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@ Verification and game theory
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Computer programming

Computer programming is a difficult task
@ understand deeply the initial problem;
e find a solution;
@ write the program correctly.

Software bugs

@ It is an error, a failure in a computer program or system that induces
an incorrect result.

@ It may have catastrophic consequences.
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Software bugs

Bug example

In August 2005, a Malaysian Airlines MH124 (Boeing 777) that was on
autopilot suddenly ascended 2,000 feet.

Bug consequences

@ loss of confidence from users’ point of view,

@ loss of credibility from institutions’ point of view,
@ large financial loss,
°

human loss,. ..

= Real need to verify the correctness of a program! ]
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The model-checking approach to verification

?
Real system . Specification
plane, ... arrive safely,...
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The model-checking approach to verification

?
Real system ': [ Specification ]

plane, ... arrive safely,...

Algorithm

g;

YES/NO
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The autopilot case

Requirement: to arrive safely in every weather condition,
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The autopilot case

Requirement: to arrive safely in every weather condition,
while minimising the fuel consumption.
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Controlling computer systems

Real system (Buents)) e
Iane arrive safely,
A energy cons.,...

Environment weather, ...
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Controlling computer systems

Safe or (Quant.) Spec.
optimal arrive safely,
solution? | energy cons., ...

Real system
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Environment weather, ...

' Algorithm

Controller
strategy
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3
NO/YES + A controller

7/69



The autopilot case

Requirement: to arrive safely in every weather condition,
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The autopilot case

Requirement: to arrive safely in every weather condition,
taking into account the other planes,
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The autopilot case

Requirement: to arrive safely in every weather condition,
taking into account the other planes,
while minimising the fuel consumption.
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Controlling complex interactive computer systems

Real systems Quant. Spec.
planes,... energy cons.,...

Environment weather, ...
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Controlling complex interactive computer systems
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Environment weather, ...
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Controlling complex interactive computer systems

Real systems Optimal Quant. Spec.
| or stable
planes,... solution? energy cons.,...

Environment weather, ...

Equilibrium?

9/69



Controlling complex interactive computer systems
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Outline

© What is a game?
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Games we play for fun
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A broader sense: What is game theory?

Goal: Model and analyze (using mathematical tools)
situations of interactive decision making

[MSZ13] Maschler, Solan, Zamir. Game theory (Cambridge University Press) 12/69
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A broader sense: What is game theory?

Goal: Model and analyze (using mathematical tools)
situations of interactive decision making

Ingredients
@ Several decision makers (called players) L
o All with different goals Interactivity!

@ The decision of each players impacts the outcome for all

Wide range of applicability
“[...] it is a context-free mathematical toolbox”
Social science: e.g. social choice theory

Theoretical economics: e.g. models of markets, auctions
Political science: e.g. fair division

Biology: e.g. evolutionary biology

[MSZ13] Maschler, Solan, Zamir. Game theory (Cambridge University Press) 12/69



The prisoner dilemma

Two suspects are arrested by the police. The police, having
separated both prisoners, visit each of them to offer the same deal.

o If one testifies (Defects) for the prosecution against the other and
the other remains silent (Cooperates), the betrayer goes free and
the silent accomplice receives the full 10-year sentence.

o If both remain silent, both are sentenced to only 3 years in jail.

@ If each betrays the other, each receives a 5-year sentence.
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The prisoner dilemma

Two suspects are arrested by the police. The police, having
separated both prisoners, visit each of them to offer the same deal.

o If one testifies (Defects) for the prosecution against the other and
the other remains silent (Cooperates), the betrayer goes free and
the silent accomplice receives the full 10-year sentence.

o If both remain silent, both are sentenced to only 3 years in jail.
@ If each betrays the other, each receives a 5-year sentence.

How should the prisoners act?

Modelled as a matrix game
\ C D
¢l (=3-3) (-10,0)
D | (0,-10) (-5,-5)
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The Nim game

The rules (simplified version)

@ Two players, turn-based games
@ Initially, there are 8 matches

@ On each turn, a player must remove 1 or 2 matches

@ The player removing the last match wins the game
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The Nim game

The rules (simplified version)

@ Two players, turn-based games

@ Initially, there are 8 matches
@ On each turn, a player must remove 1 or 2 matches
@ The player removing the last match wins the game

Modelled as a game played on a graph

O OXO:
QIRIYRIRARS
Q?“,Q?“}f"@?“;

6 |
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Various models of games

Many models of games

Strategic games

Repeated games

°
@ Games played on graphs

@ Games played using equations
o

Many features
@ imperfect information
@ presence of randomness

@ continuous time
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Let us suppose that:

@ we have fixed a game,

@ we have identified an adequate model for this game.

The next natural question is:

What is a solution for this game?
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Outline

© A glimpse on strategic games
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Strategic games (aka matrix games, or one-shot games)

Strategic game

A strategic game G is a triple (Agt, Y, (gA)AeAgt) where:
@ Agt is the finite and non empty set of players,
@ Y is a non empty set of actions,
@ ga: X" — R is the payoff function of player A € Agt.
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Strategic games (aka matrix games, or one-shot games)

Strategic game

A strategic game G is a triple (Agt, Y, (gA)AeAgt) where:
@ Agt is the finite and non empty set of players,
@ Y is a non empty set of actions,
@ ga: X" — R is the payoff function of player A € Agt.

Example: Prisoner dilemma
° Agt = {Al, A2},
e ¥ ={C,D}
("]
| ¢ D
(gAlngz) is given by C (_37 _3) (_107 O)
D| (0,-10) (-—5,-5)
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Hypotheses made in classical game theory

Hypotheses
@ The players are intelligent (i.e. they reason perfectly and quickly)

@ The players are rational (i.e. they want to maximise their payoff)

@ The players are selfish (i.e. they only care for their own payoff)
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Optimality

Dominating profile
A profile b € £A¢ is dominating if

Ve e T VA e Agt  ga(c) < ga(b)
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Optimality

Dominating profile

A profile b € £A¢ is dominating if

Ve e T VA e Agt  ga(c) < ga(b)

e (B,L) is optimal!
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Strict domination

Stricly dominated action (or strategy)
An action by € ¥ is strictly dominated by cs € ¥ for player A € Agt if

Va_, € Yhe{A) ga(ba,a_a) <ga(ca,a_a)
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Strict domination

Stricly dominated action (or strategy)
An action by € ¥ is strictly dominated by cs € ¥ for player A € Agt if

Va_a € TheMAY  gu(ba,a_a) <ga(ca,a_a)

@ C is strictly dominated by D for player Aq;
@ C is strictly dominated by D for player A,.

The only rational issue of the game is (D, D)
whose payoff is (—5, —5).
(Even though this is sub-optimal)
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Stability: the concept of Nash equilibria

Nash equilibrium

Let (Agt, Y, (gA)AeAgt) be a strategic game and b € /& be a strategy
profile. We say that b is a Nash equilibrium iff

VA € Agt, Vda € ¥ s.t. ga(b_a, da) < ga(b)

A rational player should not deviate from the Nash equilibrium.

[Nash50] Equilibrium Points in n-Person Games (1950). 22/69
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Stability: the concept of Nash equilibria

Nash equilibrium

Let (Agt, Y, (gA)AeAgt) be a strategic game and b € /& be a strategy

profile. We say that b is a Nash equilibrium iff

VA € Agt, Vdj € ¥ s.t. gA(b—A7 dA) < gA(b)

@ (D,D) is the unique Nash equilibrium...

@ ... even if (C,C) would be better for both prisoners
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Stability: the concept of Nash equilibria

Nash equilibrium

Let (Agt, Y, (gA)AeAgt) be a strategic game and b € /& be a strategy

profile. We say that b is a Nash equilibrium iff

VA € Agt, Vdj € ¥ s.t. gA(b—A7 dA) < gA(b)

@ R dominates L (but not strictly)
@ (B,R) is not a Nash equilibrium, but (T,R) is a Nash equilibrium
@ (B,L) is optimal, hence a Nash equilibrium

[Nash50] Equilibrium Points in n-Person Games (1950). 22/69



Do all the finite matrix games have a Nash equilibrium?
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Do all the finite matrix games have a Nash equilibrium?

No! |
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Do all the finite matrix games have a Nash equilibrium?

No! |
The matching penny game
a b
a|(1,0) (0,1)

b | (0,1) (1,0)
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Mixed strategies

Given E, we denote A(E) the set of probability distributions over E.
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Mixed strategies

Mixed strategy
If X is the of actions (or strategies), A(X) is the set of mixed strategies. J
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Mixed strategies

Mixed strategy
If X is the of actions (or strategies), A(X) is the set of mixed strategies.

Expected payoff
Let 0 = (0a,,.-.,04,) be a mixed strategy profile. Let A € Agt:

ga(o) = > IT oa(ba) | gald)

b=(bA)A€Agt€ZAg" AGAgt

probability of b

is the expected payoff of player A.
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v
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Let 0 = (0a,,.-.,04,) be a mixed strategy profile. Let A € Agt:
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Mixed strategies

Mixed strategy
If X is the of actions (or strategies), A(X) is the set of mixed strategies.

Expected payoff

Mixed extension of game G

= def ~ .
G= (Agt,A(Z),(gA)AeAgt) is a game.

G has a mixed Nash equilibrium iff G has a Nash equilibrium. J
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Nash equilibria in mixed strategies

a b
(1,0) (0,1)
(0,1) (1,0)

The following profile is a Nash equilibrium in mixed strategies:

a
b

1

1 1
UA1:§‘a+§'b and UA2:§'8.+ b

N~

whose expected payoff is (3, 3).

[Nash50] Equilibrium Points in n-Person Games (1950). 25/69



Nash equilibria in mixed strategies

N =

O'A1

whose expected payoff is (3, ).

Nash Theorem [Nash50]

Any finite game admits mixed Nash equilibria.

[Nash50] Equilibrium Points in n-Person Games (1950).
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Best response

Best response

Let A € Agt and a_4 € Y e"\{A} be a strategy profile for A's opponents.
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Let A € Agt and a_4 € Y e"\{A} be a strategy profile for A's opponents.
We say that by € ¥ is a best response to a_, if

Veae X ga(ca,a—a) < ga(ba,a_n)

Example: Prisoner dilemma
| ¢ D
cl(=3,-3) (-10,0)
D (07_10) (_57_5)

A best response (for Prisoner 1) to C is
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Best response

Let A € Agt and a_4 € Y e"\{A} be a strategy profile for A's opponents.
We say that by € ¥ is a best response to a_, if

Veae X ga(ca,a—a) < ga(ba,a_n)

Example: Prisoner dilemma
| ¢ D
C|(=3,-3) (-10,0)
D | (0,—-10) (-5,-5)

A best response (for Prisoner 1) to C is D.
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Best response

Best response

Let A € Agt and a_, € XAe'\{A} be a strategy profile for A’s opponents.
We say that by € ¥ is a best response to a_p if

Veae X ga(ca,a_a) < ga(ba,a_n)

@ Best response correspondence of Player A

BR, : TAeMAY , p(X)

a_p — {ba| ba is a best response to a_x}
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Best response

Best response

Let A € Agt and a_, € XAe'\{A} be a strategy profile for A’s opponents.
We say that bs € ¥ is a best response to a_, if

Veae X ga(ca,a_a) < ga(ba,a_n)

@ Best response correspondence of Player A

BR, : TAeMAY , p(X)

a_a —> {ba| ba is a best response to a_a}
@ Best response correspondence of the game
BR: £/ — P(xhe)
a— H BRa(a_a)

AeAgt
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Best response and Nash equilibrium

Proposition
Let a be a strategy profile.

a is a Nash equilibrium if and only if a € BR(a)
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An example

| L R
T (]-v*l) (070)
B (0’0) (2772)
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An example

| L R
T (]-a 71) (0’0)
Bl (0,0) (2,-2)

A strategy consists in giving a probability distribution over {T,B} (resp.
{L,R}), that is, it consists in fixing the probability to play T (resp. L).

Assume

the expected payoff is:
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A strategy consists in giving a probability distribution over {T,B} (resp.
{L,R}), that is, it consists in fixing the probability to play T (resp. L).

Assume

the expected payoff is:

11y _ 7 11y _ 7
Ealan) T8 f\a2) T 3
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An example

| L R
T (1a 71) (070)
Bl (0,0) (2,-2)

In general, we have
op, =a-T+(l—a)-B and oa, =0-L+(1-p)-R

whose expected payoff is:
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An example

| L R
T (1a 71) (070)
Bl (0,0) (2,-2)

In general, we have
op, =a-T+(l—a)-B and oa, =0-L+(1-p)-R
whose expected payoff is:

gAl(Ow[j) = a(36_2)_26+2 = _gAQ(()é,ﬁ)
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An example

| L R
T (1a 71) (070)
Bl (0,0) (2,-2)

gAl(Oé?eB) = a(?’/B 72) 72ﬂ+2

BRA1 (/3) = {
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An example

| L R
T (1a 71) (070)
Bl (0,0) (2,-2)

gAl(avﬂ) = a(?’/B 72) 72ﬂ+2

(1} if38-2>0
BRAl(/3) =

|
|
|
|
|
0 1«
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An example

| L R
T (]-a 71) (070)
Bl (0,0) (2,-2)

gAl(a’ ﬂ) = a(?’/B - 2) - 2ﬂ +2

{1} if38-2>0
BR4,(3) =4 1[0,1] if38—2=0

I
I
I
I
I
0 1« 0 1 @
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An example

| L R
T (]-a 71) (070)
Bl (0,0) (2,-2)

gAl(a’ 3) = 0[(3,8 - 2) - 2ﬂ +2
(1} if38-2>0
BRa(3) ={[0,1] if38-2=0
(0} if38-2<0

e —

|
|
| |
| |
| |
|
| |
L
0 1o 0 1a 0 1a
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An example

| L R
T (]-a 71) (070)
B| (0,0) (2,-2)

(1} if38-2>0 {1} if3a-2<0
BRa,(5) =14[0,1] if38—-2=0 BRA, () =< [0,1] if3a—2=0

{0} if38-2<0 {0} if3a—2>0

|

2
3

wIn
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An example

| L R
T (]-a 71) (070)
Bl (0,0) (2,-2)

Thus the following profile is an equilibrium in mixed strategies:

B d 2 L+1 R
. an O’AQZ—. —_
3 3

whose expected payoff is:

(5-3)
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Best response and Nash equilibrium

Proposition
Let a be a strategy profile.

a is a Nash equilibrium if and only if a € BR(a)
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Best response and Nash equilibrium

Proposition
Let a be a strategy profile.

a is a Nash equilibrium if and only if a € BR(a)

Nash Theorem [Nash50]

Any finite game admits mixed Nash equilibria.

Key ingredient of the proof: Brouwer's fixpoint theorem
Or simply Kakutani's fixpoint theorem
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Fixpoint theorems

Brouwer's fixpoint theorem

Let X C R" be a convex, compact and nonempty set. Then every
continuous function f: X — X has a fixpoint.

Kakutani's fixpoint theorem

Let X be a non-empty, compact and convex subset of R”. Let f: X — 2%
be a set-valued function on X with a closed graph and the property that
f(x) is non-empty and convex for all x € X. Then f has a fixpoint.
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Outline

@ Games on graphs
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Which games do we need for verification?

Methodology
@ Pick standard models used in model-checking
@ Expand them with interaction capabilities

~» Games played on graphs

o Several features in the graph: stochastic or deterministic
e Several options for interaction: turn-based vs concurrent, pure vs
mixed strategies
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Which games do we need for verification?

Methodology
@ Pick standard models used in model-checking
@ Expand them with interaction capabilities

~> Games played on graphs

o Several features in the graph: stochastic or deterministic
o Several options for interaction: turn-based vs concurrent, pure vs
mixed strategies

The Nim game modelled as a turn-based game
B O R

This is then just a matter of computing winning states J

(controller synthesis)
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Outline

@ Games on graphs
@ The general model

33/69



Multiplayer stochastic concurrent games

@ Graph with stochastic nodes
e Multiple players: Agt = {A1, Az, Az, ...}

o Concurrent moves: ajajas--- € L8 means that player A; played
ai, player A, played a, and player As played as, ...

o Payoff functions payoff, : V¥ — R for every A € Agt

A simple model for the medium access control problem [KNPS19]

WiW2 W1iw2
@} O
V5 W1W2

Y~~% )()Ca?’ Jt
AR t1t2 O/ \O
”‘, f \ /
41 N
1) U

W1W2 W1W2

4

[KNPS19] Kwiatkowska, Norman, Parker, Santos. Equilibria-based probabilistic model checking for concurrent stochastic games (FM'19).
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How do we play those games?

According to strategies! J
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How do we play those games?

According to strategies! J

What kind of strategies?

Mixed strategies
oa: V* — Dist(X)

After history h € V*, player A will play each action a € ¥ with
probability oa(h).
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How do we play those games?

According to strategies! J

What kind of strategies?
Mixed strategies
oa: V* — Dist(X)

/

Deterministic strategies
OA . VY — %

For every h € V*, ga(h) is a Dirac measure.
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How do we play those games?

According to strategies! J

What kind of strategies?

Mixed strategies
oa: V* — Dist(X)

Deterministic strategies Stationary strategies
opa: V¥ —> X% oa: V — Dist(X)

If h,h" € V* are s.t. last(h) = last(h’), then oa(h) = oa(h').
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How do we play those games?

According to strategies! )

What kind of strategies?

Mixed strategies
oa: V* — Dist(X)

— N

Deterministic strategies Stationary strategies
opa: V¥ —> X% oa: V — Dist(X)

\ /

Memoryless strategies
oa: V=X
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How do we play those games?

According to strategies! )

What kind of strategies?

Mixed strategies
oa: V* — Dist(X)

— N

Deterministic strategies Stationary strategies
opa: V¥ —> X% oa: V — Dist(X)

\ /

Memoryless strategies
oa: V=X

Strategy profile o = (04) AcAgt J
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An example S A
0 O

V5‘ % WiWo R WiW2

IR tito OV \O

.
W TR o

) U
WiWo W1wW2

Strategy for player A;: oa,(h) = %t,- + %w,- if t; available; o;(h) = w;

otherwise.
1 AV 2
9 _.-7 0N =9
L +a 24 ~~"‘*
Vo 9 9 1 %)

3, W1 2 v 1 2 v 1
4y N4 3y 3 3y 3
Vs 73 i V3 V2 V3
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Payoffs

Given strategy profile o = (0a)acagt, the benefit p(A) of player A from
Vo is given by:
pa(o) = E7 (payoff,)
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Examples
@ ¢4 C V¥, and for p € V¥,

1 if
payoffa(p) = { 0 otﬁe);vié

Then, pa(o) = P7 (¢a).
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Payoffs

Given strategy profile o = (0a)acagt, the benefit p(A) of player A from
Vo is given by:
pa(o) = E7 (payoff,)

Examples
@ ¢4 C V¥, and for p € V¥,
1 ifpk=o
payoffa(p) = { 0 otﬁe);visé

Then, pa(o) =Py (¢a).

e payoff, is a quantitative function on V¢, for instance:

e a mean-payoff function
e a terminal-reward function

37/69
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@ Deterministic games
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Subclasses of interest
@ Turn-based games: V partitioned into all Vjy,'s

@ Deterministic games
If o is pure and the game is deterministic, then profile ¢ has a single
outcome out(c), and

pa(c) = payoff,(out(o))

38/69



Nash equilibrium in this setting

Nash equilibrium

A mixed (resp. pure) strategy profile ¢ = (0a)acagt is @ mixed (resp.
pure) Nash equilibrium if no player can improve her payoff by unilaterally
changing her strategy, that is, for every A € Agt, for every mixed (resp.
pure) deviation ¢,

EJ (payoff,) > Eo 74 (payoff )
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Nash equilibrium in this setting

Nash equilibrium

A mixed (resp. pure) strategy profile ¢ = (0a)acagt is @ mixed (resp.
pure) Nash equilibrium if no player can improve her payoff by unilaterally
changing her strategy, that is, for every A € Agt, for every mixed (resp.

pure) deviation o/,

EZ (payoff,) > B 74 (payoff )

Example
ba
— 0,0
S aa (that is, oa4,(v) = a) is a
Ko s (pure) Nash equilibrium
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Nash equilibrium in this setting

Nash equilibrium

A mixed (resp. pure) strategy profile ¢ = (0a)acagt is @ mixed (resp.
pure) Nash equilibrium if no player can improve her payoff by unilaterally
changing her strategy, that is, for every A € Agt, for every mixed (resp.

pure) deviation ¢,

EJ (payoff,) > Eo 74 (payoff )

Example — Matching penny

—
& % O'A:.(V()):.%'a+%'bisthe
& < unique (mixed) Nash

equilibrium
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@ There is no stationary
Nash equilibrium
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@ There is no stationary
Nash equilibrium
@ There is a pure Nash
equilibrium:
@ WVt~ C
o WVir1 — 1
° V[)V,'h = C
4 4 4
It has payoff (67 9> 6)
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Problems of interest

@ Universal existence:

Does there always exist a Nash equilibrium?
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Problems of interest

@ Universal existence:

Does there always exist a Nash equilibrium?

@ Existence problem:

Does there exist a Nash equilibrium?

@ Constrained existence problem:

Does there exist a Nash equilibrium
which satisfies some given constraint?

@ Synthesis of witness (simple?) profiles?

Do strategy profiles require randomness? Memory?
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Problems of interest

@ Universal existence:

Does there always exist a Nash equilibrium?

@ Existence problem:

Does there exist a Nash equilibrium?

@ Constrained existence problem:

Does there exist a Nash equilibrium
which satisfies some given constraint?

41/69



Does the standard theory apply?

o Nash theorem does not apply (requires a finite number of pure
strategies)
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Does the standard theory apply?
o Nash theorem does not apply (requires a finite number of pure
strategies)
@ But do the related fixed point theorems apply?

Kakutani's fixpoint theorem

Let X be a non-empty, compact and convex subset of R”. Let f: X — 2%
be a set-valued function on X with a closed graph and the property that
f(x) is non-empty and convex for all x € X. Then f has a fixpoint.
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Does the standard theory apply?
o Nash theorem does not apply (requires a finite number of pure
strategies)
@ But do the related fixed point theorems apply?

Kakutani's fixpoint theorem

Let X be a non-empty, compact and convex subset of R”. Let f: X — 2%
be a set-valued function on X with a closed graph and the property that
f(x) is non-empty and convex for all x € X. Then f has a fixpoint.

@ Usually it applies to the best-response operator: if ¢ € S (S is for
stationary profiles), then

BR(c) = {U’ €S|VA€EAgt, o) € argmaxaélegAEgo[A/U;‘/](payofFA)}
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A, We note (x1, x2) € [0, 1]? for the
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{oAl(vl) =x-1+(1—x1)c
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The first who leaves the loop loses! J
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The first who leaves the loop loses! J

e For every xi,x > 0, BR((x1, x2)) = (0,0)
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Does the standard theory apply?

A, We note (x1, x2) € [0, 1]? for the
profile o s.t.

{oAl(vl) =x-1+(1—x1)c
on(vn) =x-1+(1—x)-c

The first who leaves the loop loses! J

e For every xi,x > 0, BR((x1, x2)) = (0,0)
] BR((0,0)) = {(Xl,Xg) | X1,Xp > 0}

42/69



Does the standard theory apply?

We note (x1, x2) € [0, 1]? for the
profile o s.t.

{aAl(vl) =x-1+(1—x1)c
on(vn) =x-1+(1—x)-c

The first who leaves the loop loses! J

e For every xq, x> > 0, BR((x1, x2)) = (0,0)
e BR((0,0)) = {(x1,x2) | x1,x2 > 0}
@ The graph of BR is not closed
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Does the standard theory apply? No!

We note (x1, x2) € [0, 1]? for the
profile o s.t.

{aAl(vl) =x-1+(1—x1)c
on(vn) =x-1+(1—x)-c

The first who leaves the loop loses! J

For every x1,x > 0, BR((x1, x2)) = (0,0)
BR((0,0)) = {(xa, %) [ x1,2 > 0}

The graph of BR is not closed

Kakutani's theorem does not apply
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Does the standard theory apply? No!

A, We note (x1, x2) € [0, 1]? for the
profile o s.t.

{oAl(vl) =x-1+(1—x1)c
on(vn) =x-1+(1—x)-c

The first who leaves the loop loses! J

For every x1,x > 0, BR((x1, x2)) = (0,0)
BR((0,0)) = {(xa, %) [ x1,2 > 0}

The graph of BR is not closed

Kakutani's theorem does not apply

However there are infinitely many Nash equilibria:

all (0,x2) and (x1,0) with x;,x >0

42/69



No universal existence in general!

ba
@
—> 0
Q
)
N Q
’17'77 S

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games (CONCUR'11).
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No universal existence in general!

o By playing stationary strategy

on(v)=(1—¢€)-a+e-b,

ba Ao ensures payoff 1 — 2¢
@
—> 0
)
&S
- Q,
K ]
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No universal existence in general!

o By playing stationary strategy

on(v)=(1—¢€)-a+e-b,

ba Ao ensures payoff 1 — 2¢
O 0.0 @ Hence any Nash equilibrium would
—(vy) have payoff (—1,1)
0
&S
- Q,
K ]

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games (CONCUR'11).
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No universal existence in general!

o By playing stationary strategy

O’AQ(Vo):(l—E)'a—FG-b,

ba A; ensures payoff 1 — 2¢
O 0.0 @ Hence any Nash equilibrium would
—(vy) have payoff (—1,1)

o If A, plays a forever, then A; will play
& & b forever, yielding payoff (0, 0), which
is not a Nash equilibrium
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No universal existence in general!

o By playing stationary strategy

on(v)=(1—¢€)-a+e-b,

ba A; ensures payoff 1 — 2¢
O 0.0 @ Hence any Nash equilibrium would
—(vy) have payoff (—1,1)

o If A, plays a forever, then A; will play

& & b forever, yielding payoff (0, 0), which
is not a Nash equilibrium

o If A, plays b with some positive
probability p at some round (first time
this occurs), then by playing b before
and a at that precise round, A; can
ensure payoff p > 0

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games (CONCUR'11). 43/69



No universal existence in general!

o By playing stationary strategy

on(v)=(1—¢€)-a+e-b,

ba A; ensures payoff 1 — 2¢
O 0.0 @ Hence any Nash equilibrium would
—(vy) have payoff (—1,1)

o If A, plays a forever, then A; will play
& & b forever, yielding payoff (0, 0), which
is not a Nash equilibrium

o If A, plays b with some positive
probability p at some round (first time
this occurs), then by playing b before
and a at that precise round, A; can
ensure payoff p > 0

~» There is no Nash equilibrium!

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games (CONCUR'11). 43/69



Outline

@ Games on graphs

@ Focus on a simple scenario
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We focus on a simple scenario

Restrictions
o Turn-based games
o Payoffs given by w-regular objectives: ¢4 objective of player A € Agt

@ Pure strategy profiles

©

S
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We focus on a simple scenario

Restrictions
o Turn-based games
o Payoffs given by w-regular objectives: ¢4 objective of player A € Agt

@ Pure strategy profiles

©

is a Nash equilibrium with payoff

© (0,1,0)
S

©
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We focus on a simple scenario

Restrictions
o Turn-based games
o Payoffs given by w-regular objectives: ¢4 objective of player A € Agt

@ Pure strategy profiles

0—o—°

@ is not a Nash equilibrium

<>\©
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A simple characterization for w-regular objectives

Player [ loses along that play

¢a: objective of player A
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A simple characterization for w-regular objectives

D Player [ loses along that play

1
Y
¢a: objective of player A
Player 1

should lose
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A simple characterization for w-regular objectives

D Player [ loses along that play

1
Y

" Coalition {O, 0} ™.
prevents [ from winning ™.,
(by determinacy)
threat/punishment strategy

¢a: objective of player A
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A simple characterization for w-regular objectives

D Player [ loses along that play

1
Y
¢a: objective of player A

Coalition {O, <}

..:"prevents [ from winning ™.,

where po labels [l-states and Wio0} is the set of winning states for the
coalition {O, <} for winning objective —¢p.
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A simple characterization for w-regular objectives

AN Player [ loses along that play

Y

Coalition {O, O}

" prevents [ from winning ™.

¢a: objective of player A

Main outcomes of Boolean Nash equilibria in turn-based games can be
characterized by an LTL formula:

one= A ("¢A = G(pa = XW{—A}))
AcAgt
where pa labels A-states and W|_ 4 is the set of winning states for the

coalition {—A} & Agt \ {A} against A for the objective 4. These sets
should be precomputed.
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A simple characterization for w-regular objectives

JD\ Player [ loses along that play

¢a: objective of player A v
Coalition {O, <>}

" prevents [ from winning ™.

Main outcomes of Boolean Nash equilibria in turn-based games can be
characterized by an LTL formula:

one= A\ (~0a = Glpoa = XW(_a))
AcAgt
where pa labels A-states and W|_ 4 is the set of winning states for the

coalition {—A} & Agt \ {A} against A for the objective 4. These sets
should be precomputed.

o

(valid for prefix-independent objectives)
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Decidability of the constrained existence problem

Constrained existence problem

Given two thresholds L, U € Q%, does there exists a Nash equilibrium o
such that for every A € Agt:

La < EY (payoffs) < Ua?

[UmmO08] Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games (FoSSaCS5'08). 47/69



Decidability of the constrained existence problem

Constrained existence problem

Given two thresholds L, U € Q%, does there exists a Nash equilibrium o

such that for every A € Agt:

La < EY (payoffs) < Ua?

Theorem [Umm08|

One can decide the pure constrained existence problem in finite

turn-based multiplayer games for w-regular objectives.

Examples of complexity results for single objectives:

Objectives || Reach. | Safety | Biichi | co-Biichi | Parity

Complexity NP-c. P-c.

NP-c.

Note: it extends to “w-regular” preference relations with a finite image.

[UmmO08] Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games (FoS$5aCS5'08).
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An example of NP-hardness result

By reduction from a SAT instance:

3
Y= /\ C,' with C,' = \/gid' ei,j S {Xl,_‘X17X27_‘X2> cee ,Xk,_‘Xk}

1<i<n j=1
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An example of NP-hardness result

By reduction from a SAT instance:

3
Y= /\ C,' with C,' = \/ 6,-71- ei,j S {Xl,_‘X17X27_‘X2a cee ’Xk,_‘Xk}

1<i<n j=1

X1 X2 Xk

0 A A P

X1 X2 Xk

o Player A; for clause C;, with objective to reach {¢;; | j =1,2,3}
@ Player A: reach the rightmost state
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An example of NP-hardness result

By reduction from a SAT instance:

3
Y= /\ C,' with C,' = \/ 6,-71- ei,j S {Xl,_‘X17X27_‘X2> cee ,Xk,_‘Xk}

1<i<n j=1

X1 X2 Xk

0 A A P

X1 X2 Xk

o Player A; for clause C;, with objective to reach {¢;; | j =1,2,3}
@ Player A: reach the rightmost state

 is satisfiable iff there is a Nash equilibrium with payoff 1
for everyone in the game J
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The universal existence problem: w-regular objectives

L

49/69



The universal existence problem: w-regular objectives

B O
Lo W&

_ 1 EHOO M

@ If O has a winning strategy from A, then O should play it forever
e Otherwise O plays any strategy, until (by chance) a new blue node,
for instance J, is visited, from which O has a winning strategy; O

then switches to such a winning strategy, forever
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The universal existence problem: w-regular objectives

/®\
@&@ ﬁk

o If the game proceeds through B and [ has a winning strategy from
B, then [ should play it forever

o If the game proceeds through B but [ has no winning strategy from
B, then [ should play any strategy, until (by chance) a new green
node, for instance H, is visited, from which [J has a winning
strategy; [ then switches to such a winning strategy, forever
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The universal existence problem: w-regular objectives

B R
S%Aﬁ%f%

@POmE @M

o If the game proceeds through C and < has a winning strategy from
C, then < should play it forever

o If the game proceeds through C but < has no winning strategy from
C, then < should play any strategy, until (by chance) a new red
node, for instance E, is visited, from which <> has a winning
strategy; < then switches to such a winning strategy, forever

49/69



The universal existence problem: w-regular objectives

B O
Lo W&

_ 1 EHOO M

@ Outside the main outcome, all players play the adequate threat or
punishment strategy: this is the coalition strategy that makes the
deviator lose (NB: determinacy required!)
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—> main outcome
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—> main outcome

possible deviation
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—> main outcome
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never taken

Questions:
@ why is it correct?
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o
@@Q@)@

—> main outcome
possible deviation
—— threat (or punishment) strategy

never taken

Questions:
@ why is it correct?
@ what immediate extension can be handled?
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The universal existence problem: w-regular objectives

Universal existence [Umm11]

In infinite-duration turn-based deterministic games on finite graphs with
w-regular objectives, there is always a pure Nash equilibrium. Moreover,
one can compute a witness.

[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (PhD thesis).
[LeR13] Le Roux. Infinite sequential Nash equilibrium (LMCS). 51/69



The universal existence problem

Universal existence [Umm11]

In infinite-duration turn-based deterministic games on finite graphs with
w-regular objectives, there is always a pure Nash equilibrium. Moreover,
one can compute a witness.

Universal existence [LeR13]

In infinite turn-based deterministic games with Borel measurable
countable preferences, with no ascending infinite chains, there is always a
pure Nash equilibrium.

[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (PhD thesis).
[LeR13] Le Roux. Infinite sequential Nash equilibrium (LMCS). 51/69



Outline

@ Games on graphs

@ Adding probabilities to the setting?
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Stochastic turn-based games

2 1
Oa§7§ A2 1,1’0
1
i A3z 3
0,55 =
1
l, 2
- 1§,
1
3 1 A1
o— 1,13
1
2 3
1,33
1
2
1,0,1

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS).
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Stochastic turn-based games

2 1
0.2,3 ] 4 1,1,0
1
A3 2
0,21 <_<> Along a Nash equilibrium where
1 pa, = 1
1 2
2 7 1
1,53
1
2 , M
2 13
'_> 1771’71
1
2 >
2 1
1a§7§
1
2
1,0,1
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Stochastic turn-based games

2 1
0.2,3 ] 4 1,1,0
1
A3 2
0,21 <_<> Along a Nash equilibrium where
1 pa, = 1
12 ® pa, +pa, =1
2 1.7.1
1878
1
2 1 A
2 13
'_> 1771’71
1
2 2
21
1a§7§
1
2
1,0,1
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Stochastic turn-based games

2 1
0.2,3 ] 4 1,1,0
1
A3 2
0,21 <_<> Along a Nash equilibrium where
1 pa, = 1
3 ? @ pa, +pa, =1
71
1,53 ® pa, > 5 and pa, >3
1
2 , M
2 13
'_> 1771’71
1
2 2
2 1
1,3:3
1
2
1,0,1

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS). 53/60



Stochastic turn-based games

2 1
0.3, —]A 1,1,0
1
A3 2
0,21 <_<> Along a Nash equilibrium where
1 pa, = 1
12 ® pa, +pa, =1
2 1.7 1 _2 _1
1878 @ pa, =% and pa, = 3
1
2 , M
2 13
'_> 1771’71
1
2 2
2 1
1,3:3
1
2
1,0,1
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Stochastic turn-based games

21
Oa§7§ A2 1,170
. 1
Az 2
0,2,1 <—<> n times Along a Nash equilibrium where
1 pa, = 1
12 ® pa, +pa, =1
2 1. 2.1 2 1
1878 ® ps, =35 and pa, = 3
2, 1¢1 _ 1
o, M ® pa, =3+ 135(5r — )
® 2 13
17 47 4
1
2 2
1.2 1 .
1373 n’ times
1
2
1,0,1

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS).
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Stochastic turn-based games

2 1
Oa§7§ A2 1,170
. 1
As 2
0,2,1 <—<> n times Along a Nash equilibrium where
1 pa, = 1
12 ® pa, +pa, =1
2 1. 2.1 2 1
’878 ® pa, =3 and pa, = 3
_2,1(1 _ 1
o, M ® pa, =3+ 135(5r — )
2 13 ~ n=n
. 171371
1
2 2
1.2 1 .
1373 n’ times
1
2
1,0,1

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS).
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Stochastic turn-based games

0.2 1
7373 1,0
% % <_<> n times Along a Nash equilibrium where
1 pa, = 1
12 ® pa, +pa, =1
._2> 1.7 1 2 1
’878 ® pa, =3 and pa, = 3
_ 2, 1.1 1
3 I ® pa, =3+ 15(57 — )
2 113 ~ n=n
._’ ' 40 4 .
1 One can simulate a two-counter
2 3 machine if we constrain pas, > 1!
1.2 1 .
133 n’ times
1
2
1,0,1

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS). 53/60



Stochastic turn-based games

Undecidability results [UW11]
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Stochastic turn-based games

Undecidability results [UW11]

@ The constrained existence problem for pure strategies in stochastic
turn-based games is undecidable.

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS). 53/69



Stochastic turn-based games

Undecidability results [UW11]

@ The constrained existence problem for pure strategies in stochastic
turn-based games is undecidable.

@ The constrained existence problem for mixed strategies in
deterministic turn-based games is undecidable.

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS).

53/69



Short summary for turn-based w-regular games

[UW11,Umm1l,LeR13]
@ There always exists a Nash equilibrium for Boolean w-regular
objectives

@ One can decide the constrained existence of a Nash equilibrium (and
compute one!)

@ One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (PhD thesis, RWTH Aachen University)
[LeR13] Le Roux. Infinite sequential Nash equilibrium (LMCS). 54/69



Short summary for turn-based w-regular games

[UW11,Umm1l,LeR13]
@ There always exists a Nash equilibrium for Boolean w-regular
objectives
@ One can decide the constrained existence of a Nash equilibrium (and
compute one!)
@ One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

v

~ this is why we will restrict to pure equilibria in det. games

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (PhD thesis, RWTH Aachen University)
[LeR13] Le Roux. Infinite sequential Nash equilibrium (LMCS). 54/69



Outline

@ Games on graphs

o Concurrent games
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Can this theory be extended to concurrent games?

— 0
& ? . . .
o 8 There is no universal existence, even
v \ for simple Boolean objectives.

56/69



Can this theory be extended to concurrent games?

— 0
& % : : .
o >4 There is no universal existence, even
v ® for simple Boolean objectives. J
0,1 1,0
ba ba
v 0,0 —(v 0,0
Q Q
~ ~
N Q N Q
q/ X 5 \w
-1,1 1,-1 0,1 1,0

There is no pure Nash equilibrium There is a pure Nash equilibrium

56/69



Can this theory be extended to concurrent games?

X % . . .
o 8 There is no universal existence, even
v ® for simple Boolean objectives.

ba ba
0171 OO,O
- - Vo
S &
- Q - Q

There is no pure Nash equilibrium There is a pure Nash equilibrium
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Existence becomes NP-hard
Hardness J

The existence problem is NP-hard for reachability objectives.

By reduction from a SAT instance:

3
Y= /\ C,' with C,' = \/E,"j E,-J S {Xl,—\Xl,Xg,—‘XQ7 . ,Xk,—|Xk}

1<i<n j=1

X1 X2 Xk

N

—[4 P

X1 X2 Xk

 is satisfiable iff there is a Nash equilibrium with payoff 1
for everyone in the game J
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Existence becomes NP-hard

Hardness

The existence problem is NP-hard for reachability objectives.

winning for A,

winning for A,_1

winning for A;

@ is satisfiable iff there is a Nash equilibrium in the game )

---------- N N
____ A A Al -
....... DG

X

N/
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Who is a suspect? Who knows what?

aaa @
(——()
bba

aab
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bba
aba @
aab

. aaa
Assume that the normal move is v — v»;

@ what does that mean if the game proceeds to v»?

o either player A; deviated alone (playing b instead of a);
o or both players A; and A; played b instead of a.

@ what does that mean if the game proceeds to v3?

o either player A, deviated alone (playing b instead of a);
o or As deviated alone (playing b instead of a).
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Who is a suspect? Who knows what?
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Everyone knows that A; is the deviator
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As; Ay knows the identity of the deviator;

aba @ o and so does Az
aab

A1 knows that the deviator is either Ay or
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Assume that the normal move is v — »;

@ what does that mean if the game proceeds to v»?

o either player A; deviated alone (playing b instead of a);
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aaa @ o susp((wo, v2), aaa) = {A;}

Everyone knows that A; is the deviator

@ baa @ o susp((vo, v3), aaa) = {Az, A3}

A1 knows that the deviator is either Ay or
As; Ay knows the identity of the deviator;

aba @ o and so does A3
aab o susp((vo, v1),aaa) = {Ar, A, As}

. aaa
Assume that the normal move is v — v»;

@ what does that mean if the game proceeds to v»?

o either player A; deviated alone (playing b instead of a);
. g

@ what does that mean if the game proceeds to v3?

o either player A, deviated alone (playing b instead of a);
o or As deviated alone (playing b instead of a).
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Construction of the suspect game abstraction

Two players: Eve (light)
Adam (dark)
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Vi
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{Ai}

Two players: Eve (light)
Adam (dark)
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Construction of the suspect game abstraction
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Construction of the suspect game abstraction
Vl
{A1,As}
V2
{A1,A2,A3}

Vi

{Al.AQ,A3}

v
{Ai}
v3
{A2,As}

Vo

{A1,A2,A3}

Two players: Eve (light)
Adam (dark)
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Correctness of the suspect game construction

Winning condition

A strategy C for Eve in the suspect game is winning for some o € RAgt if
the unique outcome of ¢ where Adam complies to Eve has payoff «, and
for every other outcome p of ¢, for every A € susp(p), payoff,(p) < aa.
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Correctness of the suspect game construction

Winning condition

A strategy ¢ for Eve in the suspect game is winning for some o € R”gt if
the unique outcome of ¢ where Adam complies to Eve has payoff «, and
for every other outcome p of ¢, for every A € susp(p), payoff,(p) < aa.

Correctness

Let o € R"€. There is a Nash equilibrium in the original game with
payoff « if and only if Eve has a winning strategy for « in the suspect
game.
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Players A;, A lose along that play
Agt

¢a: objective of player A As does not know whether

A1 or A, deviated; he should
u try to punish both
) (if A; deviated, A will help A3,

and conversely if A, deviated)

3 everyone knows A; deviated;
/ Ao and As will try to punish A;
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From an algorithmic point-of-view
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that there is no profitable deviation for A;)
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From an algorithmic point-of-view

@ In the orange part: compute the winner (Eve or Adam) of the
zero-sum game, where Eve's objective is ¢4, (Eve wants to show
that there is no profitable deviation for A;)

@ We remove the orange part, and replace the root vertex by a
winning state for the previously computed winner

@ In the yellow part: compute the winner (Eve or Adam) of the
zero-sum game, where Eve's objective is

(ﬁ(bAl A\ ﬁ¢A2) \Y Reach(winEve)

where wing,. is an already computed winning state for Eve

@ It is then just a matter to find an infinite play satisfying the
appropriate property

The approach can be extended to various settings! J
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Some results

Examples of complexity results

@ For single objectives:

Objectives

Reach. | Safety

Biichi

co-Biichi

Parity

Complexity

NP-c.

NP-c.

[BBMU15] Bouyer, Brenguier, Markey, Ummels. Pure Nash equilibria in concurrent deterministic games (LMCS)
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Objectives

Reach. | Safety | Biichi | co-Biichi | Parity

Complexity

NP-c.

P-c. NP-c. PNP_c.

@ For combinations of Biichi objectives:

Combinations

Subset

Lexico. | Count.

Bool. circuit

Complexity

P-c.

NP-.c

PSPACE-c.
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Some results

Examples of complex

ity results

@ For single objectives:

Objectives || Reach. | Safety | Biichi | co-Biichi | Parity

Complexity

NP-c.

P-c. NP-c. P'lT'P—c.

@ For combinations of Biichi objectives:

Combinations

Subset

Lexico. | Count.

Bool. circuit

Complexity

P-c.

NP-.c

PSPACE-c.

@ For combinations of reachability objectives:

Combinations

Subset

Lexico. | Count. | Bool. circuit

Complexity

NP-c.

PSPACE-.c

[BBMU15] Bouyer, Brenguier, Markey, Ummels. Pure Nash equilibria in concurrent deterministic games (LMCS) 63/69



Extensions of this approach

Partial information monitoring
@ Public signal [Bou18]
e Communication graphs [BT19]

[Boul8] Bouyer. Games on graphs with a public signal monitoring (FoSSaCS'18).

[BT19] Bouyer, Tomasset. Nash equilibria in games over graphs ipped with a ication hanism (MFCS'19).

[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS'16).

[COT18] Condurache, Oualhadj, Troquard. The complexity of rational synthesis for concurrent games (CONCUR'18). 64/69
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e Communication graphs [BT19]

Other solution concepts
@ Robust equilibria [Brel6]
@ Rational synthesis [COT18]
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Outline

© Conclusion
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Wrap-up

General objective

@ Import game theory solutions to the verification field, where
interactivity plays also a role
Ex: Distributed systems interacting in some environment
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Applications?

@ Smart grids: decentralized control of EV charging [GBLM19]

o stochastic setting
o ad-hoc approximated solutions

@ Cassting project: smart houses that produce energy with solar panels
[BDGHM16]

o deterministic setting
e setting with universal existence
e exact computation

@ PRISM-games: medium access control, Aloha protocol, robot
coordination, power control [KNPS19]
e stochastic setting
e approximated value iteration for computing e-SPE

[BDGHM16] Brihaye, Dhar, Geeraerts, Haddad, Monmege. Efficient energy distribution in a smart grid using multi-player games (Cassting'16)

[KNPS19] Kwiatkowska, Norman, Parker, Santos. Equilibria-based probabilistic model checking for concurrent stochastic games (FM'19).

[GBLM19] Gonzalez, Bouyer, Lasaulce, Markey. Optimisation en présence de contraintes en probabilités et processus markoviens contrdlés
(GRETSI'19) 67/69



Wrap-up

General objective
@ Import game theory solutions to the verification field, where
interactivity plays also a role
Ex: Distributed systems interacting in some environment
@ Relevant questions:

e assumptions made in the game theory field relevant?
e solution concepts adapted to the context?
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Wrap-up

General objective
@ Import game theory solutions to the verification field, where
interactivity plays also a role
Ex: Distributed systems interacting in some environment
@ Relevant questions:

e assumptions made in the game theory field relevant?
e solution concepts adapted to the context?

Nash equilibria in games on graphs

@ The setting of pure Nash equilibria in turn-based det. games rather
well-understood

@ Probabilistic setting much more complicated

@ Concurrent games: a rather generic approach based on the suspect
game construction

68/69



Going further?

More relevant solution concepts?

@ Temporal aspects weakens the concept of Nash equilibrium:
Will a rational agent/process focus on punishing a deviator, instead of
pursuing her own objective?

@ Another solution concept: subgame-perfect equilibrium
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