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» Need for timed models

> the behaviour of most systems depends on time;
> faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

» Need for timed specification languages

> the behaviour of most systems depends on time;
» untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

ww TCTL, MTL, TPTL, timed p-calculus...
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Definition of the logics

Some examples

> “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

» “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (F¢isrepair V Gz 15)alarm))
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MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

Conjecture in 1990: the TPTL formula
G(e = x.F(e AF (o Ax <2)))

cannot be expressed in MTL.

» This is true in the pointwise semantics.

» This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
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Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
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The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).
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The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

= there is a well quasi-order on the set of abstract configurations
(subword relation):

higman C highmountain
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Summary

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+-Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]
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What about infinite behaviours?

» the previous algorithm cannot be lifted to the infinite behaviours
framework

» there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OWO06]* | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

* by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).
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» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

» What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]
MITLS ¢ == a | = [ oV | oAe | Uy

with / a non-punctual interval

» Examples:
> G (e — F_je)is not in MITL
> G(e — Fpe)isin MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
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Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFHI6].

= we can bound the variability of the signals

= an MITL formula defines a timed regular language

Example: consider the formula ¢ = G 1) (¢ — Fp1 2 ®)

» each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

» this requires an unbounded number of clocks

= something more clever needs to be done

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).
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¢ = G (a— Fpgb) J
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Some interesting fragments

G,1)(a — Fp19b) J

—a b —|b b

. o : °
i A A X . X .
0 1 2 3

t1—1 th—2 t1 ty

TN R
— Nl
\\\\\‘ ,y: 0////27

X0 '%Iili' *Z

= This idea can be extended to any formula in MITL
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A co-flat fragment of MTL

» Do punctual constraints really need to be banned?
» Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOWO7]

coFlat-MTL 3 p == a | "a | Ve | oA | U9 | vU, @

where | unbounded = ¢ € LTL

» Examples:
> G(e — F_je)isin coFlat-MTL
» FGgieisnot in coFlat-MTL
> coFlat-MTL contains Bounded-MTL (all modalities are
time-bounded)

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).
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Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWO7].

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

pp=e A G[072n] ©p with YD = (. — F:l (. A Fgl .))
AN (e —=F_1(eANFgro))

» A Bounded-MTL formula may define a non timed-regular language:
Ggl (0 —F_; 0) AN Ggl LIVAN G(1,2] °

defines the context-free language {e"e™ | n < m}.
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Some interesting fragments

Algorithm for coFlat-MTL

© ~ alternating timed automata B-, for = with a ‘flatness’ property

active active active active

—_— —— —_— —— _

| | ] | | [ ] ]
pure LTL pure LTL pure LTL pure LTL

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

> active fragment = cycle-bounded computation in a channel machine

» pure LTL part = finite automaton computation
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Conclusion

» Recent advances have raised a new interest for linear-time timed
temporal logics

> Not everything is undecidable
» Some rather ‘efficient’ subclasses

> non-punctual formulas
> structurally (co-)flat formulas

» A recent result: coFlat-MTLyr. unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOWO08]!

» No real data structures do exist for these logics.

[BMOWO8] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking. Submitted.
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