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Computer programming

Computer programming is a difficult task

understand deeply the initial problem;

find a solution;

write the program correctly.

Software bugs

It is an error, a failure in a computer program or system that induces
an incorrect result.

It may have catastrophic consequences.
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Software bugs

Bug example

In August 2005, a Malaysian Airlines MH124 (Boeing 777) that was on
autopilot suddenly ascended 2,000 feet.

Bug consequences

loss of confidence from users’ point of view,

loss of credibility from institutions’ point of view,

large financial loss,

human loss,. . .

⇒ Real need to verify the correctness of a program!
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The model-checking approach to verification

Real system
plane,...

Specification
arrive safely,...|=?

Abstract model
automaton,...

Logic formula
FO, LTL,...|=?

Algorithm

YES/NO

5/69



The model-checking approach to verification

Real system
plane,...

Specification
arrive safely,...|=?

Abstract model
automaton,...

Logic formula
FO, LTL,...|=?

Algorithm

YES/NO

5/69



The model-checking approach to verification

Real system
plane,...

Specification
arrive safely,...|=?

Abstract model
automaton,...

Logic formula
FO, LTL,...|=?

Algorithm

YES/NO

5/69



The autopilot case

Requirement: to arrive safely in every weather condition,
while minimising the fuel consumption.
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Controlling computer systems

Environment weather,...

Real system
plane,...

(Quant.) Spec.
arrive safely,

energy cons.,...

Safe or
optimal
solution?

Abstract model
game

Controller
strategy

Logic. formula
Quant. constraint|=?

Algorithm

NO/YES + A controller
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The autopilot case

Requirement: to arrive safely in every weather condition,
taking into account the other planes,
while minimising the fuel consumption.
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Controlling complex interactive computer systems

Environment weather,...

Real systems
planes,...

Quant. Spec.
energy cons.,...

Optimal
or stable
solution?

Abstract model
game

Payoff function

Multi-agent logic

Equilibrium?

Algorithm

NO/YES + An equilibrium
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Games we play for fun
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A broader sense: What is game theory?

[MSZ13] Maschler, Solan, Zamir. Game theory (Cambridge University Press)

Goal: Model and analyze (using mathematical tools)
situations of interactive decision making

Ingredients

Several decision makers (called players)

All with different goals

The decision of each players impacts the outcome for all

Interactivity!

Wide range of applicability

“[...] it is a context-free mathematical toolbox”

Social science: e.g. social choice theory

Theoretical economics: e.g. models of markets, auctions

Political science: e.g. fair division

Biology: e.g. evolutionary biology

...
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The prisoner dilemma

Two suspects are arrested by the police. The police, having
separated both prisoners, visit each of them to offer the same deal.

If one testifies (Defects) for the prosecution against the other and
the other remains silent (Cooperates), the betrayer goes free and
the silent accomplice receives the full 10-year sentence.

If both remain silent, both are sentenced to only 3 years in jail.

If each betrays the other, each receives a 5-year sentence.

How should the prisoners act?

Modelled as a matrix game

C D

C (−3,−3) (−10, 0)
D (0,−10) (−5,−5)
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The Nim game

The rules (simplified version)

Two players, turn-based games

Initially, there are 8 matches

On each turn, a player must remove 1 or 2 matches

The player removing the last match wins the game

Modelled as a game played on a graph

8 7 6 5 4 3 2 1 ,
7 6 5 4 3 2 1 ,
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Various models of games

Many models of games

Strategic games

Repeated games

Games played on graphs

Games played using equations

...

Many features

imperfect information

presence of randomness

continuous time

...
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Let us suppose that:

we have fixed a game,

we have identified an adequate model for this game.

The next natural question is:

What is a solution for this game?
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Strategic games (aka matrix games, or one-shot games)

Strategic game

A strategic game G is a triple
(

Agt,Σ, (gA)A∈Agt

)
where:

Agt is the finite and non empty set of players,

Σ is a non empty set of actions,

gA : ΣAgt → R is the payoff function of player A ∈ Agt.
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Strategic game

A strategic game G is a triple
(

Agt,Σ, (gA)A∈Agt

)
where:

Agt is the finite and non empty set of players,

Σ is a non empty set of actions,

gA : ΣAgt → R is the payoff function of player A ∈ Agt.

Example: Prisoner dilemma

Agt = {A1,A2},
Σ = {C, D}

(gA1 , gA2 ) is given by
C D

C (−3,−3) (−10, 0)
D (0,−10) (−5,−5)
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Hypotheses made in classical game theory

Hypotheses

The players are intelligent (i.e. they reason perfectly and quickly)

The players are rational (i.e. they want to maximise their payoff)

The players are selfish (i.e. they only care for their own payoff)
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Optimality

Dominating profile

A profile b ∈ ΣAgt is dominating if

∀c ∈ ΣAgt ∀A ∈ Agt gA(c)≤ gA(b)

L R

T (0, 0) (2, 1)
B (3, 2) (1, 2)

(B, L) is optimal!
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Strict domination

Stricly dominated action (or strategy)

An action bA ∈ Σ is strictly dominated by cA ∈ Σ for player A ∈ Agt if

∀a−A ∈ ΣAgt\{A} gA(bA, a−A)< gA(cA, a−A)

C D

C (−3,−3) (−10, 0)
D (0,−10) (−5,−5)

C is strictly dominated by D for player A1;

C is strictly dominated by D for player A2.

The only rational issue of the game is (D, D)
whose payoff is (−5,−5).

(Even though this is sub-optimal)
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Stability: the concept of Nash equilibria

[Nash50] Equilibrium Points in n-Person Games (1950).

Nash equilibrium

Let
(

Agt,Σ, (gA)A∈Agt

)
be a strategic game and b ∈ ΣAgt be a strategy

profile. We say that b is a Nash equilibrium iff

∀A ∈ Agt, ∀dA ∈ Σ s.t. gA(b−A, dA) ≤ gA(b)

A rational player should not deviate from the Nash equilibrium.
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Let
(

Agt,Σ, (gA)A∈Agt

)
be a strategic game and b ∈ ΣAgt be a strategy

profile. We say that b is a Nash equilibrium iff

∀A ∈ Agt, ∀dA ∈ Σ s.t. gA(b−A, dA) ≤ gA(b)

L R

T (0, 0) (2, 1)
B (3, 2) (1, 2)

R dominates L (but not strictly)

(B, R) is not a Nash equilibrium, but (T, R) is a Nash equilibrium

(B, L) is optimal, hence a Nash equilibrium
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Do all the finite matrix games have a Nash equilibrium?

No!

The matching penny game

a b

a (1, 0) (0, 1)
b (0, 1) (1, 0)
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Mixed strategies

Given E , we denote ∆(E ) the set of probability distributions over E .

Mixed strategy

If Σ is the of actions (or strategies), ∆(Σ) is the set of mixed strategies.

Expected payoff

Let σ = (σA1 , . . . , σAn) be a mixed strategy profile. Let A ∈ Agt:

g̃A(σ) =
∑

b=(bA)A∈Agt∈ΣAgt

 ∏
A∈Agt

σA(bA)


︸ ︷︷ ︸

probability of b

gA(b)

is the expected payoff of player A.

Mixed extension of game G‹G def
=
(

Agt,∆(Σ), (g̃A)A∈Agt

)
is a game.

G has a mixed Nash equilibrium iff ‹G has a Nash equilibrium.
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Nash equilibria in mixed strategies

[Nash50] Equilibrium Points in n-Person Games (1950).

a b

a (1, 0) (0, 1)
b (0, 1) (1, 0)

The following profile is a Nash equilibrium in mixed strategies:

σA1 =
1

2
· a +

1

2
· b and σA2 =

1

2
· a +

1

2
· b

whose expected payoff is ( 1
2 ,

1
2 ).

Nash Theorem [Nash50]

Any finite game admits mixed Nash equilibria.

25/69



Nash equilibria in mixed strategies

[Nash50] Equilibrium Points in n-Person Games (1950).

a b

a (1, 0) (0, 1)
b (0, 1) (1, 0)

The following profile is a Nash equilibrium in mixed strategies:

σA1 =
1

2
· a +

1

2
· b and σA2 =

1

2
· a +

1

2
· b

whose expected payoff is ( 1
2 ,

1
2 ).

Nash Theorem [Nash50]

Any finite game admits mixed Nash equilibria.

25/69



Best response

Best response

Let A ∈ Agt and a−A ∈ ΣAgt\{A} be a strategy profile for A’s opponents.

We say that bA ∈ Σ is a best response to a−A if

∀cA ∈ Σ gA(cA, a−A) ≤ gA(bA, a−A)
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We say that bA ∈ Σ is a best response to a−A if

∀cA ∈ Σ gA(cA, a−A) ≤ gA(bA, a−A)

Best response correspondence of Player A

BRA : ΣAgt\{A} → P(Σ)

a−A → {bA | bA is a best response to a−A}

Best response correspondence of the game

BR : ΣAgt → P
(
ΣAgt

)
a→

∏
A∈Agt

BRA(a−A)
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Best response correspondence of Player A

BRA : ΣAgt\{A} → P(Σ)

a−A → {bA | bA is a best response to a−A}

Best response correspondence of the game

BR : ΣAgt → P
(
ΣAgt

)
a→

∏
A∈Agt

BRA(a−A)
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Best response and Nash equilibrium

Proposition

Let a be a strategy profile.

a is a Nash equilibrium if and only if a ∈ BR(a)
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An example

L R

T (1,−1) (0, 0)
B (0, 0) (2,−2)
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L R

T (1,−1) (0, 0)
B (0, 0) (2,−2)

A strategy consists in giving a probability distribution over {T, B} (resp.
{L, R}), that is, it consists in fixing the probability to play T (resp. L).

Assume

σA1 =
1

4
· T +

3

4
· B and σA2 =

1

2
· L +

1

2
· R

the expected payoff is:
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Assume

σA1 =
1

4
· T +

3

4
· B and σA2 =

1

2
· L +

1

2
· R

the expected payoff is:

gA1

(
1

4
,

1

2

)
=

7

8
gA2

(
1

4
,
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2

)
= −7

8
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An example

L R

T (1,−1) (0, 0)
B (0, 0) (2,−2)

In general, we have

σA1 = α · T + (1− α) · B and σA2 = β · L + (1− β) · R

whose expected payoff is:
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B (0, 0) (2,−2)

In general, we have

σA1 = α · T + (1− α) · B and σA2 = β · L + (1− β) · R

whose expected payoff is:

gA1 (α, β) = α(3β − 2)− 2β + 2 = −gA2 (α, β)
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An example

L R

T (1,−1) (0, 0)
B (0, 0) (2,−2)

gA1 (α, β) = α(3β − 2)− 2β + 2

BRA1 (β) =


{1} if 3β − 2 > 0

[0, 1] if 3β − 2 = 0

{0} if 3β − 2 < 0

α0 1 α0 1
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An example

L R

T (1,−1) (0, 0)
B (0, 0) (2,−2)

BRA1 (β) =


{1} if 3β − 2 > 0

[0, 1] if 3β − 2 = 0

{0} if 3β − 2 < 0

BRA2 (α) =


{1} if 3α− 2 < 0

[0, 1] if 3α− 2 = 0

{0} if 3α− 2 > 0

α

β

0 12
3

2
3
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An example

L R

T (1,−1) (0, 0)
B (0, 0) (2,−2)

Thus the following profile is an equilibrium in mixed strategies:

σA1 =
2

3
· T +

1

3
· B and σA2 =

2

3
· L +

1

3
· R

whose expected payoff is: (2

3
,−2

3

)
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Best response and Nash equilibrium

Proposition

Let a be a strategy profile.

a is a Nash equilibrium if and only if a ∈ BR(a)

Nash Theorem [Nash50]

Any finite game admits mixed Nash equilibria.

Key ingredient of the proof: Brouwer’s fixpoint theorem
Or simply Kakutani’s fixpoint theorem
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Fixpoint theorems

Brouwer’s fixpoint theorem

Let X ⊆ Rn be a convex, compact and nonempty set. Then every
continuous function f : X → X has a fixpoint.

Kakutani’s fixpoint theorem

Let X be a non-empty, compact and convex subset of Rn. Let f : X → 2X

be a set-valued function on X with a closed graph and the property that
f (x) is non-empty and convex for all x ∈ X . Then f has a fixpoint.
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Outline

1 Verification and game theory

2 What is a game?

3 A glimpse on strategic games

4 Games on graphs
The general model
Focus on a simple scenario
Adding probabilities to the setting?
Concurrent games

5 Conclusion
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Which games do we need for verification?

Methodology

Pick standard models used in model-checking

Expand them with interaction capabilities

; Games played on graphs

Several features in the graph: stochastic or deterministic
Several options for interaction: turn-based vs concurrent, pure vs
mixed strategies

The Nim game modelled as a turn-based game

,

This is then just a matter of computing winning states
(controller synthesis)
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Multiplayer stochastic concurrent games

[KNPS19] Kwiatkowska, Norman, Parker, Santos. Equilibria-based probabilistic model checking for concurrent stochastic games (FM’19).

Graph with stochastic nodes

Multiple players: Agt = {A1,A2,A3, . . . }
Concurrent moves: a1a2a3 · · · ∈ ΣAgt means that player A1 played
a1, player A2 played a2 and player A3 played a3, ...

Payoff functions payoffA : V ω → R for every A ∈ Agt

A simple model for the medium access control problem [KNPS19]

v0

v1

v2

v3

v5

v6

w1w2

w1w2

w1w2

w1w2

w1w2

w1w2

t1w2 w
1t

2

w
1t

2 t1w2

t1t2

3
4

1
4
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How do we play those games?

According to strategies!

What kind of strategies?

Mixed strategies
σA : V ∗ → Dist(Σ)

Deterministic strategies
σA : V ∗ → Σ

Stationary strategies
σA : V → Dist(Σ)

Memoryless strategies
σA : V → Σ

Strategy profile σ = (σA)A∈Agt
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Mixed strategies
σA : V ∗ → Dist(Σ)

Deterministic strategies
σA : V ∗ → Σ

Stationary strategies
σA : V → Dist(Σ)

Memoryless strategies
σA : V → Σ

After history h ∈ V ∗, player A will play each action a ∈ Σ with
probability σA(h).

Strategy profile σ = (σA)A∈Agt
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Mixed strategies
σA : V ∗ → Dist(Σ)

Deterministic strategies
σA : V ∗ → Σ

Stationary strategies
σA : V → Dist(Σ)

Memoryless strategies
σA : V → Σ

For every h ∈ V ∗, σA(h) is a Dirac measure.

Strategy profile σ = (σA)A∈Agt
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Mixed strategies
σA : V ∗ → Dist(Σ)

Deterministic strategies
σA : V ∗ → Σ

Stationary strategies
σA : V → Dist(Σ)

Memoryless strategies
σA : V → Σ

If h, h′ ∈ V ∗ are s.t. last(h) = last(h′), then σA(h) = σA(h′).

Strategy profile σ = (σA)A∈Agt
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An example

v0

v1

v2

v3

v5

v6
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w1w2

w1w2

w1w2

w1w2

w1w2

t1w2 w
1t

2

w
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2 t1w2

t1t2

3
4

1
4

Strategy for player Ai : σAi (h) = 1
3ti + 2

3wi if ti available; σi (h) = wi
otherwise.

v0

v0 v1 v2

1
9

2
9

2
9

4
9

v5 v6

3
4

1
4

...
v1 v3

2
3

1
3

v2 v3

2
3

1
3

...
...
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Payoffs

Given strategy profile σ = (σA)A∈Agt, the benefit p(A) of player A from
v0 is given by:

pA(σ) = Eσv0
(payoffA)

Examples

φA ⊆ V ω, and for ρ ∈ V ω,

payoffA(ρ) =

{
1 if ρ |= φA
0 otherwise

Then, pA(σ) = Pσv0
(φA).

payoffA is a quantitative function on V ω, for instance:

a mean-payoff function
a terminal-reward function
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Subclasses of interest
Turn-based games: V partitioned into all VAi ’s

v0
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v3
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1
3 , 0, 1

0, 1, 1
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1, 1
3 , 0

1
3

1
3

1
3

l

l

l

c

c

c

Deterministic games

If σ is pure and the game is deterministic, then profile σ has a single
outcome out(σ), and

pA(σ) = payoffA(out(σ))
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Nash equilibrium in this setting

Nash equilibrium

A mixed (resp. pure) strategy profile σ = (σA)A∈Agt is a mixed (resp.
pure) Nash equilibrium if no player can improve her payoff by unilaterally
changing her strategy, that is, for every A ∈ Agt, for every mixed (resp.
pure) deviation σ′A,

Eσv0
(payoffA) ≥ Eσ[A/σ′

A]
v0 (payoffA)

Example
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A mixed (resp. pure) strategy profile σ = (σA)A∈Agt is a mixed (resp.
pure) Nash equilibrium if no player can improve her payoff by unilaterally
changing her strategy, that is, for every A ∈ Agt, for every mixed (resp.
pure) deviation σ′A,

Eσv0
(payoffA) ≥ Eσ[A/σ′

A]
v0 (payoffA)

Example

v0
0, 0

0, 1 1, 0

aa
, b
b ab

ba

aa (that is, σAi (v0) = a) is a
(pure) Nash equilibrium
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Nash equilibrium in this setting

Nash equilibrium

A mixed (resp. pure) strategy profile σ = (σA)A∈Agt is a mixed (resp.
pure) Nash equilibrium if no player can improve her payoff by unilaterally
changing her strategy, that is, for every A ∈ Agt, for every mixed (resp.
pure) deviation σ′A,

Eσv0
(payoffA) ≥ Eσ[A/σ′

A]
v0 (payoffA)

Example – Matching penny

v0

0, 1 1, 0

aa
, b
b ab, ba

σAi (v0) = 1
2 · a + 1

2 · b is the
unique (mixed) Nash
equilibrium
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There is no stationary
Nash equilibrium

There is a pure Nash
equilibrium:

v0vi 7→ c

v0vi+1 7→ l

v0vih 7→ c

It has payoff ( 4
9 ,

4
9 ,

4
9 ).
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Problems of interest

Universal existence:

Does there always exist a Nash equilibrium?

Existence problem:

Does there exist a Nash equilibrium?

Constrained existence problem:

Does there exist a Nash equilibrium
which satisfies some given constraint?
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Does the standard theory apply?
Nash theorem does not apply (requires a finite number of pure
strategies)

But do the related fixed point theorems apply?

Kakutani’s fixpoint theorem

Let X be a non-empty, compact and convex subset of Rn. Let f : X → 2X

be a set-valued function on X with a closed graph and the property that
f (x) is non-empty and convex for all x ∈ X . Then f has a fixpoint.

Usually it applies to the best-response operator: if σ ∈ S (S is for
stationary profiles), then

BR(σ) =
{
σ′ ∈ S | ∀A ∈ Agt, σ′A ∈ argmaxσ′′

A ∈SA
Eσ[A/σ′′

A ]
v0 (payoffA)

}
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Does the standard theory apply?

v1

A1

v2

A2

1
3 , 1 1, 1

3

l l

c

c

We note (x1, x2) ∈ [0, 1]2 for the
profile σ s.t.{
σA1 (v1) = x1 · l + (1− x1) · c
σA2 (v2) = x2 · l + (1− x2) · c

The first who leaves the loop loses!

For every x1, x2 > 0, BR((x1, x2)) = (0, 0)
BR((0, 0)) = {(x1, x2) | x1, x2 > 0}
The graph of BR is not closed
Kakutani’s theorem does not apply

However there are infinitely many Nash equilibria:

all (0, x2) and (x1, 0) with x1, x2 > 0
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BR((0, 0)) = {(x1, x2) | x1, x2 > 0}
The graph of BR is not closed
Kakutani’s theorem does not apply

However there are infinitely many Nash equilibria:

all (0, x2) and (x1, 0) with x1, x2 > 0
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No universal existence in general!

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games (CONCUR’11).

v0
0, 0

−1, 1 1,−1

aa
, b
b ab

ba

By playing stationary strategy

σA2 (v0) = (1− ε) · a + ε · b,

A2 ensures payoff 1− 2ε

Hence any Nash equilibrium would
have payoff (−1, 1)

If A2 plays a forever, then A1 will play
b forever, yielding payoff (0, 0), which
is not a Nash equilibrium

If A2 plays b with some positive
probability p at some round (first time
this occurs), then by playing b before
and a at that precise round, A1 can
ensure payoff p > 0

; There is no Nash equilibrium!
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We focus on a simple scenario

Restrictions
Turn-based games

Payoffs given by ω-regular objectives: φA objective of player A ∈ Agt

Pure strategy profiles

,

,

,
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A simple characterization for ω-regular objectives

Player loses along that play

φA: objective of player A

(valid for prefix-independent objectives)
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φA: objective of player A
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Player loses along that play

Coalition { , }
prevents from winning

(by determinacy)
threat/punishment strategy

(valid for prefix-independent objectives)
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φA: objective of player A
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Player loses along that play

Coalition { , }
prevents from winning

¬φ ⇒ G(p ⇒ XW{ , })

where p labels -states and W{ , } is the set of winning states for the

coalition { , } for winning objective ¬φ .

(valid for prefix-independent objectives)
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A simple characterization for ω-regular objectives

φA: objective of player A

. . .
Player loses along that play

Coalition { , }
prevents from winning

Main outcomes of Boolean Nash equilibria in turn-based games can be
characterized by an LTL formula:

ΦNE =
∧

A∈Agt

(
¬φA ⇒ G(pA ⇒ XW{−A})

)
where pA labels A-states and W{−A} is the set of winning states for the

coalition {−A} def
= Agt \ {A} against A for the objective ¬φA. These sets

should be precomputed.

(valid for prefix-independent objectives)
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Decidability of the constrained existence problem

[Umm08] Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games (FoSSaCS’08).

Constrained existence problem

Given two thresholds L,U ∈ Q+, does there exists a Nash equilibrium σ
such that for every A ∈ Agt:

LA ≤ Eσv0
(payoffA) ≤ UA?

Theorem [Umm08]

One can decide the pure constrained existence problem in finite
turn-based multiplayer games for ω-regular objectives.

Examples of complexity results for single objectives:

Objectives Reach. Safety Büchi co-Büchi Parity
Complexity NP-c. P-c. NP-c.

Note: it extends to “ω-regular” preference relations with a finite image.
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An example of NP-hardness result

By reduction from a SAT instance:

ϕ =
∧

1≤i≤n

Ci with Ci =
3∨

j=1

`i,j `i,j ∈ {x1,¬x1, x2,¬x2, . . . , xk ,¬xk}

A A A . . .

x1

¬x1

x2

¬x2

xk

¬xk

Player Ai for clause Ci , with objective to reach {`i,j | j = 1, 2, 3}
Player A: reach the rightmost state

ϕ is satisfiable iff there is a Nash equilibrium with payoff 1
for everyone in the game
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The universal existence problem: ω-regular objectives
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If has a winning strategy from A, then should play it forever

Otherwise plays any strategy, until (by chance) a new blue node,
for instance J, is visited, from which has a winning strategy;
then switches to such a winning strategy, forever
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If the game proceeds through B and has a winning strategy from
B, then should play it forever

If the game proceeds through B but has no winning strategy from
B, then should play any strategy, until (by chance) a new green
node, for instance H, is visited, from which has a winning
strategy; then switches to such a winning strategy, forever
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If the game proceeds through C and has a winning strategy from
C, then should play it forever

If the game proceeds through C but has no winning strategy from
C, then should play any strategy, until (by chance) a new red
node, for instance E, is visited, from which has a winning
strategy; then switches to such a winning strategy, forever
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The universal existence problem: ω-regular objectives

A

B
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D E

F

G H

I

J

K L
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...

...
...
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...

Outside the main outcome, all players play the adequate threat or
punishment strategy: this is the coalition strategy that makes the
deviator lose (NB: determinacy required!)
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...

Questions:

why is it correct?

what immediate extension can be handled?
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The universal existence problem: ω-regular objectives

[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (PhD thesis).
[LeR13] Le Roux. Infinite sequential Nash equilibrium (LMCS).

Universal existence [Umm11]

In infinite-duration turn-based deterministic games on finite graphs with
ω-regular objectives, there is always a pure Nash equilibrium. Moreover,
one can compute a witness.

Universal existence [LeR13]

In infinite turn-based deterministic games with Borel measurable
countable preferences, with no ascending infinite chains, there is always a
pure Nash equilibrium.
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Stochastic turn-based games

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS).
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One can simulate a two-counter
machine if we constrain pA1 ≥ 1!!
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Short summary for turn-based ω-regular games

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (PhD thesis, RWTH Aachen University)
[LeR13] Le Roux. Infinite sequential Nash equilibrium (LMCS).

[UW11,Umm11,LeR13]

There always exists a Nash equilibrium for Boolean ω-regular
objectives

One can decide the constrained existence of a Nash equilibrium (and
compute one!)

One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

; this is why we will restrict to pure equilibria in det. games
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Outline

1 Verification and game theory

2 What is a game?

3 A glimpse on strategic games

4 Games on graphs
The general model
Focus on a simple scenario
Adding probabilities to the setting?
Concurrent games

5 Conclusion
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Can this theory be extended to concurrent games?

v0

0, 1 1, 0

aa
, b
b ab, ba There is no universal existence, even

for simple Boolean objectives.

v0
0, 0

−1, 1 1,−1

aa
, b
b ab

ba

There is no pure Nash equilibrium

v0
0, 0

0, 1 1, 0

aa
, b
b ab

ba

There is a pure Nash equilibrium
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v0

0, 1 1, 0

aa
, b
b ab, ba There is no universal existence, even

for simple Boolean objectives.

v0
1, 1

0, 2 2, 0

aa
, b
b ab

ba

There is no pure Nash equilibrium

v0
0, 0

0, 2 2, 0
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, b
b ab

ba

There is a pure Nash equilibrium
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Existence becomes NP-hard

Hardness
The existence problem is NP-hard for reachability objectives.

By reduction from a SAT instance:

ϕ =
∧

1≤i≤n

Ci with Ci =
3∨

j=1

`i,j `i,j ∈ {x1,¬x1, x2,¬x2, . . . , xk ,¬xk}

A A A . . .

x1

¬x1

x2

¬x2

xk

¬xk

ϕ is satisfiable iff there is a Nash equilibrium with payoff 1
for everyone in the game
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Hardness
The existence problem is NP-hard for reachability objectives.

A A A . . .

x1

¬x1

x2

¬x2

xk

¬xk

B An/B

B An−1/B

B

B A1/B

winning for An

winning for An−1

winning for A1

. . .

matching pennies

ϕ is satisfiable iff there is a Nash equilibrium in the game
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Who is a suspect? Who knows what?

v0

v1

v2

v3

aaa

baa

bba

aba

aab

· · ·

· · ·

· · ·

susp
(
(v0, v2), aaa

)
= {A1}

Everyone knows that A1 is the deviator

susp
(
(v0, v3), aaa

)
= {A2,A3}

A1 knows that the deviator is either A2 or

A3; A2 knows the identity of the deviator;

and so does A3

susp
(
(v0, v1), aaa

)
= {A1,A2,A3}

Assume that the normal move is v0
aaa−−→ v1

what does that mean if the game proceeds to v2?

either player A1 deviated alone (playing b instead of a);

what does that mean if the game proceeds to v3?

either player A2 deviated alone (playing b instead of a);
or A3 deviated alone (playing b instead of a).
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Construction of the suspect game abstraction

v0

{A1,A2,A3}

v0

v1

v2

v3

aaa

other

baa

bba

aba

aab

···

···

···

Two players: Eve (light)
Adam (dark)
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Correctness of the suspect game construction

Winning condition

A strategy ζ for Eve in the suspect game is winning for some α ∈ RAgt if
the unique outcome of ζ where Adam complies to Eve has payoff α, and
for every other outcome ρ of ζ, for every A ∈ susp(ρ), payoffA(ρ) ≤ αA.

Correctness

Let α ∈ RAgt. There is a Nash equilibrium in the original game with
payoff α if and only if Eve has a winning strategy for α in the suspect
game.
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φA: objective of player A

v0

Agt

m

Players A1, A2 lose along that play

v

{A1,A2}

v A3 does not know whether
A1 or A2 deviated; he should
try to punish both
(if A1 deviated, A2 will help A3,
and conversely if A2 deviated)

everyone knows A1 deviated;
A2 and A3 will try to punish A1

v ′

{A1}
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From an algorithmic point-of-view

In the orange part: compute the winner (Eve or Adam) of the
zero-sum game, where Eve’s objective is ¬φA1 (Eve wants to show
that there is no profitable deviation for A1)

We remove the orange part, and replace the root vertex by a
winning state for the previously computed winner

In the yellow part: compute the winner (Eve or Adam) of the
zero-sum game, where Eve’s objective is

(¬φA1 ∧ ¬φA2 ) ∨ Reach(winEve)

where winEve is an already computed winning state for Eve

It is then just a matter to find an infinite play satisfying the
appropriate property

The approach can be extended to various settings!
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Some results

[BBMU15] Bouyer, Brenguier, Markey, Ummels. Pure Nash equilibria in concurrent deterministic games (LMCS)

Examples of complexity results

For single objectives:

Objectives Reach. Safety Büchi co-Büchi Parity
Complexity NP-c. P-c. NP-c. PNP

‖ -c.

For combinations of Büchi objectives:

Combinations Subset Lexico. Count. Bool. circuit
Complexity P-c. NP-.c PSPACE-c.

For combinations of reachability objectives:

Combinations Subset Lexico. Count. Bool. circuit
Complexity NP-c. PSPACE-.c
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For combinations of reachability objectives:

Combinations Subset Lexico. Count. Bool. circuit
Complexity NP-c. PSPACE-.c
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Extensions of this approach

[Bou18] Bouyer. Games on graphs with a public signal monitoring (FoSSaCS’18).
[BT19] Bouyer, Tomasset. Nash equilibria in games over graphs equipped with a communication mechanism (MFCS’19).
[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS’16).
[COT18] Condurache, Oualhadj, Troquard. The complexity of rational synthesis for concurrent games (CONCUR’18).

Partial information monitoring

Public signal [Bou18]

Communication graphs [BT19]

Other solution concepts

Robust equilibria [Bre16]

Rational synthesis [COT18]
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Wrap-up

General objective

Import game theory solutions to the verification field, where
interactivity plays also a role
Ex: Distributed systems interacting in some environment
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Applications?

[BDGHM16] Brihaye, Dhar, Geeraerts, Haddad, Monmege. Efficient energy distribution in a smart grid using multi-player games (Cassting’16)
[KNPS19] Kwiatkowska, Norman, Parker, Santos. Equilibria-based probabilistic model checking for concurrent stochastic games (FM’19).
[GBLM19] González, Bouyer, Lasaulce, Markey. Optimisation en présence de contraintes en probabilités et processus markoviens contrôlés

(GRETSI’19)

Smart grids: decentralized control of EV charging [GBLM19]

stochastic setting
ad-hoc approximated solutions

Cassting project: smart houses that produce energy with solar panels
[BDGHM16]

deterministic setting
setting with universal existence
exact computation

PRISM-games: medium access control, Aloha protocol, robot
coordination, power control [KNPS19]

stochastic setting
approximated value iteration for computing ε-SPE
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Wrap-up

General objective

Import game theory solutions to the verification field, where
interactivity plays also a role
Ex: Distributed systems interacting in some environment

Relevant questions:

assumptions made in the game theory field relevant?
solution concepts adapted to the context?

Nash equilibria in games on graphs

The setting of pure Nash equilibria in turn-based det. games rather
well-understood

Probabilistic setting much more complicated

Concurrent games: a rather generic approach based on the suspect
game construction
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Going further?

More relevant solution concepts?

Temporal aspects weakens the concept of Nash equilibrium:
Will a rational agent/process focus on punishing a deviator, instead of

pursuing her own objective?

Another solution concept: subgame-perfect equilibrium
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