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A story that started in 2006...
My background: timed automata

I was strolling around with Thomas Brihaye in Seattle (venue of
LICS’06), after having attended a very inspiring talk

“Temporal Logics and Model Checking for Fairly Correct Systems”
By Daniele Varacca and Hagen Völzer

We had in mind that this would be relevant to add probabilities to
timed automata

Why probabilities?
for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
for measuring system performance (time before failure, ...)
for modelling soft real-time delays

FSTTCS’07, LICS’08, QEST’08, QEST’12

72-pages LMCS journal paper

Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject

3/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

A story that started in 2006...
My background: timed automata

I was strolling around with Thomas Brihaye in Seattle (venue of
LICS’06), after having attended a very inspiring talk

“Temporal Logics and Model Checking for Fairly Correct Systems”
By Daniele Varacca and Hagen Völzer

We had in mind that this would be relevant to add probabilities to
timed automata

Why probabilities?
for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
for measuring system performance (time before failure, ...)
for modelling soft real-time delays

FSTTCS’07, LICS’08, QEST’08, QEST’12

72-pages LMCS journal paper

Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject

3/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

A story that started in 2006...
My background: timed automata

I was strolling around with Thomas Brihaye in Seattle (venue of
LICS’06), after having attended a very inspiring talk

“Temporal Logics and Model Checking for Fairly Correct Systems”
By Daniele Varacca and Hagen Völzer

We had in mind that this would be relevant to add probabilities to
timed automata

Why probabilities?
for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
for measuring system performance (time before failure, ...)
for modelling soft real-time delays

FSTTCS’07, LICS’08, QEST’08, QEST’12

72-pages LMCS journal paper

Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject

3/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

A story that started in 2006...
My background: timed automata

I was strolling around with Thomas Brihaye in Seattle (venue of
LICS’06), after having attended a very inspiring talk

“Temporal Logics and Model Checking for Fairly Correct Systems”
By Daniele Varacca and Hagen Völzer

We had in mind that this would be relevant to add probabilities to
timed automata

Why probabilities?
for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
for measuring system performance (time before failure, ...)
for modelling soft real-time delays

FSTTCS’07, LICS’08, QEST’08, QEST’12

72-pages LMCS journal paper

Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject

3/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

A story that started in 2006...
My background: timed automata

I was strolling around with Thomas Brihaye in Seattle (venue of
LICS’06), after having attended a very inspiring talk

“Temporal Logics and Model Checking for Fairly Correct Systems”
By Daniele Varacca and Hagen Völzer

We had in mind that this would be relevant to add probabilities to
timed automata

Why probabilities?
for modelling uncertainty (imprecisions in system inputs,
unpredictable delays)
for measuring system performance (time before failure, ...)
for modelling soft real-time delays

FSTTCS’07, LICS’08, QEST’08, QEST’12

72-pages LMCS journal paper

Pierre Carlier, joint PhD student between Mons and
Cachan, now works on that subject

3/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

Outline

1 Introduction

2 Timed automata

3 Stochastic timed automata

4 Decidability

5 Composition

6 Current challenges

4/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (CACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A schedule is a path in the product automaton
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Analyzing timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
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An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x
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How to model uncertainty over delays?

Using timed games

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

Using stochastic delays

idle+

(x≤2)

×
(x≤3)x :=0

add

x :=0

mult

1 21.5 1 32
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Existing models?

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS’99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR’00).

[DK05] D’Argenio, Katoen. Stochastic timed automata, Part I and Part II (Information and Computation).
[BDHK06] Bohnenkamp, D’Argenio, Hermanns, Katoen. MODEST: A compositional modeling formalism for hard and softly timed systems (IEEE
Trans. Software Engineering).

Models based on timed automata

Probabilistic timed automata [KNSS99]
; only discrete probabilities over edges

Continuous probabilistic timed automata [KNSS00]
; resets of clocks are randomized, but only few results

Other related models I was not familiar with in 2006

Continuous-time Markov chains (CTMCs)

Generalized semi-Markov processes (GSMPs)

Process algebras (like Modest) [DK05,BDHK06]
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Our choice of stochastic timed automata

Based on the standard timed automata model

Model largely adopted for real-time systems
Enjoys efficient verification algorithms and corresponding
implementations
We understand it well!

Randomize delays

We believe this is an interesting model for systems integrating both:

real-time constraints
randomized aspects
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How can we attach probabilities to delays?

The example of continuous-time Markov chains

exponential distribution

density function t 7→
{
λ · exp(−λt) if t ≥ 0
0 otherwise

; this is ok if delays are in [0,+∞)

But what if bounded intervals?

truncated normal distribution

I

uniform distribution
density function t 7→

ß
1
|I | if t ≥ 0

0 otherwise
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Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

How does a STA look like?

safe

0

alarm

0 16

repairing

22 25

failsafe

2 56−x

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25
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Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

Formalization of the semantics
π(s

e1−→ . . .
en−→ ): symbolic path from s firing edges e1, . . . , en

Example:
x≤2, e1

y :=0

x=1, e3

x≤5, e2

y≥1

x≤3, e4

π(s0
e1−→ e2−→) = {s0

τ1,e1−−−→ s1
τ2,e2−−−→ s2 | τ1 ≤ 2, τ1 + τ2 ≤ 5, τ2 ≥ 1}

Idea: compute the probability of a symbolic path

From state s:

randomly choose a delay

then randomly select an edge

then continue

ss

probability distribution
over delays

s ′ s ′′ . . .
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Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

Formalization of the semantics

symbolic path: π(s
e1−→ · · · en−→ ) = {s τ1,e1−−−→ s1 · · ·

τn,en−−−→ sn}

P
(
π(s

e1−→ · · · en−→ )
)

=

∫
t∈I (s,e1)

ps+t(e1)P
(
π(st

e2−→ · · · en−→ )
)
dµs(t)

I (s, e1) = {τ | s τ,e1−−→} and µs distribution over I (s) =
⋃
e
I (s, e)

ps+t distribution over transitions enabled in s + t

s
t−→ s + t

e1−→ st
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Formalization of the semantics

P
(
π(s

e1−→ · · · en−→ )
)

=

∫
t∈I (s,e1)

ps+t(e1)P
(
π(st

e2−→ · · · en−→ )
)
dµs(t)

Can be viewed as an n-dimensional integral

Easy extension to constrained symbolic paths

πC(s
e1−→ · · · en−→ ) = {s τ1,e1−−−→ s1 · · ·

τn,en−−−→ sn | (τ1, · · · , τn) |= C}

Definition over sets of infinite runs:

Cyl(πC(s
e1−→ · · · en−→ )) = {% · %′ | % ∈ πC(s

e1−→ · · · en−→ )}
P
(

Cyl(πC(s
e1−→ · · · en−→ ))

)
= P
(
πC(s

e1−→ · · · en−→ )
)

unique extension of P to the generated σ-algebra

Property: P is a probability measure over sets of infinite runs

Example:

Zeno(s) =
⋃
M∈N

⋂
n∈N

⋃
(e1,··· ,en)∈En

Cyl(πΣiτi≤M(s
e1−→ · · · en−→ ))
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An example of computation (with uniform distributions)

(x ≤ 1) (x ≤ 2)

e1, x ≤ 1

x := 0

e0, x = 1 e2, x ≤ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→) is 1

4 .

P
(
π(s0

e1−→ e2−→ )
)

=

∫ 1

0

P
(
π(s1

e2−→ )
)
dµs0 (t) +

∫ 1

1

P
(
π(s1

e2−→ )
)

2
dµs0 (t)

=

∫ 1

0

∫ 1

0

Ç
P
(
π(s2)

)
2

dµs1 (u)

å
dµs0 (t)

=

∫ 1

0

∫ 1

0

Å
1

2

du

2

ã
dt =

1

4
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An example of computation (with exponential distrib.)

rate 2 rate 3

e1, x ≤ 1

x := 0

e0, x ≥ 1 e2, x ≥ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→) is e−3 − e−5 ≈ 0.043

P
(
π(s0

e1−→ e2−→ )
)

=

∫ 1

0

P
(
π(s1

e2−→ )
)
dµs0 (t) =

∫ 1

0

P
(
π(s1

e2−→ )
)
2 exp(−2t)dt

=

∫ 1

0

Ç∫ +∞

1

3 exp(−3u)du

å
2 exp(−2t)dt

= [− exp(−2t)]1
t=0 · [− exp(−3u)]+∞

u=1

= (1− e−2) · e−3 = e−3 − e−5

20/43
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rate 2 rate 3

e1, x ≤ 1

x := 0

e0, x ≥ 1 e2, x ≥ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→) is e−3 − e−5 ≈ 0.043

P
(
π(s0

e1−→ e2−→ )
)

=

∫ 1

0

P
(
π(s1

e2−→ )
)
dµs0 (t) =

∫ 1

0

P
(
π(s1

e2−→ )
)
2 exp(−2t)dt

=

∫ 1

0

Ç∫ +∞

1

3 exp(−3u)du

å
2 exp(−2t)dt

= [− exp(−2t)]1
t=0 · [− exp(−3u)]+∞

u=1

= (1− e−2) · e−3 = e−3 − e−5
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Some remarks

This defines a purely stochastic process

Continuous-time Markov chains = STA with a single “useless” clock
which is reset on all transitions. The distributions on delays are
exponential distributions with a rate per location

Finite-state generalized semi-Markov processes (residual-lifetime
semantics) are STAs (if no fixed-delay events)

Allows to express richer timing constraints
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Almost-sure model-checking

We are interested in (automatic) model-checking algorithms!

Qualitative model-checking: decide whether

P
(
{% ∈ Runs(s) | % |= ϕ}

)
= 1

We write s |≈ ϕ whenever it is the case.
This is the almost-sure model-checking problem.

Quantitative model-checking: compute (or approximate) the value

P
(
{% ∈ Runs(s) | % |= ϕ}

)
In this talk we focus on

the almost-sure model-checking problem.
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An example

`0

(x≤1)

`1 `2

(x≤1)

`3

(x≤1)

e2, x≤1

e3, x=1

e4, x≥3, x :=0

e5, x≤1

e6, x=0

e1, x≤1 e7, x≤1

A 6|= G(green⇒ F red) but P
(
A |= G(green⇒ F red)

)
= 1

Indeed, almost surely, paths are of the form e∗1 e2

(
e4e5

)ω
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The classical region automaton

`0,0

`0,(0,1)

`0,1

`1,0

`1,(0,1)

`1,1

`2,0 `3,0

`3,(0,1)

`3,1

e1

e1

e1

e1

e1

e1

e2

e2

e2e2

e2

e2

e3

e4

e 4

e 4

e5

e5

e 5

e6

e7

e7

e7

e7

e7

e1

... viewed as a finite Markov chain MC (A)

It holds as well that:

P
(
MC (A) |= G(green⇒ F red)

)
= 1

When is that the case that

P
(
A |= ϕ

)
= 1 iff P

(
MC (A) |= ϕ

)
= 1 ?
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The pruned region automaton
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A counter-example

`0 `1 `2

y<1

`3`4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

The pruned region automaton viewed as a finite Markov chain MC (A):

`0,{0}×(0,1)`3,rx×(1,2)`4,rx×{2} `1,rx×(0,1) `2,rx×{1}
e3e4 e1 e2

e5 e0

ϕ ≡ (GF green) ∧ (GF red)
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`0,{0}×(0,1)`3,rx×(1,2)`4,rx×{2} `1,rx×(0,1) `2,rx×{1}
e3e4 e1 e2

e5 e0

ϕ ≡ (GF green) ∧ (GF red)

We clearly have that P(MC (A) |= ϕ) = 1 BUT P(A |= ϕ) < 1.
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A counter-example

`0 `1 `2

y<1

`3`4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

The pruned region automaton viewed as a finite Markov chain MC (A):

`0,{0}×(0,1)`3,rx×(1,2)`4,rx×{2} `1,rx×(0,1) `2,rx×{1}
e3e4 e1 e2

e5 e0

ϕ ≡ (GF green) ∧ (GF red)

Let yn be the value of y at the nth arrival in `0

yn < 1 and yn < yn+1
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Main decidability results [BBB+14]

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

Theorem
Let A be a STA and ϕ a safety property. Then:

P
(
A |= ϕ

)
= 1 iff P

(
MC (A) |= ϕ

)
= 1

Theorem
Let A be a STA and ϕ an ω-regular property.
If P
(
A |= fair

)
= 1 then

P
(
A |= ϕ

)
= 1 iff P

(
MC (A) |= ϕ

)
= 1
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(
A |= fair

)
= 1 then

P
(
A |= ϕ
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Fairness is a semantic condition:
every

thick

edge

of the region graph

which is enabled
infinitely often is taken infinitely often
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Main decidability results [BBB+14]

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

Theorem
Let A be a STA and ϕ a safety property. Then:

P
(
A |= ϕ

)
= 1 iff P

(
MC (A) |= ϕ

)
= 1

Theorem
Let A be a STA and ϕ an ω-regular property.
If P
(
A |= fair

)
= 1 then

P
(
A |= ϕ

)
= 1 iff P

(
MC (A) |= ϕ

)
= 1

Proof based on a topology over the set of paths

Notions of largeness (for proba 1) and meagerness (for proba 0)

Link between probabilities and topology thanks to the topological
games called Banach-Mazur games
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Almost-sure fairness?

[ABM07] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science).

Finite Markov chains are almost-surely fair

Decisive Markov chains are almost-surely fair

P
(
F T ∨ F ‹T) = 1

Are STA almost-surely fair?

No!
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Results [BBB+14]

[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

Theorem
The following classes of STAs are almost-surely fair:

single-clock STAs

(weak-)reactive STAs

(Note: CTMCs are reactive STAs)

Reactive: for every s = (`, v), I (s) = R+, and constant distributions
within a location

Corollary

The almost-sure model-checking of ω-regular properties in single-clock
(resp. reactive) STAs can be decided in NLOGSPACE (resp. PSPACE).
The almost-sure model-checking of of LTL properties in single-clock or
reactive STAs can be decided in PSPACE.
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[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

Theorem
The following classes of STAs are almost-surely fair:

single-clock STAs

(weak-)reactive STAs

(Note: CTMCs are reactive STAs)

Reactive: for every s = (`, v), I (s) = R+, and constant distributions
within a location

Corollary

The almost-sure model-checking of ω-regular properties in single-clock
(resp. reactive) STAs can be decided in NLOGSPACE (resp. PSPACE).
The almost-sure model-checking of of LTL properties in single-clock or
reactive STAs can be decided in PSPACE.

29/43



Introduction Timed automata Stochastic timed automata Decidability Composition Current challenges

Results [BBB+14]
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Ingredients of the proofs

Proof for single-clock STAs:

Technical analysis of single-clock STAs
Fairness over compact subsets of R+

Reactive STAs:

There exists ε > 0 such that for all s, µs(]M,+∞[) > ε
Notion of memoryless region: for every x , either x = 0 or x > M
Borel-Cantelli lemma

Assume (E ,P) is a probabilistic space, and that the
measurable events (Ek)k∈N are independent. If∑
k∈N

P(Ek) = +∞, then

P

(⋂
n∈N

⋃
k≥n

Ek

)
= 1 .
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A note on Zeno behaviours
The set of Zeno behaviours is measurable:

Zeno(s) =
⋃
M∈N

⋂
n∈N

⋃
(e1,··· ,en)∈E n

Cyl(π(s
e1−→ · · · en−→ ))

In single-clock timed automata, we can decide in NLOGSPACE
whether P

(
Zeno(s)

)
= 0:

check whether there is a purely Zeno BSCC in MC(A)

x
<

1x<
1

x<
1

x<1

x<
1

an interesting notion of non-Zeno timed automata

x≤1, x :=0

In reactive STAs, Zeno behaviours have probability 0
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Challenge: compositional design of STA

[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS’12).
[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).
[HK09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO’09).

Problematic
componentwise description of systems involving timed
constraints and stochastic uncertainties

How can we compose STAs?

Second step: add interaction

Game extensions studied so far not adequate [BF09,BS12]
Planned solution: interaction à la Interactive Markov Chains [Her02]
Note: inspiring discussion in [HK09]
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A quick look at CTMCs

s0

4

s1

7

s25

.25

.5
.5

1

.75

s0 s1

s2

1

3.5
3.5

5

3

A dual representation of CTMCs...

Exit rates r(·) of states
(parameters of the exp. distributions)

Time-abstract rates R(·, ·) of edges

R(s0, s1) = r(s0) · p(s0, s1)

r(s0) is the rate of the min. distrib. of
rates R(s0, s1) and R(s0, s0)

... which allows some computations

The probability to move from s0 to s1

within [0, t] is:

R(s0, s1)

r(s0)
· (1− exp(−r(s0) · t))
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Composition of CTMCs made easy

s

s1

s2

4

5

q q′
2

; s, q

s1, q

s2, q

s, q′

4

5

2

Race between (s, s1), (s, s2) and (q, q′)

If (s, si ) wins, the system moves to (si , q)

There is a new race between edges from si and (q, q′) again

Correct since exp. distrib. are memoryless!

If X is a r.v. following an exp. distrib.

Prob(X ≥ t + t ′ | X ≥ t) = Prob(X ≥ t ′)
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How does that extend to STAs?

Difficulties
we have to handle guards

we have to compose more general continuous distributions
; should represent a race between the components

we want to preserve the structure of the product automaton

the product should be “interleaving”
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An example where everything goes well

s0

Unif

s1
a ≤ x ≤ b

q0

Unif

q1
c ≤ y ≤ d

s0, q0

???

s1, q0

s0, q1

a ≤ x ≤
b

???

c ≤ y ≤ d

???

Assume x0 ≤ a and y0 ≤ c are s.t.

a−x0a0= b−x0=b0

c−y0c0= d−y0=d0

Distrib. over delays: min. of the two distrib.
over delays (race). Its density is:

fx0,y0 (t) =


0 if t < a0 or t > b0

1
b0−a0

if a0 < t < c0

d0+b0−2t
(b0−a0)·(d0−c0) if c0 < t < b0

Discrete proba. on edges within [c0, b0]:
proba. that the component has won the race

b0 − t

d0 + b0 − 2t
, resp.

d0 − t

d0 + b0 − 2t

for the bottom, resp. top, edge.
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What could go wrong?

A component should not be impacted by the other’s actions!

The first automaton is blocking the second!

p

Unif

x ≤ 1

q1

Exp

q2
y ≥ 2

; We should assume automata are almost-surely non-Zeno!!

In the product:

p0, q0 p0, q1 p0, q2

; The sum of the delays in (p0, q0), (p0, q1) and (p0, q2) should be
distributed (for the first component) as a single delay in p0

; We impose some weak-memorylessness condition on distrib.

Prob(X(`,v) ≥ t + t′ | X(`,v) ≥ t) = Prob(X(`,v+t) ≥ t′)

(X(`,v): r.v. for delays from config. (`, v))
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What does the last weak-memorylessness condition mean?

Prob(X(`,v) ≥ t + t ′ | X(`,v) ≥ t) = Prob(X(`,v+t) ≥ t ′)

It is satisfied by CTMCs, which are memoryless: X(`,v) = X`
It is satisfied by GSMPs, (almost) by definition

A constraint on a time “fiber”:

Distrib. from v + t is that from v , under the condition
that t t.u. have already elapsed.

y

x
v

v + t

Examples

Exp(λ) distrib. from v implies Exp(λ)
distrib. from v + t

Unif distrib. from v implies Unif
distrib. from v + t

Any µ in v can be transferred to some
µ′ in v + t
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Examples

Exp(λ) distrib. from v implies Exp(λ)
distrib. from v + t

Unif distrib. from v implies Unif
distrib. from v + t

Any µ in v can be transferred to some
µ′ in v + t
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Composing STAs: the recipe

Define distrib. over delays as a race between the components, that
is, use the law for the minimal delay

fmin(t) = f1(t) · (1− F2(t)) + f2(t) · (1− F1(t))

Compute discrete proba. as a combination of original discrete proba.
and of the likelihood that the given component wins the race

wi (t) =
fi (t) · (1− F3−i (t))

fmin(t)

Theorem
When STAs are weak-memoryless and almost-surely non-Zeno, the above
recipe defines an internal parallel composition operator such that:

PA1‖A2
(ϕ1 ∧ ϕ2) = PA1 (ϕ1) · PA2 (ϕ2)
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Further nice and useful properties

[DP03] Desharnais, Panangaden. Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes
(Journal of Logic and Algebraic Programming).

Bisimulation (inspired by [DP03])

An extension of that for CTMCs can be defined: (`, v) ≡ (`′, v ′) if and
only if for every (measurable and reasonable) ≡-closed set C , for every
measurable set of delays I ,

P
(
(`, v)

I ,E−−→ C
)

= P
(
(`′, v ′)

I ,E−−→ C
)

Theorem
The bisimulation is a congruence w.r.t. parallel composition:

A1 ≡ A2 implies A1 ‖ B ≡ A2 ‖ B
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Challenges

[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).
[BS12] Bertrand, Schewe. Playing optimally on timed automata with random delays (FORMATS’12).
[Her02] Hermanns. Interactive Markov chains: The quest for quantified quality (LNCS 2428).
[HK09] Hermanns, Katoen. The how and why of interactive Markov chains (FMCO’09).

Algorithmics:

More approximation algorithms are to come
Almost-sure model-checking of unfair STAs by analyzing
non-forgetful cycles

Componentwise modelling:

Add synchronization to the composition operator while preserving
the nice properties (e.g. congruence)
Models with non-determinism studied so far not amenable to
composition [BF09,BS12]
Use interaction, as done in interactive Markov chains [Her02,HK09]

Compositional verification

43/43
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