Stochastic Timed Automata

Patricia Bouyer-Decitre
LSV, CNRS & ENS Cachan, France

Based on joint works with Nathalie Bertrand, Thomas Brihaye,

Pierre Carlier, Quentin Menet, Christel Baier, ...

1/43

Introduction

Outline

© Introduction

2/43

Introduction

A story that started in 2006...

@ My background: timed automata

3/43

Introduction

A story that started in 2006...

@ My background: timed automata
@ | was strolling around with Thomas Brihaye in Seattle (venue of
LICS'06), after having attended a very inspiring talk
o “Temporal Logics and Model Checking for Fairly Correct Systems”
o By Daniele Varacca and Hagen Volzer

3/43

Introduction

A story that started in 2006...

@ My background: timed automata
@ | was strolling around with Thomas Brihaye in Seattle (venue of
LICS'06), after having attended a very inspiring talk
o “Temporal Logics and Model Checking for Fairly Correct Systems”
o By Daniele Varacca and Hagen Volzer
@ We had in mind that this would be relevant to add probabilities to
timed automata

Introduction

A story that started in 2006...

@ My background: timed automata
@ | was strolling around with Thomas Brihaye in Seattle (venue of
LICS'06), after having attended a very inspiring talk
o “Temporal Logics and Model Checking for Fairly Correct Systems”
o By Daniele Varacca and Hagen Volzer
@ We had in mind that this would be relevant to add probabilities to
timed automata
@ Why probabilities?
o for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
o for measuring system performance (time before failure, ...)
o for modelling soft real-time delays

Introduction

A story that started in 2006...

@ My background: timed automata
@ | was strolling around with Thomas Brihaye in Seattle (venue of
LICS'06), after having attended a very inspiring talk
o “Temporal Logics and Model Checking for Fairly Correct Systems”
o By Daniele Varacca and Hagen Volzer
@ We had in mind that this would be relevant to add probabilities to
timed automata
@ Why probabilities?
o for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
o for measuring system performance (time before failure, ...)
o for modelling soft real-time delays

e FSTTCS'07, LICS'08, QEST'08, QEST'12
e 72-pages LMCS journal paper

o Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject

Timed automata

Outline

© Timed automata

4/43

Timed automata

The model of timed automata

<25
done: 0=

repairing

A .
¥ repair
2<yAx<56

problem, x:=0

y:=0

5/43

Timed automata

The model of timed automata

0%y <%

problem, x:=0

23 problen 15.6
safe — safe — alarm ——
X 0 23 0
y 0 23 23
) 2.3) repair
failsafe ~—> failsafe ~———> repairing
15.6 17.9 17.9
0 2.3 0

repairing

repair

y:=0

alarm
15.6
38.6

22.1

2<yAx<56

delayed

repairing
40
22.1

failsafe
15.6
0
ﬁf—) safe
40
22.1

5/43

Timed automata

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors: A B c

Py (fast): Py (slow): - -
time time c 1
3F ‘ 2 picoseconds =F ‘ 5 picoseconds \
X ‘ 3 picoseconds 7 picoseconds T3T T,
> D
energy energy N
ide [10 Watt idle [20 Watts @_»
in use ‘ 90 Watts in use ‘ 30 Watts Ts Te
0 5 10 15 20 25
T
P T, ‘ ‘ T. ‘ T, i ! \
z 1 2 3 5 6 L3 E0seco, ‘7
D Py T Ty ‘ ‘ ‘ [oy
Pl T ‘ T ‘ Te T, T, P2, T
Pl I 3 5 4 6 7.3 05ec, ‘7
ho:
e E [1111 || "ues
T 29 T
P 1 T- T, P
el s [[[L[]] Spmea, ||
< Py T2 Ts T6 | " Youles

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (CACM).
6/43

Timed automata

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3
done; done;
(x=<2) x:=0 x:=0 (x<3)
= =7
Py: y=5 Y
doney doney
(y<5) x:=0 x:=0 (r<7)

Ty

Ts.

@ Tasks

o=
add;

O~

0
done;
=0

O O

add;

done;

A schedule is a path in the product automaton)

7/43

Timed automata

Analyzing timed automata

8/43

Timed automata

Analyzing timed automata

8/43

Timed automata

Analyzing timed automata

8/43

Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
C xX= C)/ Y y>2
y:=0 AN)C C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x=0A
C xX= ./ N y>2
y:=0 AN)C C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x=0A
C xX= ./ N y>2
y:=0 AN)C C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x=0A
C xX= C)/ N y>2
y:=0 AN /“ C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
C xX= C)/ Y y>2
y:=0 AN /“ C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
C xX= ./ Y y>2
y:=0 AN)C C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
C xX= ./ Y y>2
y:=0 AN)C C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x=0A
C xX= C)/ N y>2
y:=0 AN /“ C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x=0A
C xX= C)/ N y>2
y:=0 AN /“ C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science). y
8/43

Timed automata

Analyzing timed automata

x=0A
O—= O/—\ y>2
y:=0 ~)C C
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
8/43

Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
y:=0
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

o Efficient symbolic technics based on zones, implemented in tools

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

8/43

Timed automata

An example [AD94]

y=1b/ 1.6 \x<lec

x>0,a
-9»(::::)k------>» x>1,d
y:=0

y<1l,a,y:=0

9/43

Timed automata

An example [AD94]

y=1b/ 1.6 \x<lec

x>0,a
-9»(::::)k------>» x>1,d
y:=0

y<1l,a,y:=0 y

9/43

Timed automata

An example [AD94]

y=1,b x<1,c \ x<1,c
x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0 y
S0
—_—
x=y=0 [
, b b ——e
y i |/|
/ * : x
s1 s1 b s1 b)
0=y<x<1 l=y<x
C £’
s3 d s3
O<y<x<1 O<y<1l<x l1=y<x x>1,y>1

<

9/43

Timed automata

How to model uncertainty over delays?

@ Using timed games

x=2 x=3
done done
add mult

(x=2) x:=0 x:=0 x<3)

10/43

Timed automata

How to model uncertainty over delays?

@ Using timed games

10/43

Timed automata

How to model uncertainty over delays?

@ Using timed games

x>1 x>1
-~ “done * 4" “done "~
@\add/\mult/@
(x<2) x:=0 x:=0 x<3)
@ Using stochastic delays
x>1 x>1
done done

10/43

Timed automata

How to model uncertainty over delays?

@ Using timed games

x>1 x>1
-~ " done “" “done "+
add mult
(x<2) x:=0 x:=0 x<3)
@ Using stochastic delays
x>1

done done

1 (x<2)

10/43

Stochastic timed automata

Outline

© Stochastic timed automata

11/43

Stochastic timed automata

Existing models?

Models based on timed automata

@ Probabilistic timed automata [KNSS99]
~» only discrete probabilities over edges
o Continuous probabilistic timed automata [KNSSO0Q]
~ resets of clocks are randomized, but only few results

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR'00).

12/43

Stochastic timed automata

Existing models?

Models based on timed automata

@ Probabilistic timed automata [KNSS99]
~» only discrete probabilities over edges
o Continuous probabilistic timed automata [KNSSO0Q]
~ resets of clocks are randomized, but only few results

Other related models | was not familiar with in 2006
e Continuous-time Markov chains (CTMCs)
o Generalized semi-Markov processes (GSMPs)
@ Process algebras (like Modest) [DK05,BDHKO06] |

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR’00).
[DKO5] D'Argenio, Katoen. Stochastic timed automata, Part | and Part Il (Information and Computation).

[BDHKO06] Bohnenkamp, D'Argenio, Hermanns, Katoen. MODEST: A compositional modeling formalism for hard and softly timed systems (IEEE

Trans. Software Engineering).
12/43

Stochastic timed automata

Our choice of stochastic timed automata

@ Based on the standard timed automata model

o Model largely adopted for real-time systems
o Enjoys efficient verification algorithms and corresponding
implementations

13/43

Stochastic timed automata

Our choice of stochastic timed automata

@ Based on the standard timed automata model
o Model largely adopted for real-time systems
o Enjoys efficient verification algorithms and corresponding
implementations
e We understand it well!

13/43

Stochastic timed automata

Our choice of stochastic timed automata

@ Based on the standard timed automata model

o Model largely adopted for real-time systems

o Enjoys efficient verification algorithms and corresponding
implementations

e We understand it well!

@ Randomize delays

13/43

Stochastic timed automata

Our choice of stochastic timed automata

@ Based on the standard timed automata model

o Model largely adopted for real-time systems

o Enjoys efficient verification algorithms and corresponding
implementations

e We understand it well!

@ Randomize delays

@ We believe this is an interesting model for systems integrating both:

o real-time constraints
e randomized aspects

13/43

Stochastic timed automata

How can we attach probabilities to delays?
@ The example of continuous-time Markov chains

exponential distribution

{8\ -exp(—At)

density function t >

ift>0
otherwise

14/43

Stochastic timed automata

How can we attach probabilities to delays?

@ The example of continuous-time Markov chains

exponential distribution

. . A-exp(=At) ift>0
density function t > {0 otherwise

~» this is ok if delays are in [0, +00)

14/43

Stochastic timed automata

How can we attach probabilities to delays?

@ The example of continuous-time Markov chains

exponential distribution

. . A-exp(=At) ift>0
density function t > {0 otherwise

~» this is ok if delays are in [0, +00)

@ But what if bounded intervals?

14/43

Stochastic timed automata

How can we attach probabilities to delays?
@ The example of continuous-time Markov chains

exponential distribution

. . A-exp(=At) ift>0
density function t > {0 otherwise

~» this is ok if delays are in [0, +00)

@ But what if bounded intervals?

truncated normal distribution

14/43

Stochastic timed automata

How can we attach probabilities to delays?
@ The example of continuous-time Markov chains

exponential distribution

. . A-exp(=At) ift>0
density function t > {0 otherwise

~» this is ok if delays are in [0, +00)

@ But what if bounded intervals?

truncated normal distribution uniform distribution {L >0

density function t — < Il .
0 otherwise

14/43

Stochastic timed automata

How does a STA look like?

25

repairing

repair
2<yAx<56
y:=0

15/43

Stochastic timed automata

Formalization of the semantics
o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,

16/43

Stochastic timed automata

Formalization of the semantics

o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,
o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
®)

x=1, €3

W(Soiléizé)z{SO—T—lfl—)Sl—zg—)Sz | 71 <2, 11+ 7 <5, TQZ].}

16/43

Stochastic timed automata

Formalization of the semantics

o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,
o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
O

71'(5051%52%):{502&512@—)52 | 71 <2, 11+ 7 <5, TQZ].}

@ Idea: compute the probability of a symbolic path

From state s:

16/43

Stochastic timed automata

Formalization of the semantics

o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,
o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
O

ﬂ(soig):{soﬂf%slzﬁsz | m<2, m+7m<5 n>1}

@ Idea: compute the probability of a symbolic path

From state s:

e randomly choose a delay

probability distribution
over delays

16/43

Stochastic timed automata

Formalization of the semantics

o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,
o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
O

ﬂ(soig):{soﬂf%slzﬁsz | m<2, m+7m<5 n>1}

@ Idea: compute the probability of a symbolic path

From state s:

~

e randomly choose a delay

probability distribution
over delays

16/43

Stochastic timed automata

Formalization of the semantics

o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,
o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
O

F(Sogg):{SOEQSl%SQ | 71 <2, 11+ 7 <5, TQZ].}

@ Idea: compute the probability of a symbolic path

From state s:

s/ =g
e randomly choose a delay

o then randomly select an edge

probability distribution
over delays

16/43

Stochastic timed automata

Formalization of the semantics

o 7(s 2 ... =5): symbolic path from s firing edges e1,.. ., e,
o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
O

F(Sogg):{SOEQSl%SQ | 71 <2, 11+ 7 <5, TQZ].}

@ Idea: compute the probability of a symbolic path

From state s:

s/ =g
e randomly choose a delay
S
o then randomly select an edge
o then continue probability distribution

over delays

16/43

Stochastic timed automata

Formalization of the semantics

symbolic path: 7(s 2 ... 2) = {s 2%y 5 ... 5y g}

P(r(s S IA-N)) = /e/()ps+t(e1)IP’((st 2. 2)) dus(t)

17/43

Stochastic timed automata

Formalization of the semantics

symbolic path: 7(s 2 ... 25) = {s 2% 5 ... 0% 51
P(r(s .- o)) :/ dus(t)
el(s,er)

o I(s,e1) = {7 | s =%} and ps distribution over /(s) = I(s, €)

17/43

Stochastic timed automata

Formalization of the semantics

symbolic path: 7(s =5 ... 2) ={s 2% 5 ... M 51

€n

P(r(s S) = pstt(e1)

o I(s,e1) = {7 | s “%} and ps distribution over /(s) = |J/(s, e)

e

@ ps.: distribution over transitions enabled in s + t

17/43

Stochastic timed automata
Formalization of the semantics
symbolic path: 7(s =5 ... 2) ={s 2% 5 ... M 51
P(n(s 2 - &) = P(r(se 2 -)

o I(s,e1) = {7 | s “%} and ps distribution over /(s) = |J/(s, e)

e

@ ps.: distribution over transitions enabled in s + t

t
esSs+tNs

17/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = /tel(se)ps+t(e1)IP’(7r(st 2 5) dus(t)

18/43

Stochastic timed automata

Formalization of the semantics
P(r(s - 2)) = / .)pSH(el)IP’(Tr(st 2 5) dus(t)
tel(s,er

@ Can be viewed as an n-dimensional integral

18/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = / psie(er) P(m(se = -+ =) dus(t)

tel(s,er)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

Wc(se—1>~--e—”>):{5ﬂ—’el>51"'msnI(Tla"'77-”)’:(’,}

18/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = / psie(er) P(m(se = -+ =) dus(t)
tel(s,er1)
@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

Wc(se—1>~-~e—”>):{5ﬂ—’el>51"'msnI(Tla"'7Tn)’:C}

@ Definition over sets of infinite runs:

18/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = /tel(se)ps+t(e1)IP’(7r(st 2 5) dus(t)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

Wc(se—1>~--e—”>):{5ﬂ—’el>51"'msnI(Tla"'77-”)’:(’,}

@ Definition over sets of infinite runs:
o Cyl(me(s -+))={o- 0 |e€me(s -)}

18/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = /tel(se)ps+t(e1)IP’(7r(st 2 5) dus(t)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths
€ €n T1,€1 Tns€n
e(s >S5)={s—s - —5s | (r1,,7) EC}
@ Definition over sets of infinite runs:

o Cyl(me(s = -~ =)) ={o-d [o€ me(s = - =)}
o P(Cyl(me(s < -+) =P(me(s -+ =)

18/43

Stochastic timed automata

Formalization of the semantics
P(r(s - 2)) = / ()pSH(el)IP’(Tr(st 2 5) dus(t)
tel(s,er

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

Wc(se—l)~--e—n>):{5ﬂ—’61>51"'msnl(Tla"'7Tn)’:C}

@ Definition over sets of infinite runs:
o Cyl(me(s - =) ={o-0 | o€ me(s 2 --- 25}
o P(Cyl(me(s = -+ 5))) =P(me(s 2 -+ =)
e unique extension of P to the generated o-algebra

18/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = /te/()pSH(el)IP’(Tr(st 2 5) dus(t)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

Wc(se—l)~--e—n>):{5ﬂ—’61>51"'msn‘(Tla"'7Tn)’:C}

@ Definition over sets of infinite runs:
o Cyl(me(s - =) ={o-0 | o€ me(s 2 --- 25}
o P(Cyl(me(s = -+) =P(me(s = -+ =)
e unique extension of P to the generated o-algebra

@ Property: P is a probability measure over sets of infinite runs

18/43

Stochastic timed automata

Formalization of the semantics

P(r(s - 2)) = /e/()pSH(el)IP’(Tr(st 2 5) dus(t)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

me(s o) ={s 2% 5. % s | (71, ,Ta) EC)
@ Definition over sets of infinite runs:

o Cyl(me(s -) ={o-0 |o€me(s -)}

o P(Cyl(me(s = -+) =P(me(s = -+ =)

e unique extension of P to the generated o-algebra
@ Property: P is a probability measure over sets of infinite runs
@ Example:

o Zeno(s LJ rw LJ Cw(WEWSM(S‘i*"'is))

MEN neN (ep,--- ,en)EEN

18/43

Stochastic timed automata

An example of computation (with uniform distributions)

g, x=1 OO e, x<1 :
, 1 , x <2
o SRS P

(x<1) (x <2)

1

The probability of the symbolic path 7(sy) is 1.

19/43

Stochastic timed automata

An example of computation (with uniform distributions)

g, x=1 OO e, x<1 OO
e, x<1 e, x <2
—*$ — O oD
(x<1) o (x<2)

The probability of the symbolic path 7(sy) is 1.

=)

' LP(n(s
P (7 (s 52,)) = / P (7 (s 2,))dyis, () _|_/1 M(lf

/ / (P(W Atz (1)) s (1)
e -

dpus, (1)

19/43

Stochastic timed automata

An example of computation (with exponential distrib.)

e, x >1 OO e, x>1 :
e, x <1 [e3, x <2
— O)
x:=0 ~
rate 2 rate 3

The probability of the symbolic path 7(s; =5-=) is e=3 — e~ &~ 0.043

20/43

Stochastic timed automata

An example of computation (with exponential distrib.)

60,X21 OQ 62,X21 :C
e, x <1 / €3, x <2
—_
é Py O Q)
rate 2 rate 3

The probability of the symbolic path 7(s; =5-=) is e=3 — e~ &~ 0.043

1

1
P(r(so 22)) :/0 P(7(sy =) dps (1) :/0 P(m(s1 =))2exp(—2t)dt

= /01 (/1+<>0 3exp(—3u)du) 2 exp(—2t)dt

= [~ exp(—2t)],_q - [~ exp(—3u)] .5

=(1-e?-e3=e3-¢"°

20/43

Stochastic timed automata

Some remarks

@ This defines a purely stochastic process

21/43

Stochastic timed automata

Some remarks

@ This defines a purely stochastic process

@ Continuous-time Markov chains = STA with a single “useless” clock
which is reset on all transitions. The distributions on delays are
exponential distributions with a rate per location

21/43

Stochastic timed automata

Some remarks

@ This defines a purely stochastic process

@ Continuous-time Markov chains = STA with a single “useless” clock
which is reset on all transitions. The distributions on delays are
exponential distributions with a rate per location

o Finite-state generalized semi-Markov processes (residual-lifetime
semantics) are STAs (if no fixed-delay events)

21/43

Stochastic timed automata

Some remarks

@ This defines a purely stochastic process

@ Continuous-time Markov chains = STA with a single “useless” clock
which is reset on all transitions. The distributions on delays are
exponential distributions with a rate per location

o Finite-state generalized semi-Markov processes (residual-lifetime
semantics) are STAs (if no fixed-delay events)

@ Allows to express richer timing constraints

21/43

Decidability

Outline

@ Decidability

22/43

Decidability

Almost-sure model-checking

We are interested in (automatic) model-checking algorithms!

@ Qualitative model-checking: decide whether

P({o € Runs(s) | e = ¢}) =1

We write s k¢ ¢ whenever it is the case.
This is the almost-sure model-checking problem.

e Quantitative model-checking: compute (or approximate) the value

P({o € Runs(s) | o = ¢})

23/43

Decidability

Almost-sure model-checking

We are interested in (automatic) model-checking algorithms!

@ Qualitative model-checking: decide whether

P({o € Runs(s) | e = ¢}) =1

We write s k¢ ¢ whenever it is the case.
This is the almost-sure model-checking problem.

e Quantitative model-checking: compute (or approximate) the value

P({o € Runs(s) | o = ¢})

In this talk we focus on
the almost-sure model-checking problem. J

23/43

Decidability

An example

e, x<1 o x<1

' e, x<1 e, x>3, x:=0
_> @ vl @
(<1) (x<1) (x<1)

&, x=1 e, x<1

24/43

Decidability

An example

e, x<1 e7, x<1
' 0. x<1 e, x>3, x:=0
e, x=0
~ e 0 @
(x<1) — (x<1) (x<1)
&, x=1 e, x<1

A [~ G(green = Fred)

24/43

Decidability

An example

e, x<1 e7, x<1
' 0. x<1 e, x>3, x:=0
e, x=0
~ e 0 @
(x<1) — (x<1) (x<1)
&, x=1 e, x<1

A = G(green = Fred) but P(A k= G(green = Fred)) =1

24/43

Decidability

An example

e, x<1 e7, x<1
' o, x<1 e, x>3, x:=0
e, x=0
~ e 0 @
(x<1) (x<1) (x<1)
&, x=1 e, x<1

A = G(green = Fred) but P(A k= G(green = Fred)) =1

Indeed, almost surely, paths are of the form efeg(e4e5)w

24/43

Decidability

The classical region automaton

25/43

Decidability

The pruned region automaton

25/43

Decidability

The pruned region automaton

25/43

Decidability

The pruned region automaton

.. viewed as a finite Markov chain MC(A)

25/43

Decidability

The pruned region automaton

.. viewed as a finite Markov chain MC(A)
It holds as well that:

P(MC(A) = G(green = Fred)) =1

25/43

Decidability

The pruned region automaton

.. viewed as a finite Markov chain MC(A)
It holds as well that:

P(MC(A) = G(green = Fred)) =1

When is that the case that

P(AE¢) =1 iff P(MC(A)E¢) =17

25/43

Decidability

A counter-example

e, y<1 /z\ e, y=1
N\ y:=0

ey, y=2 e3, I<y<?2
() ()
y:=0 A/

y<1 y<1

e, x>1
x:=0 x:=0

26/43

Decidability

A counter-example

&, y=2 VoYl 1<y<2 A\ y<1 f e, y=1

y:=0

y<1
€, x>1

x:=0 x:=0

The pruned region automaton viewed as a finite Markov chain MC(A):

<—|€3,rX 12)|<—|€0,{0}><01)|—>|Z1,r)< 01)|—>

es €

¢ = (GF green) A (GF red)

26/43

Decidability

A counter-example

e, y=2 /?\ e3, 1<y<2 N\ e, y<1 f e, y=1

y:=0

y<1
€, x>1

x:=0 x:=0

The pruned region automaton viewed as a finite Markov chain MC(A):

<—|e37rx (1 2)|<—|€07{0}>< (© 1)|—>|z17rx %(0 1)|—> £,rx {1}

es €

v = (GF green) A (GF red)
We clearly have that P(MC(A) =¢)=1 BUT PAEy¢)<1

26/43

Decidability

A counter-example |
e, y=2 @ e3, I<y<?2 rz\ e, y<1 f.\ e, y=1
y:=0 u

o

y<1

x:=0 x:=0

The pruned region automaton viewed as a finite Markov chain MC(A):

[4rx(2) |<e4—|z3,rxx(1,2)|<e3—|zo,{o}x(o,1)|i>|£1,rxx(o,1)|—ez>J 0,rox {1} |
/ \

€5 €

¢ = (GF green) A (GF red)

Let y, be the value of y at the n'" arrival in 4

yn <1 and Yn < Ynt1

26/43

Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)E¢)=1

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
27/43

Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)E¢)=1

Theorem

Let A be a STA and ¢ an w-regular property.
If P(A k= fair) = 1 then

P(AEy) =1 iff P(MC(A)) =1

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
27/43

Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)E¢)=1

Theorem

Let A be a STA and ¢ an w-regular property.
If P(A k= fair) = 1 then

P(AEy) =1 iff P(MC(A)) =1

Fairness is a semantic condition:

every edge which is enabled
infinitely often is taken infinitely often

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).

Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)E¢)=1

Theorem

Let A be a STA and ¢ an w-regular property.
If P(A k= fair) = 1 then

P(AEy) =1 iff P(MC(A)) =1

Fairness is a semantic condition:

every thick edge of the region graph which is enabled
infinitely often is taken infinitely often

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).

Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)Ey¢)=1

Theorem

Let A be a STA and ¢ an w-regular property.
If P(A [= fair) = 1 then

PAEe) =1 iff P(MC(A)kEy)=1

@ Proof based on a topology over the set of paths
@ Notions of largeness (for proba 1) and meagerness (for proba 0)

@ Link between probabilities and topology thanks to the topological
games called Banach-Mazur games

[BBB-+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifiski. Stochastic timed automata (Logical Methods in Computer Science).

27/43

Decidability

Almost-sure fairness?

@ Finite Markov chains are almost-surely fair

28/43

Decidability

Almost-sure fairness?

@ Finite Markov chains are almost-surely fair
Decisive Markov chains are almost-surely fair

PFTVFT)=1

[ABMO7] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science).
28/43

Decidability

Almost-sure fairness?

@ Finite Markov chains are almost-surely fair
Decisive Markov chains are almost-surely fair

PFTVFT)=1

@ Are STA almost-surely fair?

28/43

Decidability

Almost-sure fairness?

@ Finite Markov chains are almost-surely fair
Decisive Markov chains are almost-surely fair

PFTVFT)=1

@ Are STA almost-surely fair? No!

28/43

Decidability

Results [BBB-+14|

Theorem

The following classes of STAs are almost-surely fair:
@ single-clock STAs
o (weak-)reactive STAs

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
29/43

Decidability

Results [BBB-+14|

Theorem

The following classes of STAs are almost-surely fair:
@ single-clock STAs
o (weak-)reactive STAs

Reactive: for every s = (¢, v), I(s) = R, and constant distributions
within a location

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
29/43

Decidability

Results [BBB-+14|

Theorem

The following classes of STAs are almost-surely fair:
@ single-clock STAs
o (weak-)reactive STAs

(Note: CTMCs are reactive STAs)

Reactive: for every s = (¢, v), I(s) = R, and constant distributions
within a location

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
29/43

Decidability

Results [BBB-+14|

Theorem

The following classes of STAs are almost-surely fair:
@ single-clock STAs
o (weak-)reactive STAs

(Note: CTMCs are reactive STAs)

Reactive: for every s = (¢, v), I(s) = R, and constant distributions
within a location

Corollary

The almost-sure model-checking of w-regular properties in single-clock
(resp. reactive) STAs can be decided in NLOGSPACE (resp. PSPACE).
The almost-sure model-checking of of LTL properties in single-clock or
reactive STAs can be decided in PSPACE.

[BBB-+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifiski. Stochastic timed automata (Logical Methods in Computer Science).
29/43

Decidability

Ingredients of the proofs

@ Proof for single-clock STAs:

o Technical analysis of single-clock STAs
o Fairness over compact subsets of R4

30/43

Decidability

Ingredients of the proofs

@ Proof for single-clock STAs:

o Technical analysis of single-clock STAs
o Fairness over compact subsets of R4

@ Reactive STAs:

o There exists € > 0 such that for all s, us(JM, +o0[) > €
o Notion of memoryless region: for every x, either x =0 or x > M
o Borel-Cantelli lemma

Assume (€, P) is a probabilistic space, and that the
measurable events (Ex)ken are independent. If

ZTP(Ek) = +o00, then

keN

(nus) -

neN k>n

30/43

Decidability

A note on Zeno behaviours

@ The set of Zeno behaviours is measurable:

Zeno(s U ﬂ U Cyl(r(s & - =)

MEN neN (e, e,)EEN

31/43

Decidability

A note on Zeno behaviours

@ The set of Zeno behaviours is measurable:

Zeno(s U ﬂ U Cyl(r(s & - =)

MeN neN (g ,en)EEM

@ In single-clock timed automata, we can decide in NLOGSPACE
whether P(Zeno(s)) = 0:

31/43

Decidability

A note on Zeno behaviours

@ The set of Zeno behaviours is measurable:

Zeno(s U ﬂ U Cyl(r(s & - =)

MEN neN (e, e,)€EN

@ In single-clock timed automata, we can decide in NLOGSPACE
whether P(Zeno(s)) = 0:
o check whether there is a purely Zeno BSCC in MC(.A)

v N
* x<1 @ g

31/43

Decidability

A note on Zeno behaviours

@ The set of Zeno behaviours is measurable:

Zeno(s U ﬂ U Cyl(r(s & - =)

MEN neN (e, e,)€EN

@ In single-clock timed automata, we can decide in NLOGSPACE
whether P(Zeno(s)) = 0:
o check whether there is a purely Zeno BSCC in MC(.A)

v N
* x<1 @ g

e an interesting notion of non-Zeno timed automata
x<1, x:=0

g

@ In reactive STAs, Zeno behaviours have probability 0

31/43

Composition

Outline

© Composition

32/43

Composition

Challenge: compositional design of STA

Problematic

componentwise description of systems involving timed
constraints and stochastic uncertainties

33/43

Composition

Challenge: compositional design of STA

Problematic

componentwise description of systems involving timed
constraints and stochastic uncertainties

How can we compose STAs?

o First step: a parallel composition operator
@ Second step: add interaction

o Game extensions studied so far not adequate [BF09,BS12]
e Planned solution: interaction a /a Interactive Markov Chains [Her02]
Note: inspiring discussion in [HK09]

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).

[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).

[HKO09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO'09). y
33/43

Composition

Challenge: compositional design of STA

Problematic

componentwise description of systems involving timed
constraints and stochastic uncertainties

How can we compose STAs?

o First step: a parallel composition operator
@ Second step: add interaction

o Game extensions studied so far not adequate [BF09,BS12]
e Planned solution: interaction a /a Interactive Markov Chains [Her02]
Note: inspiring discussion in [HK09]

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).

[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).

[HKO09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO'09). y
33/43

Composition

A quick look at CTMCs

A dual representation of CTMCs...

@ Exit rates r(-) of states
(parameters of the exp. distributions)

34/43

Composition

A quick look at CTMCs

A dual representation of CTMCs...

e Exit rates r(-) of states
(parameters of the exp. distributions)

@ Time-abstract rates R(-,-) of edges
R(s0,51) = r(s0) - p(s0, 1)

34/43

Composition

A quick look at CTMCs

A dual representation of CTMCs...

e Exit rates r(-) of states
(parameters of the exp. distributions)

@ Time-abstract rates R(-,-) of edges
R(s0,51) = r(s0) - p(s0, 1)

rates R(sp, s1) and R(sy, o)

@ r(sp) is the rate of the min. distrib. of

34/43

A quick look at CTMCs

Composition

A dual representation of CTMCs...

e Exit rates r(-) of states
(parameters of the exp. distributions)

@ Time-abstract rates R(-,-) of edges
R(s0,51) = r(s0) - p(s0, 1)
@ r(sp) is the rate of the min. distrib. of
rates R(sp, s1) and R(sy, o)

. which allows some computations
@ The probability to move from sy to s;

within [0, t] is:
R(So, 51)

(1 - e(—r(%) - 1)

34/43

Composition

Composition of CTMCs made easy

35/43

Composition

Composition of CTMCs made easy

(")

@ Race between (s, s1), (s,s2) and (q,q")

35/43

Composition

Composition of CTMCs made easy

(")

@ Race between (s, s1), (s,s2) and (q,q")
o If (s,s;) wins, the system moves to (s;, q)

35/43

Composition

Composition of CTMCs made easy

(")

@ Race between (s, s1), (s,s2) and (q,q")
o If (s,s;) wins, the system moves to (s;, q)
@ There is a new race between edges from s; and (q, q’) again

35/43

Composition

Composition of CTMCs made easy

(")

Race between (s, s1), (s,5) and (q,q’)

If (s,s;) wins, the system moves to (s;, q)
There is a new race between edges from s; and (q, q’) again
Correct since exp. distrib. are memoryless!

35/43

Composition

Composition of CTMCs made easy

(")

Race between (s, s1), (s,5) and (q,q’)

If (s,s;) wins, the system moves to (s;, q)

There is a new race between edges from s; and (q, q’) again
Correct since exp. distrib. are memoryless!

If X is a r.v. following an exp. distrib.

Prob(X > t+t' | X > t) = Prob(X > t')

35/43

Composition

Composition of CTMCs made easy
9 4% @

Race between (s, s1), (s,5) and (q,q’)

If (s,s;) wins, the system moves to (s;, q)

There is a new race between edges from s; and (q, q’) again
Correct since exp. distrib. are memoryless!

If X is a r.v. following an exp. distrib.

Prob(X > t+t' | X > t) = Prob(X > t')

35/43

Composition

How does that extend to STAs?

Difficulties
@ we have to handle guards

@ we have to compose more general continuous distributions
~» should represent a race between the components

@ we want to preserve the structure of the product automaton

@ the product should be “interleaving”

36/43

Composition

An example where everything goes well

37/43

Composition

An example where everything goes well

Unif. distrib. over [a, b]
Unif @ Density function:

OO0
if
f(t):{o ift<aort>b

L fa<t<b

b—a

. c<y<d
@ e @ Cumulative function:

F(t) = / f(t)dt

d<t
0 ift<a

= =2 ifa<t<b
1 ift>b

37/43

Composition

An example where everything goes well

Assume xp < a and yp < ¢ are s.t.

Unif ap=a—xgp b—xo=ho
e —
a<x<b _—
Unif
(w)=r=5

37/43

Composition

An example where everything goes well

Assume xp < a and yp < ¢ are s.t.

ap=a—xp b—xo=bo

Unif

R
a<x<b

@ Distrib. over delays: min. of the two distrib.

Uﬂnif c<y<d II over delays (race). lts density is:
.—> 0 if t <agort> by
onJo(t) = boiao ifag<t<oco
do-+bo—2t if oo < t < by

(bo—a0)-(do—co)

37/43

Composition

An example where everything goes well

Unif
O ©
Unif
()=o)

Assume xp < a and yp < ¢ are s.t.

apg=a—Xp b—Xo:bg
—
©=c—yo d—yo=dp

@ Distrib. over delays: min. of the two distrib.
over delays (race). Its density is:

0 if t <<agort> by
&o,yo(t) = boiao ifag<t<c
__dotbo—2t if o < t< by

(bo—a0)-(do—co)

@ Discrete proba. on edges within [co, bo]:
proba. that the component has won the race

by —t res dy—t
do+bo—2t’ p.do+b0—2t

for the bottom, resp. top, edge.

37/43

Composition

What could go wrong?

A component should not be impacted by the other’s actions!

38/43

What could go wrong?

A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!
x<1

& @ 2@

Unif Exp

38/43

Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!

38/43

Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!
@ In the product:

Po, 9o Po, g1 Po, G2

38/43

Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!
@ In the product:

Po, 9o Po, g1 Po, G2

~> The sum of the delays in (po, qo), (po, g1) and (po, g2) should be
distributed (for the first component) as a single delay in po

38/43

Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!
@ In the product:

Po, 9o Po, g1 Po, G2

~> The sum of the delays in (po, qo), (po, g1) and (po, g2) should be
distributed (for the first component) as a single delay in po
~> We impose some weak-memorylessness condition on distrib.

Prob(X,v) > t+t | Xie,vy > t) = Prob(X,v+¢) > t')
(Xe,vy: r.v. for delays from config. (¢, v))

38/43

Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!
@ In the product:

Po, 9o Po, g1 Po, G2

~> The sum of the delays in (po, qo), (po, g1) and (po, g2) should be
distributed (for the first component) as a single delay in po
~> We impose some weak-memorylessness condition on distrib.

Prob(Xe,v) >t4t | Xie,vy > t) = Prob(X,v+4) >t)

38/43

Composition

What does the last weak-memorylessness condition mean?

PrOb((e,v) >t+t |X(Zv >t)_PrOb(Zv+t)2t/)

39/43

Composition

What does the last weak-memorylessness condition mean?

PrOb((e,v) >t+t |X(Zv >t)_PrOb(Zv+t)2t/)

o It is satisfied by CTMCs, which are memoryless: X, ,) = X¢

39/43

Composition

What does the last weak-memorylessness condition mean?

PrOb((e,v) >t+t |X(Zv >t)_PrOb(Zv+t)2t/)

o It is satisfied by CTMCs, which are memoryless: X, ,) = X¢
o It is satisfied by GSMPs, (almost) by definition

39/43

Composition

What does the last weak-memorylessness condition mean?

PrOb((e,v) >t+t |X(Zv >t)_PrOb(Zv+t)2t/)

o It is satisfied by CTMCs, which are memoryless: X, ,) = X¢
o It is satisfied by GSMPs, (almost) by definition
@ A constraint on a time “fiber”:

Distrib. from v + t is that from v, under the condition
that t t.u. have already elapsed. J

39/43

Composition

What does the last weak-memorylessness condition mean?

PrOb((e,v) >t+t |X(Zv >t)_PrOb(Zv+t)2t/)

o It is satisfied by CTMCs, which are memoryless: X, ,) = X¢
o It is satisfied by GSMPs, (almost) by definition
@ A constraint on a time “fiber”:

Distrib. from v + t is that from v, under the condition
that t t.u. have already elapsed. J

Examples
o Exp()) distrib. from v implies Exp(})
distrib. from v +t

o Unif distrib. from v implies Unif
distrib. from v + t

e Any p in v can be transferred to some
winv+t

v

39/43

Composition

Composing STAs: the recipe

40/43

Composition

Composing STAs: the recipe

@ Define distrib. over delays as a race between the components, that
is, use the law for the minimal delay

fnin(t) = f(t) - (1 — F2(t)) + fa(t) - (1 — Fi(t))

40/43

Composition

Composing STAs: the recipe

@ Define distrib. over delays as a race between the components, that
is, use the law for the minimal delay

fnin(t) = f(t) - (1 — F2(t)) + fa(t) - (1 — Fi(t))

@ Compute discrete proba. as a combination of original discrete proba.
and of the likelihood that the given component wins the race

wi(t) = fi(t) - (éi:(gsi(f))

40/43

Composition

Composing STAs: the recipe

@ Define distrib. over delays as a race between the components, that
is, use the law for the minimal delay

fnin(t) = f(t) - (1 — F2(t)) + fa(t) - (1 — Fi(t))

@ Compute discrete proba. as a combination of original discrete proba.
and of the likelihood that the given component wins the race

() Fi(e)
fmin(t)

W,'(f)

Theorem

When STAs are weak-memoryless and almost-surely non-Zeno, the above
recipe defines an internal parallel composition operator such that:

]P)A1H.A2(<pl A @2) = PA1(301) . PAz(@Z)

40/43

Composition

Further nice and useful properties

Bisimulation (inspired by [DP03])

An extension of that for CTMCs can be defined: (¢, v) = (¢, V') if and
only if for every (measurable) =-closed set C, for every
measurable set of delays /,

P((¢,v) 25 C) = B((¢, V') 25)

[DP03] Desharnais, Panangaden. Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes
(Journal of Logic and Algebraic Programming).
41/43

Composition

Further nice and useful properties

Bisimulation (inspired by [DP03])

An extension of that for CTMCs can be defined: (¢, v) = (¢, V') if and
only if for every (measurable) =-closed set C, for every
measurable set of delays /,

P((¢,v) 25 C) = B((¢, V') 25)

Theorem
The bisimulation is a congruence w.r.t. parallel composition:

A = A; implies A1 || B= Ay || B

[DP03] Desharnais, Panangaden. Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes
(Journal of Logic and Algebraic Programming).
41/43

Current challenges

Outline

© Current challenges

42/43

Current challenges

Challenges

@ Algorithmics:

43/43

Current challenges

Challenges

@ Algorithmics:
o More approximation algorithms are to come

43/43

Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

43/43

Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

43/43

Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

o Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)

43/43

Current challenges

Challenges

@ Algorithmics:
o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

o Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)

o Models with non-determinism studied so far not amenable to
composition [BF09,BS12]

[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).

43/43

Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

o Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)

o Models with non-determinism studied so far not amenable to
composition [BF09,BS12]

o Use interaction, as done in interactive Markov chains [Her02,HK09]

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).
[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).
[HKO09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO'09).
43/43

Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

o Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)

o Models with non-determinism studied so far not amenable to
composition [BF09,BS12]

o Use interaction, as done in interactive Markov chains [Her02,HK09]

@ Compositional verification

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).
[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).
[HKO09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO'09).
43/43

	Introduction
	Timed automata
	Stochastic timed automata
	Decidability
	Composition
	Current challenges

