Model-Checking Timed Temporal Logics

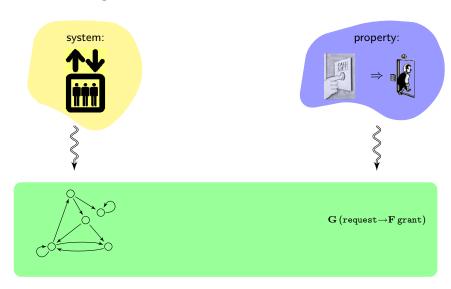
Patricia Bouyer

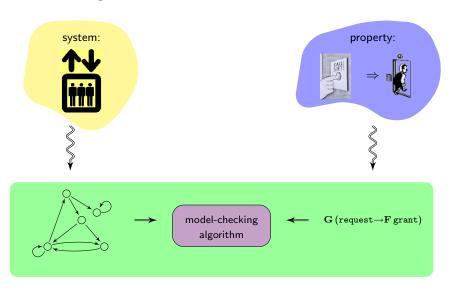
LSV - CNRS & ENS de Cachan - France

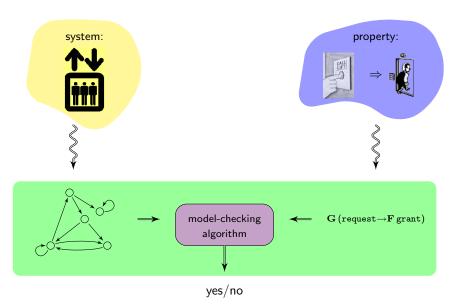
Based on joint works with Fabrice Chevalier, Nicolas Markey, Joël Ouaknine and James Worrell

Outline

- 1. Introduction
- Definition of the logics
- 3. The timed automaton model
- 4. The model-checking problem
- Some interesting fragments
- 6. Conclusion







$$\mathsf{LTL} \ni \varphi \, ::= \, p \, \mid \, \varphi \wedge \varphi \, \mid \, \varphi \vee \varphi \, \mid \, \neg \varphi \, \mid \, \mathbf{X} \varphi \, \mid \, \varphi \, \mathbf{U} \varphi$$

$$\mathsf{LTL} \ni \varphi \, ::= \, p \, \mid \, \varphi \wedge \varphi \, \mid \, \varphi \vee \varphi \, \mid \, \neg \varphi \, \mid \, \mathbf{X} \varphi \, \mid \, \varphi \, \mathbf{U} \varphi$$

$$\mathsf{LTL} \ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

$$\mathsf{LTL}\ni\varphi::=p\mid\varphi\wedge\varphi\mid\varphi\vee\varphi\mid\neg\varphi\mid\mathbf{X}\varphi\mid\varphi\mathbf{U}\varphi$$

LTL
$$\ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

$$\qquad \qquad \models \mathbf{X} \bullet$$

$$\qquad \qquad \qquad \models \mathbf{U} \bullet$$

Linear-time temporal logic [Pnu77]

 $\longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longmapsto F \bullet \equiv ttU \bullet$

LTL
$$\ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

$$\models \mathbf{X} \bullet$$

$$lackbreak lackbreak lackbrea$$

Linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

response property:

$$\mathbf{G}\left(ullet\mathbf{\Phi}
ightarrow \mathbf{F}ullet
ight)$$

Linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

response property:

$$\mathbf{G}\left(ullet\mathbf{\Phi}
ightarrow \mathbf{F}ullet
ight)$$

liveness property:

$$GF \bullet$$

Linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

response property:

$$\mathbf{G}\left(ullet\mathbf{\Phi}
ightarrow \mathbf{F}ullet
ight)$$

liveness property:

$$GF \bullet$$

safety property:

$$\mathbf{G} \neg ullet$$

Linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

response property:

$$\mathbf{G}\left(ullet\mathbf{\Phi}
ightarrow \mathbf{F}ullet
ight)$$

▶ liveness property:

$$GF \bullet$$

safety property:

$$\mathbf{G} \, \lnotullet$$

a more complex property:

$$(\bullet \land (F \bullet \lor G \bullet)) U \bullet$$

Adding timing requirements

- Need for timed models
 - the behaviour of most systems depends on time;
 - ▶ faithful modelling has to take time into account.

rimed automata, time(d) Petri nets, timed process algebras...

Adding timing requirements

- Need for timed models
 - the behaviour of most systems depends on time;
 - ▶ faithful modelling has to take time into account.

rimed automata, time(d) Petri nets, timed process algebras...

- Need for timed specification languages
 - the behaviour of most systems depends on time;
 - untimed specifications are not sufficient (for instance, bounded response timed, etc...)

 \blacksquare TCTL, MTL, TPTL, timed μ -calculus...

Outline

- 1. Introduction
- 2. Definition of the logics
- 3. The timed automaton model
- 4. The model-checking problem
- Some interesting fragments
- Conclusion

[Koy90]

$$\mathsf{MTL}\ni\varphi\ ::=\ a\ |\ \neg\varphi\ |\ \varphi\vee\varphi\ |\ \varphi\wedge\varphi\ |\ \varphi\ \mathbf{U}_{\mathbf{I}}\varphi$$

where / is an interval with integral bounds.

[Koy90]

$$\mathsf{MTL}\ni\varphi\ ::=\ a\ |\ \neg\varphi\ |\ \varphi\vee\varphi\ |\ \varphi\wedge\varphi\ |\ \varphi\ \mathbf{U}_{\mathbf{I}}\varphi$$

where / is an interval with integral bounds.

► This is a timed extension of LTL

[Koy90]

$$\mathsf{MTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \, \mathbf{U}_{\mathsf{I}} \varphi$$

where / is an interval with integral bounds.

- ► This is a timed extension of LTL
- Can be interpreted over timed words, or over signals
 - this distinction is fundamental

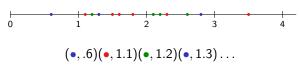
[Koy90]

$$\mathsf{MTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \varphi \, \mathbf{U}_{\mathbf{I}} \varphi$$

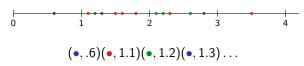
where / is an interval with integral bounds.

- This is a timed extension of LTL
- Can be interpreted over timed words, or over signals
 - this distinction is fundamental
- Can be interpreted over finite or infinite behaviours
 - this distinction is fundamental

MTL formulas are interpreted over timed words:

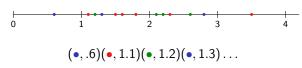


MTL formulas are interpreted over timed words:

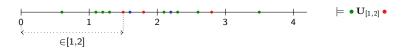


the system is observed only when actions happen

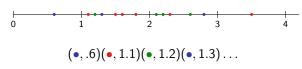
MTL formulas are interpreted over timed words:



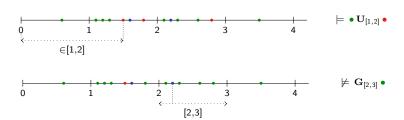
the system is observed only when actions happen



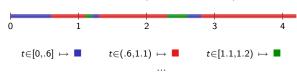
MTL formulas are interpreted over timed words:



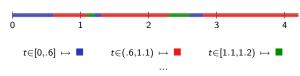
the system is observed only when actions happen



MTL formulas are interpreted over (finitely variable) signals:

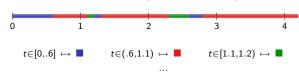


MTL formulas are interpreted over (finitely variable) signals:



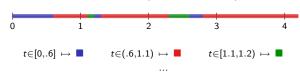
the system is observed continuously

MTL formulas are interpreted over (finitely variable) signals:

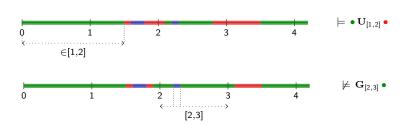


the system is observed continuously

MTL formulas are interpreted over (finitely variable) signals:



the system is observed continuously



Some examples

"Every problem is followed within 56 time units by an alarm"

$$\mathbf{G}\left(\mathtt{problem} o \mathbf{F}_{\leqslant 56} \, \mathtt{alarm}
ight)$$

Some examples

"Every problem is followed within 56 time units by an alarm"

$$\mathbf{G} ext{(problem} o \mathbf{F}_{\leqslant 56} ext{ alarm})$$

► "Each time there is a problem, it is either repaired within the next 15 time units, or an alarm rings during 3 time units 12 time units later"

$$\mathbf{G}\left(\mathtt{problem}
ightarrow \left(\mathbf{F}_{\leqslant 15} \, \mathtt{repair} \lor \mathbf{G}_{\texttt{[12.15)}} \, \mathtt{alarm}
ight)
ight)$$

Some further extensions

► Timed Propositional Temporal Logic (TPTL)

[AH89]

TPTL = LTL + clock variables + clock constraints

► Timed Propositional Temporal Logic (TPTL)

[AH89]

TPTL = LTL + clock variables + clock constraints

$$\mathbf{G}\left(\mathtt{problem} \to \mathbf{F}_{\leqslant 56}\,\mathtt{alarm}\right) \quad \equiv \quad \mathbf{G}\left(\mathtt{problem} \to x.\mathbf{F}\left(\mathtt{alarm} \land x \leqslant 56\right)\right)$$

► Timed Propositional Temporal Logic (TPTL)

[AH89]

TPTL = LTL + clock variables + clock constraints

$$\mathbf{G}\left(\mathtt{problem} \to \mathbf{F}_{\leqslant 56}\,\mathtt{alarm}\right) \quad \equiv \quad \mathbf{G}\left(\mathtt{problem} \to x.\mathbf{F}\left(\mathtt{alarm} \land x \leqslant 56\right)\right)$$

$$G(problem \rightarrow x.F(alarm \land F(failsafe \land x \leqslant 56)))$$

► Timed Propositional Temporal Logic (TPTL)

[AH89]

TPTL = LTL + clock variables + clock constraints

$$\mathbf{G}\left(\mathtt{problem} \to \mathbf{F}_{\leqslant 56}\,\mathtt{alarm}\right) \quad \equiv \quad \mathbf{G}\left(\mathtt{problem} \to x.\mathbf{F}\left(\mathtt{alarm} \land x \leqslant 56\right)\right)$$

$$\mathbf{G}\left(\mathtt{problem} \to x.\mathbf{F}\left(\mathtt{alarm} \land \mathbf{F}\left(\mathtt{failsafe} \land x \leqslant 56\right)\right)\right)$$

▶ MTL+Past: add past-time modalities

[AH92]

► Timed Propositional Temporal Logic (TPTL)

[AH89]

TPTL = LTL + clock variables + clock constraints

$$\mathbf{G}\left(\mathtt{problem} \to \mathbf{F}_{\leqslant 56}\,\mathtt{alarm}\right) \quad \equiv \quad \mathbf{G}\left(\mathtt{problem} \to x.\mathbf{F}\left(\mathtt{alarm} \land x \leqslant 56\right)\right)$$

$$\mathbf{G}\left(\mathtt{problem} \to x.\mathbf{F}\left(\mathtt{alarm} \land \mathbf{F}\left(\mathtt{failsafe} \land x \leqslant 56\right)\right)\right)$$

▶ MTL+Past: add past-time modalities

[AH92]

$$\mathbf{G}\left(\mathtt{alarm} \to \mathbf{F}_{\leqslant 56}^{-1}\, \underline{\mathtt{problem}}\right)$$

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

cannot be expressed in MTL.

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

cannot be expressed in MTL.

This is true in the pointwise semantics.

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968). (GPSS0] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80). [BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

cannot be expressed in MTL.

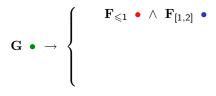
- This is true in the pointwise semantics.
- ► This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968). [GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80). [BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

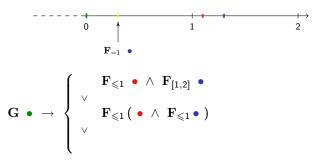
$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$



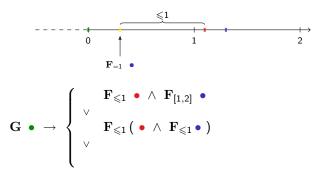
$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

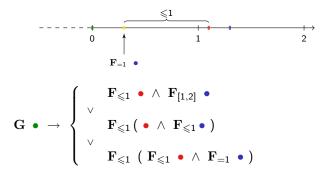
$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$



$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$

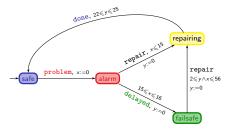


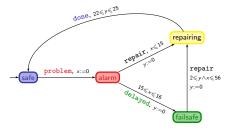
$$\mathbf{G}\left(\bullet \to x.\mathbf{F}\left(\bullet \land \mathbf{F}\left(\bullet \land x \leqslant 2\right)\right)\right)$$



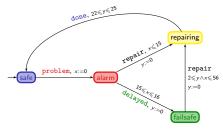
Outline

- 1. Introduction
- 2. Definition of the logics
- 3. The timed automaton model
- 4. The model-checking problem
- 5. Some interesting fragments
- Conclusion

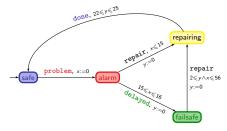


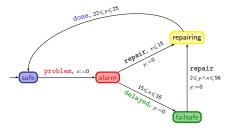


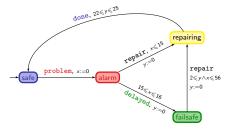
- safi
- y 0



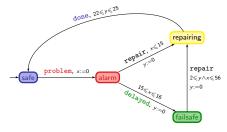
```
x 0 23
y 0 23
y 0 23
```

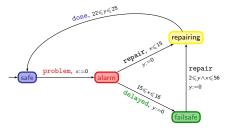




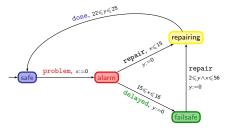


	safe	→ safe	problem	alarm	15.6	alarm	delayed	failsafe
x	0	23		0		15.6		15.6
ν	0	23		23		38.6		0

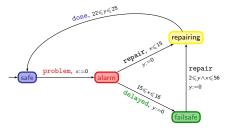




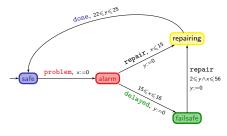
	safe	$\xrightarrow{23}$	safe	problem	alarm	15.6	alarm	delayed	failsafe	2.3	failsafe	repair	reparation
×	0		23		0		15.6		15.6		17.9		17.9
٧	0		23		23		38.6		0		2.3		0



	safe	⇒ safe	problem alarm	ı ^{15.6} alarm	delayed failsafe	e 2.3 failsafe	repair reparation	22.1 reparation
×	0	23	0	15.6	15.6	17.9	17.9	40
У	0	23	23	38.6	0	2.3	0	22.1

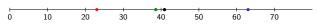


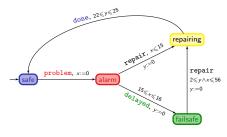
	safe	23	safe	problem	alarm	15.6	alarm	delayed	failsafe	2.3	failsafe	repair -	reparation	22.1	reparation	done	safe
×	0		23		0		15.6		15.6		17.9		17.9		40		40
v	0		23		23		38.6		0		2.3		0		22.1		22.1



Can be viewed:

▶ as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)





Can be viewed:

▶ as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

as the signal

Basic result on timed automata

Theorem

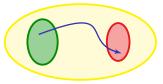
The reachability problem is decidable (and PSPACE-complete) for timed automata [AD94].

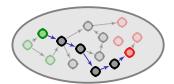
Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed automata [AD94].

finite hisimulation





timed automaton

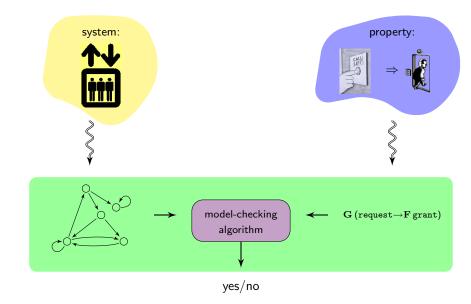
large (but finite) automaton (region automaton)

[AD94] Alur. Dill. A theory of timed automata (TCS, 1994).

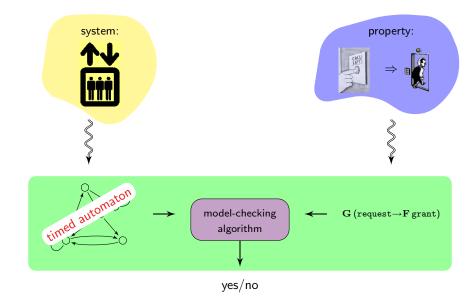
Outline

- 1. Introduction
- 2. Definition of the logics
- 3. The timed automaton model
- 4. The model-checking problem
- 5. Some interesting fragments
- Conclusion

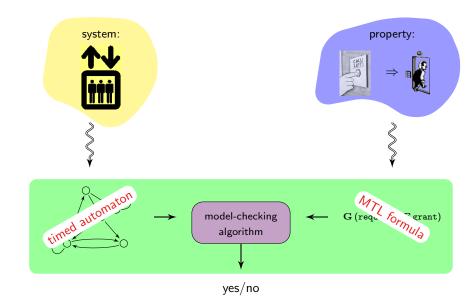
Back to the model-checking problem



Back to the model-checking problem



Back to the model-checking problem



Theorem

Over finite runs, the model-checking problem is:

	pointwise sem.	continuous sem.
MTL	decidable, NPR [OW05]	undecidable [AFH96]
MTL+Past	undecidable	undecidable
TPTL	undecidable [AH94]	undecidable [AH94]

Theorem

Over finite runs, the model-checking problem is:

	pointwise sem.	continuous sem.
MTL	decidable, NPR [OW05]	undecidable [AFH96]
MTL+Past	undecidable	undecidable
TPTL	undecidable [AH94]	undecidable [AH94]

▶ Model-checking linear-time timed temporal logics is hard!

Theorem

Over finite runs, the model-checking problem is:

	pointwise sem.	continuous sem.
MTL	decidable, NPR [OW05]	undecidable [AFH96]
MTL+Past	undecidable	undecidable
TPTL	undecidable [AH94]	undecidable [AH94]

- Model-checking linear-time timed temporal logics is hard!
- ► The gap between branching-time and linear-time dramatically increases in the timed framework...

(reminder: model-checking TCTL is PSPACE-complete)

Theorem

Over finite runs, the model-checking problem is:

	pointwise sem.	continuous sem.
MTL	decidable, NPR [OW05]	undecidable [AFH96]
MTL+Past	undecidable	undecidable
TPTL	undecidable [AH94]	undecidable [AH94]

- Model-checking linear-time timed temporal logics is hard!
- ► The gap between branching-time and linear-time dramatically increases in the timed framework...

(reminder: model-checking TCTL is PSPACE-complete)

 All hardness results: by reduction to the halting problem for FIFO channel machines

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05). [AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996). [AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

Theorem

Over finite runs, the model-checking problem is:

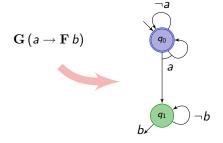
	pointwise sem.		continuous sem.	
MTL	decidable,	NPR [O	W05]	undecidable [AFH96]
MTL+Past	undecidable		undecidable	
TPTL	undecidable [AH94]		undecidable [AH94]	

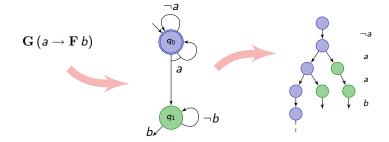
- Model-checking linear-time timed temporal logics is hard!
- ➤ The gap between branching-time and linear-time dramatically increases in the timed framework...

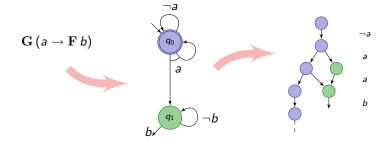
(reminder: model-checking TCTL is PSPACE-complete)

 All hardness results: by reduction to the halting problem for FIFO channel machines

$$G(a \rightarrow Fb)$$



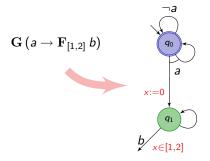




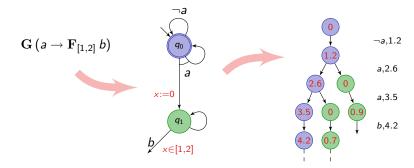
From MTL to alternating timed automata

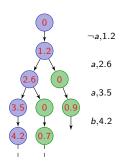
$$\mathbf{G}\left(a \to \mathbf{F}_{[1,2]} b\right)$$

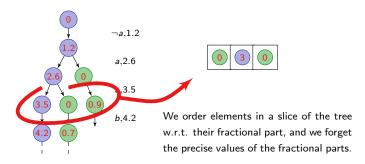
From MTL to alternating timed automata

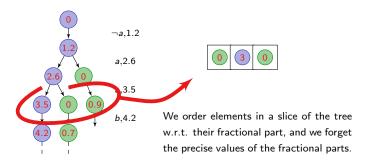


From MTL to alternating timed automata

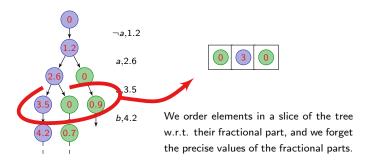




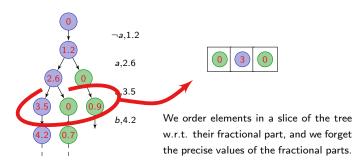




this defines an abstract (infinite) transition system



- this defines an abstract (infinite) transition system
- it is (time-abstract) bisimilar to the transition system of the alternating timed automata



- this defines an abstract (infinite) transition system
- it is (time-abstract) bisimilar to the transition system of the alternating timed automata
- there is a well quasi-order on the set of abstract configurations (subword relation):

higman ⊑ highmountain

Summary

Theorem

Over finite runs, the model-checking problem is:

	pointwise sem.	continuous sem.
MTL	decidable, NPR [OW05]	undecidable [AFH96]
MTL+Past	undecidable	undecidable
TPTL	undecidable [AH94]	undecidable [AH94]

What about infinite behaviours?

the previous algorithm cannot be lifted to the infinite behaviours framework

What about infinite behaviours?

- the previous algorithm cannot be lifted to the infinite behaviours framework
- ▶ there is a problem with the accepting condition (in the untimed case, we use the Miyano-Hayashi construction [MH84])

What about infinite behaviours?

- the previous algorithm cannot be lifted to the infinite behaviours framework
- there is a problem with the accepting condition (in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem

Over finite runs, the model-checking problem is:

	pointwise sem.	continuous sem.
MTL	undecidable [OW06]*	undecidable [AFH96]
MTL+Past	undecidable	undecidable
TPTL	undecidable [AH94]	undecidable [AH94]

^{*} by reduction of the recurrence problem for channel machines

Outline

- 1. Introduction
- 2. Definition of the logics
- 3. The timed automaton model
- 4. The model-checking problem
- 5. Some interesting fragments
- Conclusion

▶ The undecidability/NPR proofs heavily rely on punctual constraints.

▶ The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: "Any logic strong enough to express the property $G\left(\bullet \to F_{=1} \bullet \right)$ is undecidable"

- ▶ The undecidability/NPR proofs heavily rely on punctual constraints.
 - **Old claim:** "Any logic strong enough to express the property $G (\bullet \to F_{=1} \bullet)$ is undecidable"
- What if we forbid punctual constraints in MTL?

► The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: "Any logic strong enough to express the property $G\left(\bullet \to F_{=1} \bullet\right)$ is undecidable"

▶ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL):

[AFH96]

$$\mathsf{MITL} \ni \varphi \ ::= \ \mathbf{a} \ | \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \ \mathbf{U}_{\mathbf{I}} \varphi$$

with / a non-punctual interval

- ▶ The undecidability/NPR proofs heavily rely on punctual constraints.
 - **Old claim:** "Any logic strong enough to express the property $G\left(\bullet \to F_{=1} \bullet\right)$ is undecidable"
- ▶ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL):

[AFH96]

$$\mathsf{MITL} \ni \varphi \ ::= \ a \ | \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \ \mathbf{U}_{\mathbf{I}} \varphi$$

with / a non-punctual interval

- Examples:
 - ▶ $G(\bullet \to F_{=1} \bullet)$ is not in MITL

- ▶ The undecidability/NPR proofs heavily rely on punctual constraints.
 - **Old claim:** "Any logic strong enough to express the property $\mathbf{G}\left(\bullet\to F_{=1}\bullet\right) \text{ is undecidable}$ "
- What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL):

[AFH96]

$$\mathsf{MITL} \ni \varphi \ ::= \ a \ | \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \ \mathbf{U}_{\mathbf{I}} \varphi$$

with / a non-punctual interval

- Examples:
 - ▶ G (• → $F_{=1}$ •) is not in MITL
 - G (• → F_[1,2] •) is in MITL

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].

we can bound the variability of the signals

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].

- we can bound the variability of the signals
- an MITL formula defines a timed regular language

Example: consider the formula $\varphi = \mathbf{G}_{(0,1)} (\bullet \to \mathbf{F}_{[1,2]} \bullet)$

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].

- we can bound the variability of the signals
- an MITL formula defines a timed regular language

Example: consider the formula $\varphi = \mathbf{G}_{(0,1)} (\bullet \to \mathbf{F}_{[1,2]} \bullet)$

each time an • occurs within the first time unit, start a new clock, and check that a • occurs between 1 and 2 time units afterwards

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].

- we can bound the variability of the signals
- an MITL formula defines a timed regular language

Example: consider the formula $\varphi = \mathbf{G}_{(0,1)} (\bullet \to \mathbf{F}_{[1,2]} \bullet)$

- each time an occurs within the first time unit, start a new clock, and check that a • occurs between 1 and 2 time units afterwards
- this requires an unbounded number of clocks

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].

- we can bound the variability of the signals
- an MITL formula defines a timed regular language

Example: consider the formula $\varphi = \mathbf{G}_{(0,1)} (\bullet \to \mathbf{F}_{[1,2]} \bullet)$

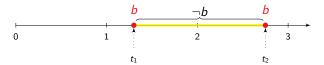
- ▶ each time an occurs within the first time unit, start a new clock, and check that a occurs between 1 and 2 time units afterwards
- this requires an unbounded number of clocks

something more clever needs to be done

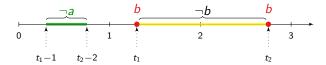
[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

$$arphi = \mathbf{G}_{(0,1)} \left(\mathbf{a}
ightarrow \mathbf{F}_{[1,2]} \, \mathbf{b}
ight)$$

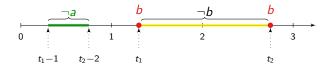
$$\varphi = \mathbf{G}_{(0,1)} \left(\mathbf{a} \to \mathbf{F}_{[1,2]} \, \mathbf{b} \right)$$

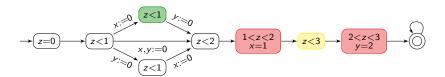


$$\varphi = \mathbf{G}_{(0,1)} \left(a \to \mathbf{F}_{[1,2]} \, b \right)$$

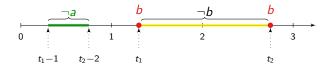


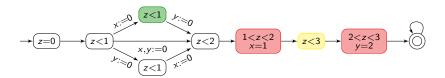
$$\varphi = \mathbf{G}_{(0,1)} \left(\mathbf{a} \to \mathbf{F}_{[1,2]} \, \mathbf{b} \right)$$





$$arphi \ = \ \mathbf{G}_{(0,1)} \left(a
ightarrow \mathbf{F}_{[1,2]} \ {\color{red}b}
ight)$$





This idea can be extended to any formula in MITL

▶ Do punctual constraints really need to be banned?

- Do punctual constraints really need to be banned?
- ▶ Does punctuality always lead to undecidability?

- ▶ Do punctual constraints really need to be banned?
- ▶ Does punctuality always lead to undecidability?

We define coFlat-MTL:

[BMOW07]

$$\mathsf{coFlat}\mathsf{-MTL}\ni\varphi\ ::=\ \mathbf{a}\ |\ \neg\mathbf{a}\ |\ \varphi\vee\varphi\ |\ \varphi\wedge\varphi\ |\ \varphi\,\mathbf{U_I}\,\psi\ |\ \psi\,\widetilde{\mathbf{U}_I}\,\varphi$$

where I unbounded $\Rightarrow \psi \in LTL$

- ▶ Do punctual constraints really need to be banned?
- Does punctuality always lead to undecidability?

We define coFlat-MTL:

[BMOW07]

$$\mathsf{coFlat-MTL} \ni \varphi \ ::= \ a \ | \ \neg a \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \ \mathbf{U_I} \psi \ | \ \psi \ \widetilde{\mathbf{U}_I} \varphi$$

where \prime unbounded $\Rightarrow \psi \in \mathsf{LTL}$

- Examples:
 - $ightharpoonup \mathbf{G}\left(ullet
 ightarrow \mathbf{F}_{=1}ullet
 ight)$ is in coFlat-MTL

- ▶ Do punctual constraints really need to be banned?
- Does punctuality always lead to undecidability?

We define coFlat-MTL:

[BMOW07]

$$\mathsf{coFlat-MTL} \ni \varphi \ ::= \ a \ | \ \neg a \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \ \mathsf{U}_{\mathit{I}} \psi \ | \ \psi \ \widetilde{\mathsf{U}}_{\mathit{I}} \varphi$$

where / unbounded $\Rightarrow \psi \in \mathsf{LTL}$

- Examples:
 - ▶ $G(\bullet \to F_{=1} \bullet)$ is in coFlat-MTL
 - ▶ $\mathbf{F} \mathbf{G}_{\leqslant 1} ledown$ is not in coFlat-MTL

- ▶ Do punctual constraints really need to be banned?
- Does punctuality always lead to undecidability?

We define coFlat-MTL:

[BMOW07]

$$\mathsf{coFlat-MTL} \ni \varphi \ ::= \ \mathbf{a} \ | \ \neg \mathbf{a} \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \ \mathbf{U}_{\mathbf{I}} \psi \ | \ \psi \ \mathbf{\hat{U}}_{\mathbf{I}} \varphi$$

where I unbounded $\Rightarrow \psi \in LTL$

- Examples:
 - ▶ $G(\bullet \to F_{=1} \bullet)$ is in coFlat-MTL
 - FG_{≤1} is not in coFlat-MTL
 - coFlat-MTL contains Bounded-MTL (all modalities are time-bounded)

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is EXPSPACE-complete [BMOW07].

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is EXPSPACE-complete [BMOW07].

► The variability of a Bounded-MTL formula can be high (doubly-exp.):

$$arphi_n \equiv ullet \wedge \mathbf{G}_{[0,2^n]} \, arphi_D \qquad ext{with} \qquad arphi_D = \qquad ig(ullet \to \mathbf{F}_{=1} \, (ullet \wedge \mathbf{F}_{\leqslant 1} \, ullet)ig) \\ \wedge \quad ig(ullet \to \mathbf{F}_{=1} \, (ullet \wedge \mathbf{F}_{\leqslant 1} \, ullet)ig)$$

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is EXPSPACE-complete [BMOW07].

► The variability of a Bounded-MTL formula can be high (doubly-exp.):

$$\varphi_n \equiv \bullet \wedge \mathbf{G}_{[0,2^n]} \varphi_D \qquad \text{with} \qquad \varphi_D = \qquad (\bullet \to \mathbf{F}_{=1} (\bullet \wedge \mathbf{F}_{\leqslant 1} \bullet)) \\ \wedge \qquad (\bullet \to \mathbf{F}_{=1} (\bullet \wedge \mathbf{F}_{\leqslant 1} \bullet))$$

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is ${\sf EXPSPACE}$ -complete ${\sf [BMOW07]}$.

► The variability of a Bounded-MTL formula can be high (doubly-exp.):

$$\varphi_n \equiv \bullet \wedge \mathbf{G}_{[0,2^n]} \varphi_D \qquad \text{with} \qquad \varphi_D = \qquad (\bullet \to \mathbf{F}_{=1} (\bullet \wedge \mathbf{F}_{\leqslant 1} \bullet)) \\ \wedge \qquad (\bullet \to \mathbf{F}_{=1} (\bullet \wedge \mathbf{F}_{\leqslant 1} \bullet))$$

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is EXPSPACE-complete [BMOW07].

► The variability of a Bounded-MTL formula can be high (doubly-exp.):

$$arphi_n \equiv ullet \wedge \mathbf{G}_{[0,2^n]} \, arphi_D \qquad ext{with} \qquad arphi_D = \qquad ig(ullet \to \mathbf{F}_{=1} \, ig(ullet \wedge \mathbf{F}_{\leqslant 1} \, ullet)ig) \\ \wedge \quad ig(ullet \to \mathbf{F}_{=1} \, ullet \wedge \mathbf{F}_{\leqslant 1} \, ullet)ig)$$

30/34

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is EXPSPACE-complete [BMOW07].

▶ The variability of a Bounded-MTL formula can be high (doubly-exp.):

$$arphi_n \equiv ullet \wedge \mathbf{G}_{[0,2^n]} \, arphi_D \qquad ext{with} \qquad arphi_D = \qquad ig(ullet \to \mathbf{F}_{=1} \, ig(ullet \wedge \mathbf{F}_{\leqslant 1} \, ullet)ig) \\ \wedge \quad ig(ullet \to \mathbf{F}_{=1} \, ullet \wedge \mathbf{F}_{\leqslant 1} \, ullet)ig)$$

30/34

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is $\sf EXPSPACE\text{-}complete$ [BMOW07].

► The variability of a Bounded-MTL formula can be high (doubly-exp.):

$$arphi_n \equiv ullet \wedge \mathbf{G}_{[0,2^n]} \, arphi_D \qquad ext{with} \qquad arphi_D = \qquad egin{pmatrix} lacksymbol{\bullet} \to \mathbf{F}_{=1} \, lacksymbol{\bullet} \wedge \mathbf{F}_{\leqslant 1} \, lacksymbol{\bullet} lacksymbol{\bullet} \end{pmatrix} \\ \wedge \qquad lacksymbol{\bullet} \to \mathbf{F}_{=1} \, lacksymbol{\bullet} \wedge \mathbf{F}_{\leqslant 1} \, lacksymbol{\bullet} lacksymbol{\bullet} \end{pmatrix}$$

▶ A Bounded-MTL formula may define a non timed-regular language:

$$\mathbf{G}_{\leqslant 1}\left(ullet \to \mathbf{F}_{=1}ullet
ight) \wedge \mathbf{G}_{\leqslant 1}ullet \wedge \mathbf{G}_{(1,2]}ullet$$

defines the context-free language $\{ \bullet^n \bullet^m \mid n \leqslant m \}$.

Assume one wants to verify formula

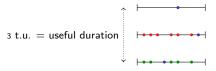
$$\mathbf{G}_{<2} \Big(\bullet \to \mathbf{F}_{=1} \, \bullet \Big)$$

Assume one wants to verify formula

$$\mathbf{G}_{<2} \Big(ullet \mathbf{F}_{=1} ullet \Big)$$

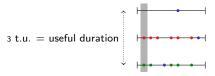
Assume one wants to verify formula

$$\mathbf{G}_{<2} \Big(ullet ullet \mathbf{F}_{=1} ullet \Big)$$



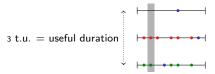
Assume one wants to verify formula

$$\mathbf{G}_{<2} \Big(\bullet \to \mathbf{F}_{=1} \bullet \Big)$$



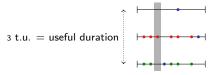
Assume one wants to verify formula

$$\mathbf{G}_{<2}\Big(ullet\mathbf{\Phi} o \mathbf{F}_{=1} ullet\Big)$$



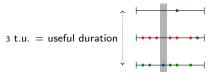
Assume one wants to verify formula

$$\mathbf{G}_{<2}\Big(ullet\mathbf{G} o \mathbf{F}_{=1}ullet\Big)$$



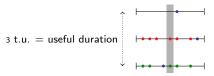
Assume one wants to verify formula

$$\mathbf{G}_{<2} \Big(ullet \mathbf{G} o \mathbf{F}_{=1} ullet \Big)$$



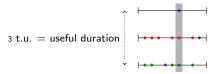
Assume one wants to verify formula

$$\mathbf{G}_{<2}\Big(ullet\mathbf{G} o \mathbf{F}_{=1}ullet\Big)$$



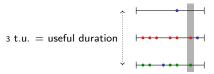
Assume one wants to verify formula

$$\mathbf{G}_{<2}\Big(ullet\mathbf{G} o \mathbf{F}_{=1}ullet\Big)$$



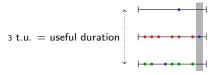
Assume one wants to verify formula

$$\mathbf{G}_{<2}\Big(ullet\mathbf{G} o \mathbf{F}_{=1}ullet\Big)$$



Assume one wants to verify formula

$$\mathbf{G}_{<2}\Big(ullet\mathbf{G} o \mathbf{F}_{=1}ullet\Big)$$

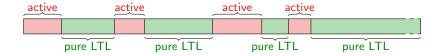


Algorithm for coFlat-MTL

 $\varphi \leadsto$ alternating timed automata $\mathcal{B}_{\neg \varphi}$ for $\neg \varphi$ with a 'flatness' property

Algorithm for coFlat-MTL

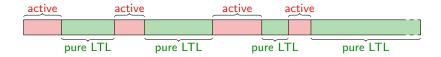
 $\varphi \leadsto$ alternating timed automata $\mathcal{B}_{\neg \varphi}$ for $\neg \varphi$ with a 'flatness' property



where - the number of active fragments is at most exponential - the total duration of active fragments is at most exponential

Algorithm for coFlat-MTL

 $\varphi \rightsquigarrow$ alternating timed automata $\mathcal{B}_{\neg \varphi}$ for $\neg \varphi$ with a 'flatness' property



where - the number of active fragments is at most exponential

- the total duration of active fragments is at most exponential
- active fragment = cycle-bounded computation in a channel machine
- pure LTL part = finite automaton computation

Outline

- 1. Introduction
- 2. Definition of the logics
- 3. The timed automaton model
- 4. The model-checking problem
- Some interesting fragments
- 6. Conclusion

Conclusion

- Recent advances have raised a new interest for linear-time timed temporal logics
 - Not everything is undecidable
 - Some rather 'efficient' subclasses
 - non-punctual formulas
 - structurally (co-)flat formulas

Conclusion

- Recent advances have raised a new interest for linear-time timed temporal logics
 - Not everything is undecidable
 - Some rather 'efficient' subclasses
 - non-punctual formulas
 - structurally (co-)flat formulas
- ▶ A recent result: coFlat-MTL_{MITL} unifies coFlat-MTL and MITL, and is EXPSPACE-complete [BMOW08]!

Conclusion

- Recent advances have raised a new interest for linear-time timed temporal logics
 - Not everything is undecidable
 - Some rather 'efficient' subclasses
 - non-punctual formulas
 - structurally (co-)flat formulas
- A recent result: coFlat-MTL_{MITL} unifies coFlat-MTL and MITL, and is EXPSPACE-complete [BMOW08]!
- No real data structures do exist for these logics.