes, I can!

5/45

Introduction

A second model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

6/45

Introduction

How long will that take?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!

6/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ⋅⋅⋅

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ⋅⋅⋅

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23

0 15.6 15.6 ⋅⋅⋅

y 0 23

23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0 23 0

15.6 15.6 ⋅⋅⋅

y 0 23 23

38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6

15.6 ⋅⋅⋅

y 0 23 23 38.6

0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe

2.3−−→ failsafe
repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

⋅⋅⋅ 15.6

17.9 17.9 40 40

0

2.3 0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9

17.9 40 40

0 2.3

0 22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9

40 40

0 2.3 0

22.1 22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40

40

0 2.3 0 22.1

22.1

7/45

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

7/45

Introduction

Timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[CY92] Courcoubetis, Yannakakis. Minimum and maximum delay problems in real-time systems (Formal Methods in System Design).

Theorem [AD90,CY92]

The (time-optimal) reachability problem is decidable (and
PSPACE-complete) for timed automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

8/45

Introduction

Timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[CY92] Courcoubetis, Yannakakis. Minimum and maximum delay problems in real-time systems (Formal Methods in System Design).

Theorem [AD90,CY92]

The (time-optimal) reachability problem is decidable (and
PSPACE-complete) for timed automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

8/45

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

9/45

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

9/45

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

9/45

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

9/45

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

∙
∙

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

9/45

Introduction

The region abstraction

time elapsing

reset to 0

10/45

Modelling and optimizing resources in timed systems

Outline

1. Introduction

2. Modelling and optimizing resources in timed systems

3. Managing resources

4. Conclusion

11/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems
System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems
System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

Modelling resources in timed systems

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

12/45

Modelling and optimizing resources in timed systems

A third model of the system

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

13/45

Modelling and optimizing resources in timed systems

How much fuel will I use?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

It is a quantitative (optimization) problem
in a priced timed automaton: at least 68 anti-planet units!

13/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

ℓ0
1.3−−→ ℓ0

c−−→ ℓ1
u−−→ ℓ3

0.7−−−→ ℓ3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

; strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u.

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

; strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u.

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 9

; strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u.

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 9

; strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u.

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u.

14/45

Modelling and optimizing resources in timed systems

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u.

14/45

Modelling and optimizing resources in timed systems

The region abstraction is not fine enough

time elapsing

reset to 0

15/45

Modelling and optimizing resources in timed systems

The corner-point abstraction

3
0 0

0

0 0
3

7

7

We can somehow discretize the behaviours...

16/45

Modelling and optimizing resources in timed systems

The corner-point abstraction

3
0 0

0

0 0
3

7

7

We can somehow discretize the behaviours...

16/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
⋅⋅⋅

8<:

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(�)

[Π is a “corner-point projection” of �]

17/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
⋅⋅⋅

8<:

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(�)

[Π is a “corner-point projection” of �]

17/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
⋅⋅⋅

8<: t1+t2≤2

t2+t3+t4≥5

x≤2

y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(�)

[Π is a “corner-point projection” of �]

17/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
⋅⋅⋅

8<: t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(�)

[Π is a “corner-point projection” of �]

17/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
⋅⋅⋅

8<: t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(�)

[Π is a “corner-point projection” of �]

17/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
⋅⋅⋅

8<: t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(�)

[Π is a “corner-point projection” of �]

17/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any " > 0, there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣cost(Π)− cost(�")∣ < �

18/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any " > 0,

there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣cost(Π)− cost(�")∣ < �

18/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any " > 0, there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣cost(Π)− cost(�")∣ < �

18/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any " > 0, there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣cost(Π)− cost(�")∣ < �

18/45

Modelling and optimizing resources in timed systems

Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

The optimal-cost reachability problem is decidable (and
PSPACE-complete) in (priced) timed automata.

19/45

Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(�) = lim sup
n→+∞

cost(�n)

reward(�n)

20/45

Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(�) = lim sup
n→+∞

cost(�n)

reward(�n)

20/45

Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(�) = lim sup
n→+∞

cost(�n)

reward(�n)

Time

1 1 2 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio ≈1.455

Time

1 1 1 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio ≈1.478

20/45

Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(�) = lim sup
n→+∞

cost(�n)

reward(�n)

Theorem [BBL08]

The mean-cost optimization problem is decidable (and
PSPACE-complete) for priced timed automata.

; the corner-point abstraction can be used

20/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp s.t.

mean-cost(Π) ≤ mean-cost(�)

Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

21/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp s.t.

mean-cost(Π) ≤ mean-cost(�)

Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

21/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp s.t.

mean-cost(Π) ≤ mean-cost(�)

Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

21/45

Modelling and optimizing resources in timed systems

From timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path � in A, there exists a path Π in Acp s.t.

mean-cost(Π) ≤ mean-cost(�)

Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

21/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any " > 0, there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣mean-cost(Π)−mean-cost(�")∣ < �

22/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any " > 0,

there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣mean-cost(Π)−mean-cost(�")∣ < �

22/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any " > 0, there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣mean-cost(Π)−mean-cost(�")∣ < �

22/45

Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any " > 0, there exists a path �" of A s.t.

∥Π− �"∥∞ < "

For every � > 0, there exists " > 0 s.t.

∥Π− �"∥∞ < " ⇒ ∣mean-cost(Π)−mean-cost(�")∣ < �

22/45

Modelling and optimizing resources in timed systems

Going further 2: concavely-priced cost functions

[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).

; A general abstract framework for quantitative timed systems

Theorem [JT08]

Optimal cost in concavely-priced timed automata is computable, if we
restrict to quasi-concave price functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

optimal-time and optimal-cost reachability;

optimal discrete discounted cost;

optimal average-time and average-cost;

optimal mean-cost.

; a slight extension of corner-point abstraction can be used

23/45

Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize

24/45

Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

24/45

Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize

discounted-cost�(�) =
∑
n≥0

�Tn

∫ �n+1

t=0

�tcost(ℓn)dt+�Tn+1cost(ℓn
an+1−−→ ℓn+1)

if � = (ℓ0, v0)
�1,a1−−−→ (ℓ1, v1)

�2,a2−−−→ ⋅ ⋅ ⋅ and Tn =
∑

i≤n �i

24/45

Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

24/45

Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

0 3 6 7 9

if � = e−1, the discounted cost of
that infinite schedule is ≈ 2.16

24/45

Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

Theorem [FL08]

The optimal discounted cost is computable in EXPTIME in priced timed
automata.

; the corner-point abstraction can be used

24/45

Modelling and optimizing resources in timed systems

A fourth model of the system
What if there is an unexpected event?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

; modelled as timed games

25/45

Modelling and optimizing resources in timed systems

A fourth model of the system
What if there is an unexpected event?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

; modelled as timed games

25/45

Modelling and optimizing resources in timed systems

A fourth model of the system
What if there is an unexpected event?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

; modelled as timed games
25/45

Modelling and optimizing resources in timed systems

A simple example of timed game

ℓ0 ℓ1

(y=0)

ℓ2

ℓ3

,x≤2,c,y :=0

u

u

u

u

x=2,c

x=2,c

26/45

Modelling and optimizing resources in timed systems

A simple example of timed game

ℓ0 ℓ1

(y=0)

ℓ2

ℓ3

,x≤2,c,y :=0

u

u

u

u

x=2,c

x=2,c

26/45

Modelling and optimizing resources in timed systems

Another example

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1

x<1

x<1,x :=0

x≤1

x≥2

x≥1

27/45

Modelling and optimizing resources in timed systems

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

; let’s play with Uppaal Tiga! [BCD+07]

28/45

Modelling and optimizing resources in timed systems

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

; let’s play with Uppaal Tiga! [BCD+07]

28/45

Modelling and optimizing resources in timed systems

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

; let’s play with Uppaal Tiga! [BCD+07]

28/45

Modelling and optimizing resources in timed systems

Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdzinński, Trivedi. Reachability-time games on timed automata (ICALP’07).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

; let’s play with Uppaal Tiga! [BCD+07]

28/45

Modelling and optimizing resources in timed systems

Decidability of timed games

[BCD+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV’07).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

; let’s play with Uppaal Tiga! [BCD+07]

28/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0 ℓ1

(y=0)

ℓ2

ℓ3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Back to the simple example

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in ℓ0, and when t = 4
3 , go to ℓ1

29/45

Modelling and optimizing resources in timed systems

Optimal reachability in priced timed games

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

30/45

Modelling and optimizing resources in timed systems

Optimal reachability in priced timed games

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

30/45

Modelling and optimizing resources in timed systems

Optimal reachability in priced timed games

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

30/45

Modelling and optimizing resources in timed systems

The positive side

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

ℓ0

+2

(x≤1)

ℓ1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

31/45

Modelling and optimizing resources in timed systems

The positive side

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

ℓ0

+2

(x≤1)

ℓ1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

31/45

Modelling and optimizing resources in timed systems

The positive side

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

ℓ0

+2

(x≤1)

ℓ1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

31/45

Modelling and optimizing resources in timed systems

The positive side

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

ℓ0

+2

(x≤1)

ℓ1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

31/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

32/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the values c1 and c2 of the counters are encoded by the values of
two clocks:

x =
1

2c1
and y =

1

3c2

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

0BB@
x= 1

2c

y= 1

2d

z=★

1CCA

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)

0BB@
x= 1

2c

y= 1

2d

z=�

1CCA

u=1,u:=0

Testy (x=2z)

33/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the values c1 and c2 of the counters are encoded by the values of
two clocks:

x =
1

2c1
and y =

1

3c2

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

0BB@
x= 1

2c

y= 1

2d

z=★

1CCA

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)

0BB@
x= 1

2c

y= 1

2d

z=�

1CCA

u=1,u:=0

Testy (x=2z)

33/45

Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the values c1 and c2 of the counters are encoded by the values of
two clocks:

x =
1

2c1
and y =

1

3c2

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

0BB@
x= 1

2c

y= 1

2d

z=★

1CCA

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)

0BB@
x= 1

2c

y= 1

2d

z=�

1CCA

u=1,u:=0

Testy (x=2z)

33/45

Managing resources

Outline

1. Introduction

2. Modelling and optimizing resources in timed systems

3. Managing resources

4. Conclusion

34/45

Managing resources

A fifth model of the system

Oxford
+5

Pontivy
+5

Dover−2

Calais−2

Paris
0

London +5

Stansted +5

Nantes +5

Poole−2

St Malo−2

−2

−2

−2

−2

−2

−2

−2

−2

+5

+5

−2

−2

−2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

35/45

Managing resources

Can I work with my computer all the way?

Oxford
+5

Pontivy
+5

Dover−2

Calais−2

Paris
0

London +5

Stansted +5

Nantes +5

Poole−2

St Malo−2

−2

−2

−2

−2

−2

−2

−2

−2

+5

+5

−2

−2

−2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

battery
charge

40

20

2 13 16.5 22.3 45 56 60.4

35/45

Managing resources

Can I work with my computer all the way?

Oxford
+5

Pontivy
+5

Dover−2

Calais−2

Paris
0

London +5

Stansted +5

Nantes +5

Poole−2

St Malo−2

−2

−2

−2

−2

−2

−2

−2

−2

+5

+5

−2

−2

−2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

battery
charge

40

20

2 13 16.5 22.3 45 56 60.4

35/45

Managing resources

Can I work with my computer all the way?

Oxford
+5

Pontivy
+5

Dover−2

Calais−2

Paris
0

London +5

Stansted +5

Nantes +5

Poole−2

St Malo−2

−2

−2

−2

−2

−2

−2

−2

−2

+5

+5

−2

−2

−2

x :=
0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

battery
charge

40

20

2 13 16.5 22.3 45 56 60.4

Energy is not only consumed, but can be regained.

; the aim is to continuously satisfy some energy constraints.

35/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1
lost!

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1
lost!

Lower-bound problem
Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem
Lower-upper-bound problem
Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

36/45

Managing resources

An example of resource management

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower–bound problem ; L

Lower-upper-bound problem ; L+U

Lower-weak-upper-bound problem ; L+W

36/45

Managing resources

Only partial results so far [BFLMS08]

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

0 clock!

L

L+W

L+U

exist. problem univ. problem games

∈ PTIME ∈ PTIME
∈ UP ∩ co-UP

PTIME-hard

∈ PTIME ∈ PTIME
∈ NP ∩ co-NP

PTIME-hard

∈ PSPACE

NP-hard
∈ PTIME EXPTIME-c.

37/45

Managing resources

Only partial results so far [BFLMS08]

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

1 clock

L

L+W

L+U

exist. problem univ. problem games

∈ PTIME ∈ PTIME ?

∈ PTIME ∈ PTIME ?

? ? undecidable

37/45

Managing resources

Only partial results so far [BFLMS08]

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

n clocks

L

L+W

L+U

exist. problem univ. problem games

? ? ?

? ? ?

? ? undecidable

37/45

Managing resources

Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

38/45

Managing resources

Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

38/45

Managing resources

Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

38/45

Managing resources

Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

38/45

Managing resources

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

39/45

Managing resources

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

39/45

Managing resources

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

39/45

Managing resources

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

39/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Managing resources

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2

40/45

Conclusion

Outline

1. Introduction

2. Modelling and optimizing resources in timed systems

3. Managing resources

4. Conclusion

41/45

Conclusion

Some applications

[BBHM05] Behrmann, Brinksma, Hendriks, Mader. Scheduling lacquer production by reachability analysis - A case study (IFAC’05).
[AKM03] Abdeddäım, Kerbaa, Maler. Task graph scheduling using timed automata (IPDPS’03).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC’09).

Tools

Uppaal (timed automata)

Uppaal Cora (priced timed automata)

Uppaal Tiga (timed games)

Case studies

A lacquer production scheduling problem [BBHM05]

Task graph scheduling problems [AKM03]

An oil pump control problem [CJL+09]

42/45

Conclusion

Task graph scheduling problems

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

43/45

Conclusion

Task graph scheduling problems

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

43/45

Conclusion

Task graph scheduling problems

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

43/45

Conclusion

Task graph scheduling problems

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

43/45

Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

44/45

Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

44/45

Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

44/45

Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

44/45

Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

44/45

Conclusion

Conclusion
Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful for modelling resources in timed systems
natural (optimization/management) questions have been posed...

... and not all of them have been answered!

Not mentioned here:
all works on model-checking issues (extensions of CTL, LTL)
models based on hybrid automata

weighted o-minimal hybrid games [BBC07]
weighted strong reset hybrid games [BBJLR07]

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Current and further work:
further cost functions (e.g. exponential)
computation of approximate optimal values
further investigation of safe games + several cost variables?
discounted-time optimal games
link between discounted-time games and mean-cost games?
computation of equilibria
...

45/45

Conclusion

Conclusion
Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful for modelling resources in timed systems
natural (optimization/management) questions have been posed...

... and not all of them have been answered!

Not mentioned here:
all works on model-checking issues (extensions of CTL, LTL)
models based on hybrid automata

weighted o-minimal hybrid games [BBC07]
weighted strong reset hybrid games [BBJLR07]

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Current and further work:
further cost functions (e.g. exponential)
computation of approximate optimal values
further investigation of safe games + several cost variables?
discounted-time optimal games
link between discounted-time games and mean-cost games?
computation of equilibria
...

45/45

Conclusion

Conclusion
Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful for modelling resources in timed systems
natural (optimization/management) questions have been posed...

... and not all of them have been answered!

Not mentioned here:
all works on model-checking issues (extensions of CTL, LTL)
models based on hybrid automata

weighted o-minimal hybrid games [BBC07]
weighted strong reset hybrid games [BBJLR07]

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Current and further work:
further cost functions (e.g. exponential)
computation of approximate optimal values
further investigation of safe games + several cost variables?
discounted-time optimal games
link between discounted-time games and mean-cost games?
computation of equilibria
...

45/45

	vtsa09.pdf
	vtsa09-part1
	Introduction
	The timed automaton model
	Timed automata, decidability issues
	How far can we extend the model and preserve decidability?
	Hybrid systems
	Smaller extensions of timed automata
	An alternative way of proving decidability

	Timed automata in practice
	Conclusion

	vtsa09-part2
	Introduction
	Modelling and optimizing resources in timed systems
	Managing resources
	Conclusion

