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@ | was strolling around with Thomas Brihaye in Seattle (venue of
LICS'06), after having attended a very inspiring talk
o “Temporal Logics and Model Checking for Fairly Correct Systems”
o By Daniele Varacca and Hagen Volzer
@ We had in mind that this would be relevant to add probabilities to
timed automata
@ Why probabilities?
o for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
o for measuring system performance (time before failure, ...)
o for modelling soft real-time delays

e FSTTCS'07, LICS'08, QEST'08, QEST'12
e 72-pages LMCS journal paper

o Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject
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Timed automata

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors: A B c
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[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (CACM).
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Timed automata

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3
done; done;
(x=<2) x:=0 x:=0 (x<3)
= =7
Py: y=5 Y
doney doney
(y<5) x:=0 x:=0 (r<7)

Ty

Ts.

@ Tasks

o=
add;

O~

0
done;
=0

O O

add;

done;

A schedule is a path in the product automaton )
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Analyzing timed automata

x<2, x:=0 X=0 A
C xX= C)/ Y y>2
y:=0 AN )C C
y>2, y:=0

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Analyzing timed automata
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Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction
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Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
y:=0
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

o Efficient symbolic technics based on zones, implemented in tools

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Timed automata

An example [AD94]

y=1,b x<1,c \ x<1,c
x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0 y
S0
—_—
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, b b ——e
y i |/|
/ * : x
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Timed automata

How to model uncertainty over delays?

@ Using timed games

x=2 x=3
done done
add mult

(x=2) x:=0 x:=0 x<3)
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Timed automata

How to model uncertainty over delays?

@ Using timed games

x>1 x>1
-~ " done “" “done "+
add mult
(x<2) x:=0 x:=0 x<3)
@ Using stochastic delays
x>1

done done

1 (x<2)
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Existing models?

Models based on timed automata

@ Probabilistic timed automata [KNSS99]
~» only discrete probabilities over edges
o Continuous probabilistic timed automata [KNSSO0Q]
~ resets of clocks are randomized, but only few results

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR'00).
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Existing models?

Models based on timed automata

@ Probabilistic timed automata [KNSS99]
~» only discrete probabilities over edges
o Continuous probabilistic timed automata [KNSSO0Q]
~ resets of clocks are randomized, but only few results

Other related models | was not familiar with in 2006
e Continuous-time Markov chains (CTMCs)
o Generalized semi-Markov processes (GSMPs)
@ Process algebras (like Modest) [DK05,BDHKO06] |

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR’00).
[DKO5] D'Argenio, Katoen. Stochastic timed automata, Part | and Part Il (Information and Computation).

[BDHKO06] Bohnenkamp, D'Argenio, Hermanns, Katoen. MODEST: A compositional modeling formalism for hard and softly timed systems (IEEE

Trans. Software Engineering).
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Stochastic timed automata

Our choice of stochastic timed automata

@ Based on the standard timed automata model

o Model largely adopted for real-time systems

o Enjoys efficient verification algorithms and corresponding
implementations

e We understand it well!

@ Randomize delays

@ We believe this is an interesting model for systems integrating both:

o real-time constraints
e randomized aspects
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Stochastic timed automata

How does a STA look like?

25

repairing

repair
2<yAx<56
y:=0
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0O
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®)
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o Example:

x<2, e x<5, e
0O

y:=0 y=>1 O
X§3, €4
O

F(Sogg):{SOEQSl%SQ | 71 <2, 11+ 7 <5, TQZ].}

@ Idea: compute the probability of a symbolic path

From state s:

s/ =g
e randomly choose a delay
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o then randomly select an edge
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Formalization of the semantics
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Formalization of the semantics

P(r(s - 2)) = /e/( )pSH(el)IP’(Tr(st 2 5) dus(t)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

me(s o ) ={s 2% 5. % s | (71, ,Ta) EC)
@ Definition over sets of infinite runs:

o Cyl(me(s - ) ={o-0 |o€me(s - )}

o P(Cyl(me(s = -+ ) =P(me(s = -+ =)

e unique extension of P to the generated o-algebra
@ Property: P is a probability measure over sets of infinite runs
@ Example:

o Zeno(s LJ rw LJ Cw(WEWSM(S‘i*"'is))

MEN neN (ep,--- ,en)EEN
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Stochastic timed automata

An example of computation (with uniform distributions)

g, x=1 OO e, x<1 :
, 1 , x <2
o SRS P

(x<1) (x <2)

1

The probability of the symbolic path 7(sy ) is 1.
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An example of computation (with uniform distributions)

g, x=1 OO e, x<1 OO
e, x<1 e, x <2
—*$ — O oD
(x<1) o (x<2)

The probability of the symbolic path 7(sy ) is 1.

=)

' LP(n(s
P (7 (s 52, )) = / P (7 (s 2, ))dyis, () _|_/1 M(lf

/ / (P(W Atz (1 )) s (1)
e -

dpus, (1)
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Stochastic timed automata

An example of computation (with exponential distrib.)

e, x >1 OO e, x>1 :
e, x <1 [ e3, x <2
— O )
x:=0 ~
rate 2 rate 3

The probability of the symbolic path 7(s; =5-=) is e=3 — e~ &~ 0.043
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An example of computation (with exponential distrib.)

60,X21 OQ 62,X21 :C
e, x <1 / €3, x <2
—_
é Py O Q)
rate 2 rate 3

The probability of the symbolic path 7(s; =5-=) is e=3 — e~ &~ 0.043

1

1
P(r(so 22)) :/0 P(7(sy =) dps (1) :/0 P(m(s1 = ))2exp(—2t)dt

= /01 (/1+<>0 3exp(—3u)du) 2 exp(—2t)dt

= [~ exp(—2t)],_q - [~ exp(—3u)] .5

=(1-e?-e3=e3-¢"°
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Some remarks

@ This defines a purely stochastic process

@ Continuous-time Markov chains = STA with a single “useless” clock
which is reset on all transitions. The distributions on delays are
exponential distributions with a rate per location

o Finite-state generalized semi-Markov processes (residual-lifetime
semantics) are STAs (if no fixed-delay events)

@ Allows to express richer timing constraints
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Decidability

Almost-sure model-checking

We are interested in (automatic) model-checking algorithms!

@ Qualitative model-checking: decide whether

P({o € Runs(s) | e = ¢}) =1

We write s k¢ ¢ whenever it is the case.
This is the almost-sure model-checking problem.

e Quantitative model-checking: compute (or approximate) the value

P({o € Runs(s) | o = ¢})
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Almost-sure model-checking

We are interested in (automatic) model-checking algorithms!

@ Qualitative model-checking: decide whether

P({o € Runs(s) | e = ¢}) =1

We write s k¢ ¢ whenever it is the case.
This is the almost-sure model-checking problem.

e Quantitative model-checking: compute (or approximate) the value

P({o € Runs(s) | o = ¢})

In this talk we focus on
the almost-sure model-checking problem. J

23/43
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An example

e, x<1 o x<1

' e, x<1 e, x>3, x:=0
_> @ vl @
(<1) (x<1) (x<1)
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Decidability

An example

e, x<1 e7, x<1
' o, x<1 e, x>3, x:=0
e, x=0
~ e 0 @
(x<1) (x<1) (x<1)
&, x=1 e, x<1

A = G(green = Fred) but P(A k= G(green = Fred)) =1

Indeed, almost surely, paths are of the form efeg(e4e5)w
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The classical region automaton
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Decidability

The pruned region automaton

.. viewed as a finite Markov chain MC(A)
It holds as well that:

P(MC(A) = G(green = Fred)) =1

When is that the case that

P(AE¢) =1 iff P(MC(A)E¢) =17

25/43



Decidability

A counter-example

e, y<1 /z\ e, y=1
N\ y:=0

ey, y=2 e3, I<y<?2
() ()
y:=0 A/

y<1 y<1

e, x>1
x:=0 x:=0
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Decidability

A counter-example

&, y=2 VoYl 1<y<2 A\ y<1 f e, y=1

y:=0

y<1
€, x>1

x:=0 x:=0

The pruned region automaton viewed as a finite Markov chain MC(A):

<—|€3,rX 12)|<—|€0,{0}><01)|—>|Z1,r)< 01)|—>

es €

¢ = (GF green) A (GF red)
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Decidability

A counter-example

e, y=2 /?\ e3, 1<y<2 N\ e, y<1 f e, y=1

y:=0

y<1
€, x>1

x:=0 x:=0

The pruned region automaton viewed as a finite Markov chain MC(A):

<—|e37rx (1 2)|<—|€07{0}>< (© 1)|—>|z17rx %(0 1)|—> £,rx {1}

es €

v = (GF green) A (GF red)
We clearly have that P(MC(A) =¢)=1 BUT PAEy¢)<1
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Decidability

A counter-example |
e, y=2 @ e3, I<y<?2 rz\ e, y<1 f.\ e, y=1
y:=0 u

o

y<1

x:=0 x:=0

The pruned region automaton viewed as a finite Markov chain MC(A):

[4rx(2) |<e4—|z3,rxx(1,2)|<e3—|zo,{o}x(o,1)|i>|£1,rxx(o,1)|—ez>J 0,rox {1} |
/ \

€5 €

¢ = (GF green) A (GF red)

Let y, be the value of y at the n'" arrival in 4

yn <1 and Yn < Ynt1
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Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)E¢)=1

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
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Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)E¢)=1

Theorem

Let A be a STA and ¢ an w-regular property.
If P(A k= fair) = 1 then

P(AEy) =1 iff P(MC(A) ) =1

Fairness is a semantic condition:

every thick edge of the region graph which is enabled
infinitely often is taken infinitely often

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).



Decidability

Main decidability results [BBB+14]

Theorem
Let A be a STA and ¢ a safety property. Then:

P(AE¢) =1 iff P(MC(A)Ey¢)=1

Theorem

Let A be a STA and ¢ an w-regular property.
If P(A [= fair) = 1 then

PAEe) =1 iff P(MC(A)kEy)=1

@ Proof based on a topology over the set of paths
@ Notions of largeness (for proba 1) and meagerness (for proba 0)

@ Link between probabilities and topology thanks to the topological
games called Banach-Mazur games

[BBB-+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifiski. Stochastic timed automata (Logical Methods in Computer Science).
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Decidability

Almost-sure fairness?

@ Finite Markov chains are almost-surely fair
Decisive Markov chains are almost-surely fair

PFTVFT)=1

[ABMO7] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science).
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Decidability

Almost-sure fairness?

@ Finite Markov chains are almost-surely fair
Decisive Markov chains are almost-surely fair

PFTVFT)=1

@ Are STA almost-surely fair? No!
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Decidability

Results [BBB-+14|

Theorem

The following classes of STAs are almost-surely fair:
@ single-clock STAs
o (weak-)reactive STAs

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifski. Stochastic timed automata (Logical Methods in Computer Science).
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Decidability

Results [BBB-+14|

Theorem

The following classes of STAs are almost-surely fair:
@ single-clock STAs
o (weak-)reactive STAs

(Note: CTMCs are reactive STAs)

Reactive: for every s = (¢, v), I(s) = R, and constant distributions
within a location

Corollary

The almost-sure model-checking of w-regular properties in single-clock
(resp. reactive) STAs can be decided in NLOGSPACE (resp. PSPACE).
The almost-sure model-checking of of LTL properties in single-clock or
reactive STAs can be decided in PSPACE.

[BBB-+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifiski. Stochastic timed automata (Logical Methods in Computer Science).
29/43



Decidability

Ingredients of the proofs

@ Proof for single-clock STAs:

o Technical analysis of single-clock STAs
o Fairness over compact subsets of R4
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Decidability

Ingredients of the proofs

@ Proof for single-clock STAs:

o Technical analysis of single-clock STAs
o Fairness over compact subsets of R4

@ Reactive STAs:

o There exists € > 0 such that for all s, us(JM, +o0[) > €
o Notion of memoryless region: for every x, either x =0 or x > M
o Borel-Cantelli lemma

Assume (€, P) is a probabilistic space, and that the
measurable events (Ex)ken are independent. If

ZTP(Ek) = +o00, then

keN

(nus) -

neN k>n
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@ The set of Zeno behaviours is measurable:
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* x<1 @ g
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Decidability

A note on Zeno behaviours

@ The set of Zeno behaviours is measurable:

Zeno(s U ﬂ U Cyl(r(s & - =)

MEN neN (e, e,)€EN

@ In single-clock timed automata, we can decide in NLOGSPACE
whether P(Zeno(s)) = 0:
o check whether there is a purely Zeno BSCC in MC(.A)

v N
* x<1 @ g

e an interesting notion of non-Zeno timed automata
x<1, x:=0

g

@ In reactive STAs, Zeno behaviours have probability 0
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Outline

© Composition
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Composition

Challenge: compositional design of STA

Problematic

componentwise description of systems involving timed
constraints and stochastic uncertainties
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Composition

Challenge: compositional design of STA

Problematic

componentwise description of systems involving timed
constraints and stochastic uncertainties

How can we compose STAs?

o First step: a parallel composition operator
@ Second step: add interaction

o Game extensions studied so far not adequate [BF09,BS12]
e Planned solution: interaction a /a Interactive Markov Chains [Her02]
Note: inspiring discussion in [HK09]

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).

[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).

[HKO09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO'09). y
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A quick look at CTMCs

A dual representation of CTMCs...

@ Exit rates r(-) of states
(parameters of the exp. distributions)
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A quick look at CTMCs

Composition

A dual representation of CTMCs...

e Exit rates r(-) of states
(parameters of the exp. distributions)

@ Time-abstract rates R(-,-) of edges
R(s0,51) = r(s0) - p(s0, 1)
@ r(sp) is the rate of the min. distrib. of
rates R(sp, s1) and R(sy, o)

. which allows some computations
@ The probability to move from sy to s;

within [0, t] is:
R(So, 51)

(1 - e(—r(%) - 1)
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If (s,s;) wins, the system moves to (s;, q)
There is a new race between edges from s; and (q, q’) again
Correct since exp. distrib. are memoryless!
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If (s,s;) wins, the system moves to (s;, q)

There is a new race between edges from s; and (q, q’) again
Correct since exp. distrib. are memoryless!

If X is a r.v. following an exp. distrib.

Prob(X > t+t' | X > t) = Prob(X > t')
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Composition

Composition of CTMCs made easy
9 4% @

Race between (s, s1), (s,5) and (q,q’)

If (s,s;) wins, the system moves to (s;, q)

There is a new race between edges from s; and (q, q’) again
Correct since exp. distrib. are memoryless!

If X is a r.v. following an exp. distrib.

Prob(X > t+t' | X > t) = Prob(X > t')
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Composition

How does that extend to STAs?

Difficulties
@ we have to handle guards

@ we have to compose more general continuous distributions
~» should represent a race between the components

@ we want to preserve the structure of the product automaton

@ the product should be “interleaving”
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Composition

An example where everything goes well

Unif. distrib. over [a, b]
Unif @ Density function:

OO0
if
f(t):{o ift<aort>b

L fa<t<b

b—a

. c<y<d
@ e @ Cumulative function:

F(t) = / f(t)dt

d<t
0 ift<a

= =2 ifa<t<b
1 ift>b
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Composition

An example where everything goes well

Assume xp < a and yp < ¢ are s.t.

Unif ap=a—xgp b—xo=ho
e —
a<x<b _—
Unif
(w)=r=5
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Composition

An example where everything goes well

Assume xp < a and yp < ¢ are s.t.

ap=a—xp b—xo=bo

Unif

R
a<x<b

@ Distrib. over delays: min. of the two distrib.

Uﬂnif c<y<d II over delays (race). lts density is:
.—> 0 if t <agort> by
onJo(t) = boiao ifag<t<oco
do-+bo—2t if oo < t < by

(bo—a0)-(do—co)
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Composition

An example where everything goes well

Unif
O ©
Unif
()=o)

Assume xp < a and yp < ¢ are s.t.

apg=a—Xp b—Xo:bg
—
©=c—yo d—yo=dp

@ Distrib. over delays: min. of the two distrib.
over delays (race). Its density is:

0 if t <<agort> by
&o,yo(t) = boiao ifag<t<c
__dotbo—2t  if o < t< by

(bo—a0)-(do—co)

@ Discrete proba. on edges within [co, bo]:
proba. that the component has won the race

by —t res dy—t
do+bo—2t’ p.do+b0—2t

for the bottom, resp. top, edge.
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A component should not be impacted by the other’s actions!
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Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!
@ In the product:

Po, 9o Po, g1 Po, G2

~> The sum of the delays in (po, qo), (po, g1) and (po, g2) should be
distributed (for the first component) as a single delay in po
~> We impose some weak-memorylessness condition on distrib.

Prob(X,v) > t+t | Xie,vy > t) = Prob(X,v+¢) > t')
(Xe,vy: r.v. for delays from config. (¢, v))
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Composition

What could go wrong?
A component should not be impacted by the other’s actions!

@ The first automaton is blocking the second!

x<1
e OREC
Unif Exp

~> We should assume automata are almost-surely non-Zeno!!
@ In the product:

Po, 9o Po, g1 Po, G2

~> The sum of the delays in (po, qo), (po, g1) and (po, g2) should be
distributed (for the first component) as a single delay in po
~> We impose some weak-memorylessness condition on distrib.

Prob(Xe,v) >t4t | Xie,vy > t) = Prob(X,v+4) >t)

38/43
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What does the last weak-memorylessness condition mean?

PrOb( (e,v) >t+t |X(Zv >t)_PrOb( Zv+t)2t/)
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Composition

What does the last weak-memorylessness condition mean?

PrOb( (e,v) >t+t |X(Zv >t)_PrOb( Zv+t)2t/)

o It is satisfied by CTMCs, which are memoryless: X, ,) = X¢
o It is satisfied by GSMPs, (almost) by definition
@ A constraint on a time “fiber”:

Distrib. from v + t is that from v, under the condition
that t t.u. have already elapsed. J

Examples
o Exp()) distrib. from v implies Exp(})
distrib. from v +t

o Unif distrib. from v implies Unif
distrib. from v + t

e Any p in v can be transferred to some
winv+t

v
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is, use the law for the minimal delay
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@ Define distrib. over delays as a race between the components, that
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fnin(t) = f(t) - (1 — F2(t)) + fa(t) - (1 — Fi(t))

@ Compute discrete proba. as a combination of original discrete proba.
and of the likelihood that the given component wins the race
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Composition

Composing STAs: the recipe

@ Define distrib. over delays as a race between the components, that
is, use the law for the minimal delay

fnin(t) = f(t) - (1 — F2(t)) + fa(t) - (1 — Fi(t))

@ Compute discrete proba. as a combination of original discrete proba.
and of the likelihood that the given component wins the race

() Fi(e)
fmin(t)

W,'(f)

Theorem

When STAs are weak-memoryless and almost-surely non-Zeno, the above
recipe defines an internal parallel composition operator such that:

]P)A1H.A2(<pl A @2) = PA1(301) . PAz(@Z)
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Composition

Further nice and useful properties

Bisimulation (inspired by [DP03])

An extension of that for CTMCs can be defined: (¢, v) = (¢, V') if and
only if for every (measurable ) =-closed set C, for every
measurable set of delays /,

P((¢,v) 25 C) = B((¢, V') 25 )

[DP03] Desharnais, Panangaden. Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes
(Journal of Logic and Algebraic Programming).
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Composition

Further nice and useful properties

Bisimulation (inspired by [DP03])

An extension of that for CTMCs can be defined: (¢, v) = (¢, V') if and
only if for every (measurable ) =-closed set C, for every
measurable set of delays /,

P((¢,v) 25 C) = B((¢, V') 25 )

Theorem
The bisimulation is a congruence w.r.t. parallel composition:

A = A; implies A1 || B= Ay || B

[DP03] Desharnais, Panangaden. Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes
(Journal of Logic and Algebraic Programming).
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[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
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43/43



Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

o Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)

o Models with non-determinism studied so far not amenable to
composition [BF09,BS12]

o Use interaction, as done in interactive Markov chains [Her02,HK09]

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).
[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).
[HKO09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO'09).
43/43



Current challenges

Challenges

@ Algorithmics:

o More approximation algorithms are to come
o Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

@ Componentwise modelling:

o Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)

o Models with non-determinism studied so far not amenable to
composition [BF09,BS12]

o Use interaction, as done in interactive Markov chains [Her02,HK09]

@ Compositional verification

[BFO9] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS'12).
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