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Introduction

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

The model of timed automata [AD94]

A timed automaton is made of

a finite automaton-based structure

a set of clocks

timing constraints on transitions

Example

safe alarm

repairing

failsafe

problem,

x :=0

re
pa
ir

,

x≤
15

delayed,

y :=0

repair

2≤y∧x≤56

y :=0

done
,

22≤y≤25

x,y
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Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i
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Introduction

Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
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Introduction

Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
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Introduction

Technical tool: Region abstraction – An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x
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Introduction

Technical tool: Zones and DBMs

DBM = Difference Bound Matrix

Zones, or DBMs...
... are used to represent sets of states of timed automata:

Zone: (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

DBMs:

x0 x1 x2

x0

x1

x2

Ñ
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

é

≡

x0 x1 x2

x0

x1

x2

Ñ
0 −3 0
9 0 4
5 2 0

é

3 4

5

x2

x1
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Introduction

Technical tool: Zones and DBMs

They can be used to compute sets of states in timed automata

`0 `1

g ,y :=0

= Pretime

à
∩ Unresety

à íí
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Introduction

Are we doing the right job?

The continuous-time semantics is
an idealization of a physical system.

It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:
It might not be proper for implementation:

it assumes zero-delay transitions
it assumes infinite precision of the clocks
it assumes immediate communication between systems
it assumes infinite frequency

It may generate timing anomalies
It does not exclude non-realizable behaviours:

not only Zeno behaviours
many convergence phenomena are hidden

; this requires infinite precision and might not be realizable

Important questions

Is the real system correct when it is proven correct on the model?

Does actual work transfer to real-world systems? To what extent?
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Introduction

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

Frame capture [ACS10]

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 + ε

; A frame will eventually be skipped
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Introduction

Example 2: Strict timing constraints

[KLL+97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol. TAPSOFT, 1997.

Mutual exclusion protocol [KLL+97]

Pid

xid≤2

r==0

xid:=0

r :=id

xid:=0

r :=0

xid:=0 r=id

xid>2

r :=0

When P1 and P2 run in parallel (sharing variable r), the state where
both of them are in is not reachable.

This property is lost when xid > 2 is replaced with xid ≥ 2.
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Introduction

Example 3: Scheduling and timing anomaly

[AAM06] Abdeddaim, Asarin, Maler. Scheduling with timed automata. Theor. Comp. Science, 2006.

Scheduling analysis with timed automata [AAM06]

Goal: analyze a work-conserving scheduling policy on given
scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

0 1 2 3 4 5 6 7

M2

M1 A

C B

D E

with the dependency constraints: A→ B and C → D,E .

1 A,D,E must be scheduled on machine M1

2 B,C must be scheduled on machine M2

3 C starts no sooner than 2 time units

; Standard analysis does not capture this timing anomaly
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Introduction

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

x<1∧ y<1

x :=0

y=1

y

0
x

1

1

Those are easy to detect and can be handled; [HS11]

They are easy to remove by construction.
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Introduction

Example 5: More complex convergence phenomena

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges
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Introduction

The goal

Add robustness to the theory of timed automata

We need to understand what is the real system behind the
mathematical model, and also which implementation we have in
mind, if any.

Aim: provide frameworks to build

robustly

correct systems

; Robustness calls for specific theories for each application areas

Rest of the talk
We present a couple of frameworks that have been developed recently in
this context. We focus on perturbations on time measurements and jitter.
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Robust model-checking and implementation

Outline

1. Introduction

2. Robust model-checking and implementation
Parameterized enlarged semantics
Automatic generation of an implementation
Implementation by shrinking

3. Robust realisability
Excess semantics
Conservative semantics

4. Conclusion
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Robust model-checking and implementation

Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation)
in the verification process

Due to imprecisions,

“standard” correctness of A 6⇒ correctness of Areal

; We aim at proposing frameworks in which we will ensure the
correctness of the real behaviour of the system

We describe two such frameworks:

1 either we implement A and we prove:

“robust” correctness of A ⇒ correctness of Areal

2 or we build A and implement B, and we prove:

correctness of A ⇒ “robust” correctness of B
⇒ correctness of Breal
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Robust model-checking and implementation

Parameterized enlarged semantics for timed automata

A transition can be taken at any time in [t − δ; t + δ]

Example

Given a parameter δ,

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

is transformed into

1−δ≤x≤1+δ

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ
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Parameterized enlarged semantics – Discussion

[DDR04] De Wulf, Doyen, Raskin. Almost ASAP semantics: From timed models to timed implementations HSCC, 2004.
[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

What is the relevance of this semantics?
This is a worst-case approach

This captures approximate behaviours of the system

One can define program semantics such that for every ε > 0:

A ⊆ programε(A) ⊆ Af (ε)

ε: parameters of the semantics

Methodology

Design A
Verify Aδ (better if δ is a parameter)

Implement A

; This is good for designing systems
with simple timing constraints (e.g. equalities).
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Parameterized enlarged semantics – Algorithmics

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.
[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata. LATIN, 2006.
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines. FoSSaCS, 2008.

; It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some δ0 > 0 such that for every 0 ≤ δ ≤ δ0,
Aδ |= ϕ.

When δ is small, truth of ϕ is independent of δ

It can be computed using a simple extension of the region automaton

Theorem
Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties
is decidable. Complexities are those of standard non robust
model-checking problems.
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is decidable. Complexities are those of standard non robust
model-checking problems.

25/46



Robust model-checking and implementation

Parameterized enlarged semantics – Algorithmics

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.
[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata. LATIN, 2006.
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines. FoSSaCS, 2008.

; It adds extra behaviours, however small may be parameter δ

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

The (parameterized) robust model-checking problem

It asks whether there is some δ0 > 0 such that for every 0 ≤ δ ≤ δ0,
Aδ |= ϕ.

When δ is small, truth of ϕ is independent of δ
It can be computed using a simple extension of the region automaton

Theorem
Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties
is decidable. Complexities are those of standard non robust
model-checking problems.

25/46



Robust model-checking and implementation

Parameterized enlarged semantics – Algorithmics

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.
[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata. LATIN, 2006.
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines. FoSSaCS, 2008.

; It adds extra behaviours, however small may be parameter δ

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

The (parameterized) robust model-checking problem

It asks whether there is some δ0 > 0 such that for every 0 ≤ δ ≤ δ0,
Aδ |= ϕ.

When δ is small, truth of ϕ is independent of δ
It can be computed using a simple extension of the region automaton

Theorem
Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties
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Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties
is decidable. Complexities are those of standard non robust
model-checking problems.
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is decidable. Complexities are those of standard non robust
model-checking problems.

25/46



Robust model-checking and implementation

Parameterized enlarged semantics – Algorithmics

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.
[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata. LATIN, 2006.
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines. FoSSaCS, 2008.

; It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some δ0 > 0 such that for every 0 ≤ δ ≤ δ0,
Aδ |= ϕ.

When δ is small, truth of ϕ is independent of δ

It can be computed using a simple extension of the region automaton

Theorem
Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties
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Robust model-checking and implementation

Automatic generation of an implementation

[BLM+11] Bouyer, Larsen, Markey, Sankur, Thrane. Timed automata can always be made implementable. CONCUR, 2011.

The (approx.) implementation synthesis problem

Given A, build A′ such that:

A′ ‘identical’ (e.g. bisimilar) to A
A′ is ‘robust’ (that is, good enough for implementation)

The second condition can be (for instance) read as A′ is approximately the

same as A′δ, for small enough δ.

Theorem
All timed automata are approximately implementable!
(for approx. bisimulation)

Technical tool: region construction

Methodology

Design and verify A
Implement A′ (automatically generated)

, Separates design and implementation
/ A′ is much bigger than A
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Robust model-checking and implementation

Parameterized shrunk semantics for timed automata

[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

A constraint [a, b] is shrunk to [a + kδ; b − hδ]
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Why should we do that?

Abstract model Real-world model

1≤x≤2

1+δ′≤x≤2−δ

1−∆≤x≤2+∆

1+δ′−∆≤x≤2−δ+∆

It is fine as soon as [1 + δ′ −∆; 2− δ + ∆] ⊆ [1; 2],

which is the case when δ, δ′ ≥ ∆.
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Robust model-checking and implementation

Parameterized shrunk semantics for timed automata

[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

A constraint [a, b] is shrunk to [a + kδ; b − hδ]

Summary of the approach

; Shrink the clock constraints in the model, to prevent additional
behaviours in the implementation

If B = A−kδ, then

B ⊆ programε(B) ⊆ Bf (ε) = A−kδ+f (ε) ⊆ A
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Robust model-checking and implementation

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

Design and verify A
Implement A−kδ (parameters are k and δ)

; This is good for designing systems
with strong/hard timing constraints

B Problem

Make sure that no important behaviours are lost in A−kδ!!
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Robust model-checking and implementation

Parameterized shrunk semantics – Algorithmics

[San13] Sankur. Shrinktech: A tool for the robustness analysis of timed automata. CAV, 2013.

The (parameterized) shrinkability problem

Find parameters k and δ such that:

A vt.a. A−kδ (or F vt.a. A−kδ for some finite automaton F)
[shrinkability w.r.t. untimed simulation]

A−kδ is non-blocking whenever A is non-blocking
[shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

Challenge: take care of the accumulation of perturbations

Technical tools: parameterized shrunk DBM, max-plus equations

Tool Shrinktech developed by Ocan Sankur [San13]

http://www.lsv.ens-cachan.fr/Software/shrinktech/
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Robust model-checking and implementation

Technical tools: Shrunk DBMs and max-plus equations

Shrunk DBMs with parameter δ...

... are used to represent sets of states of shrunk automata:

DBM: x − y ≤ α
Shrunk DBM: x − y ≤ α− 5δ

Parameterized shrunk DBM: x − y ≤ α− kδ

5δ

3δ

= Pretime

à
∩ Unresety

à íí
... to max-plus equations

k1δ

k2δ

k3δ

k4δ
;

k3 = max(k1 + k2, k3)
k2 = max(k2, k1) + k3
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Robust model-checking and implementation

Example

y≤1∧u≥0

u,y :=0

y≤1∧1≤x

u≥0, u,x :=0

u≥0∧y≤1

u,y :=0

u,x,y :=0

The largest shrunk automaton which is correct w.r.t. untimed simulation
and non-blockingness is:

3δ≤x∧y≤1−δ∧u≥δ

y−x≤1−4δ∧u≥δ
u,y :=0

y≤1−2δ∧1+δ≤x

u≥δ∧x−y≥3δ
u,y :=0

u≥δ∧y≤1−δ

u,y :=0

u,x,y :=0
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Robust realisability

Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and
action) non-determinism

Idea of robust realisability

Synthesize strategies that realise some property, even under
perturbations: strategies should adapt to previous imprecisions
imprecisions

; develop a theory of robust strategies that tolerate
errors/imprecisions and avoid convergence
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Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Strategy: in location with value x , delay 2−x
2

This strategy requires infinite precision

In practice, when x is close to 2, no additional delay is supported:
the run is theoretically infinite, but it is actually blocking

And that is unavoidable
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Robust realisability

Game semantics of a timed automaton

Game semantics Gδ(A) of timed automaton A...
... between Controller and Perturbator:

from (`, v), Controller suggests a delay d ≥ δ and a next edge

e = (`
g ,Y−−→ `′) that is available after delay d

Perturbator then chooses a perturbation ε ∈ [−δ; +δ]

Next state is (`′, (v + d + ε)[Y ← 0])

Note: when δ = 0, this is the standard semantics of timed automata.

A δ-robust strategy for Controller is then a strategy that satisfies the
expected property, whatever plays Perturbator.
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A δ-robust strategy for Controller is then a strategy that satisfies the
expected property, whatever plays Perturbator.
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Robust realisability

The excess game semantics

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP, 2012.

Constraints may not be satisfied after the perturbation: that is,
only v + d should satisfy g

Example

x=y=1

y :=0

; Allows simple design of constraints, ensures divergence of time,
avoids convergence phenomena
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Robust realisability

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.
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1 Accumulation of perturbations:
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Robust realisability

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The parameterized synthesis problem for reachability properties is
decidable and EXPTIME-complete. Furthermore, uniform winning
strategies (w.r.t. δ) can be computed.

Technical tool: a region-based refined game abstraction

, Extends to two-player games (i.e. to real control problems)

/ Only valid for reachability properties
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Robust realisability

The conservative game semantics

[SBMR13] Sankur, Bouyer, Markey, Reynier. Robust Controller Synthesis in Timed Automata. CONCUR’13.

Constraints have to be satisfied after the perturbation: that is,
v + d + ε should satisfy g for every ε ∈ [−δ; +δ]

Example

1<x<2

y :=0

; Strongly ensures timing constraints, ensures divergence of time,
prevents converging phenomena
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Robust realisability

The conservative game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The synthesis problem for Büchi properties is decidable and
PSPACE-complete. Furthermore, δ is at most doubly-exponential, and
uniform winning strategies (w.r.t. δ) can be computed.
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Robust realisability

[AB11] Asarin, Basset. Thin and Thick Timed Regular Languages. FORMATS, 2011.

The problem consists in finding cycles that do not become blocked.

A converging phenomena:

×

No convergence:

No such constraining half-spaces.

Tools for solving the synthesis problem

Orbit graphs, forgetful cycles [AB11]

Forgetful (that is, strongly connected) orbit graph ⇔ no
convergence phenomena
; strong relation with thick automata.
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Robust realisability

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

A region cycle:
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The corresponding (folded) orbit graph:
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Robust realisability

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

The cycle is not forgetful (that is, not strongly connected), Perturbator
can enforce convergence:

≥ ε
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Conclusion

Conclusion

Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.

Not always easy to transfer correctness proven in this model to real
behaviours of the system.

We have shown several frameworks for robustness that can be used
to ensure correctness in the real-world..

Extension of these works to richer models seems unfortunately hard
[BMS13]

A quantitative approach to robustness: Perturbator plays randomly

Symbolic algorithms?

This list of possible approaches is not exhaustive:

tube acceptance [GHJ97]
sampling approach [KP05,BLM+11]
probabilistic approach [BBB+08,BBJM12]
. . .
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