#### A Probabilistic Semantics for Timed Automata

Christel Baier<sup>1</sup>, Nathalie Bertrand<sup>2</sup>, Patricia Bouyer<sup>3</sup> Thomas Brihaye<sup>4</sup>, Marcus Größer<sup>1</sup>

<sup>1</sup>Technische Universität Dresden – Germany

<sup>2</sup>IRISA/INRIA Rennes - France

<sup>3</sup>LSV - CNRS & ENS Cachan - France

<sup>4</sup>Université de Mons-Hainaut – Belgium

► Timed automata, an idealized mathematical model for real-time systems

- Timed automata, an idealized mathematical model for real-time systems
  - assumes infinite precision of clocks
  - assumes instantaneous actions
  - ► etc...

- Timed automata, an idealized mathematical model for real-time systems
  - assumes infinite precision of clocks
  - assumes instantaneous actions
  - etc...

→ notion of strong robustness defined in [DDR04]

- Timed automata, an idealized mathematical model for real-time systems
  - assumes infinite precision of clocks
  - assumes instantaneous actions
  - ▶ etc...

- → notion of strong robustness defined in [DDR04]
- ▶ In a model, only few traces may violate the correctness property: they may hence not be relevant...

- Timed automata, an idealized mathematical model for real-time systems
  - assumes infinite precision of clocks
  - assumes instantaneous actions
  - etc...

- → notion of strong robustness defined in [DDR04]
- ► In a model, only few traces may violate the correctness property: they may hence not be relevant...
  - → topological notion of tube acceptance in [GHJ97]

- Timed automata, an idealized mathematical model for real-time systems
  - assumes infinite precision of clocks
  - assumes instantaneous actions
  - ▶ etc...

- → notion of strong robustness defined in [DDR04]
- ▶ In a model, only few traces may violate the correctness property: they may hence not be relevant...
  - → topological notion of tube acceptance in [GHJ97]
  - → notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

- Timed automata, an idealized mathematical model for real-time systems
  - assumes infinite precision of clocks
  - assumes instantaneous actions
  - etc...

- → notion of strong robustness defined in [DDR04]
- ▶ In a model, only few traces may violate the correctness property: they may hence not be relevant...
  - → topological notion of tube acceptance in [GHJ97]
  - → notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

Aim: Use probabilities to "relax" the semantics of timed automata

#### Initial example



Intuition: from the initial state,

this automaton almost-surely satisfies "G green"

### A maybe less intuitive example



Does it *almost-surely* satisfy "F red"?

 $\blacktriangleright \ \pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n}) \text{: symbolic path from } s \text{ firing edges } e_1, \dots, e_n$ 

- $\blacktriangleright \pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path from s firing edges  $e_1, \dots, e_n$
- ► Example:



- $\blacktriangleright \pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path from s firing edges  $e_1, \dots, e_n$
- ► Example:



► Idea:

From state  $s_0$ :

- $\blacktriangleright \pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path from s firing edges  $e_1, \dots, e_n$
- ► Example:



$$\pi\big(s_0 \xrightarrow{e_1} \xrightarrow{e_2}\big) = \big\{s_0 \xrightarrow{\tau_1,e_1} s_1 \xrightarrow{\tau_2,e_2} s_2 \ | \ \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\big\}$$

► Idea:

#### From state $s_0$ :

randomly choose a delay

- $\blacktriangleright \pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path from s firing edges  $e_1, \dots, e_n$
- ► Example:



► Idea:

#### From state $s_0$ :

- randomly choose a delay
- ▶ then randomly select an edge

- $\blacktriangleright \pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path from s firing edges  $e_1, \dots, e_n$
- ► Example:



► Idea:

#### From state $s_0$ :

- randomly choose a delay
- then randomly select an edge
- then continue

symbolic path: 
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s, e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) d\mu_s(t)$$

$$\mathsf{symbolic}\;\mathsf{path}\colon\;\pi\big(s\xrightarrow{e_1}\cdots\xrightarrow{e_n}\big)=\big\{s\xrightarrow{\tau_1,e_1}s_1\cdots\xrightarrow{\tau_n,e_n}s_n\big\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \,\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

▶  $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$  and  $\mu_s$  distrib. over  $I(s) = \bigcup_e I(s, e)$ 







$$\text{symbolic path: } \pi \big( s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \big) = \big\{ s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \big\}$$

$$\mathbb{P}\left(\pi\left(\mathbf{s} \xrightarrow{\mathbf{e}_{1}} \cdots \xrightarrow{\mathbf{e}_{n}}\right)\right) = \int_{t \in I(\mathbf{s}, \mathbf{e}_{1})} p_{s+t}(e_{1}) \,\mathbb{P}\left(\pi\left(s_{t} \xrightarrow{e_{2}} \cdots \xrightarrow{e_{n}}\right)\right) \,\mathrm{d}\mu_{s}(t)$$

▶  $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$  and  $\mu_s$  distrib. over  $I(s) = \bigcup_e I(s, e)$ 



symbolic path: 
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s, e_n)} p_{s+t}(e_1) \, \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) \, \mathrm{d}\mu_s(t)$$

- ▶  $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$  and  $\mu_s$  distrib. over  $I(s) = \bigcup_e I(s, e)$
- $\triangleright$   $p_{s+t}$  distrib. over transitions enabled in s+t

$$\mathsf{symbolic}\;\mathsf{path}\colon\;\pi\big(\mathsf{s}\xrightarrow{\mathsf{e}_1}\cdots\xrightarrow{\mathsf{e}_n}\big)=\big\{\mathsf{s}\xrightarrow{\tau_1,\mathsf{e}_1}\mathsf{s}_1\cdots\xrightarrow{\tau_n,\mathsf{e}_n}\mathsf{s}_n\big\}$$

$$\mathbb{P}\left(\pi(\mathbf{s} \xrightarrow{\mathbf{e}_1} \cdots \xrightarrow{\mathbf{e}_n})\right) = \int_{t \in I(\mathbf{s}, \mathbf{e}_1)} p_{\mathbf{s}+t}(\mathbf{e}_1) \, \mathbb{P}\left(\pi(\mathbf{s}_t \xrightarrow{\mathbf{e}_2} \cdots \xrightarrow{\mathbf{e}_n})\right) \, \mathrm{d}\mu_s(t)$$

- ▶  $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$  and  $\mu_s$  distrib. over  $I(s) = \bigcup_e I(s, e)$
- $\triangleright$   $p_{s+t}$  distrib. over transitions enabled in s+t

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) d\mu_s(t)$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

Can be viewed as an n-dimensional integral

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \,\mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- ► Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \,\mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- ► Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

▶ Definition over sets of infinite runs:

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \,\mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- ► Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- ▶ Definition over sets of infinite runs:
  - $\mathsf{Cyl}(\pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n})\}$

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \, \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \, \mathrm{d}\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- ► Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- ▶ Definition over sets of infinite runs:
  - $\mathsf{Cyl}(\pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n})\}$
  - $\qquad \qquad \mathbb{P}\big(\mathsf{Cyl}\big(\pi_{\mathcal{C}}(s\xrightarrow{e_1}\cdots\xrightarrow{e_n})\big)\big) = \mathbb{P}\big(\pi_{\mathcal{C}}(s\xrightarrow{e_1}\cdots\xrightarrow{e_n})\big)$

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \, \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \, \mathrm{d}\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- ▶ Definition over sets of infinite runs:
  - $\mathsf{Cyl}(\pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
  - $\qquad \qquad \qquad \qquad \qquad \mathbb{P}\big(\mathsf{Cyl}\big(\pi_{\mathcal{C}}(s\xrightarrow{e_1}\cdots\xrightarrow{e_n})\big)\big) = \mathbb{P}\big(\pi_{\mathcal{C}}(s\xrightarrow{e_1}\cdots\xrightarrow{e_n})\big)$
  - unique extension of  $\mathbb P$  to the generated  $\sigma$ -algebra

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \, \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \, \mathrm{d}\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- ► Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- ▶ Definition over sets of infinite runs:
  - $\mathsf{Cyl}(\pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
  - $\blacktriangleright \ \mathbb{P}\left(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))\right) = \mathbb{P}\left(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right)$
  - unique extension of  $\mathbb{P}$  to the generated  $\sigma$ -algebra
- ▶ Property: P is a probability measure over sets of infinite runs

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \, \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \, \mathrm{d}\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- Definition over sets of infinite runs:
  - $\mathsf{Cyl}(\pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(\mathsf{s} \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n})\}$
  - $\blacktriangleright \ \mathbb{P}\left(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))\right) = \mathbb{P}\left(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right)$
  - unique extension of  $\mathbb{P}$  to the generated  $\sigma$ -algebra
- ▶ Property: P is a probability measure over sets of infinite runs
- ► Example:





$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} d\mu_{s_0}(t)$$



$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} d\mu_{s_0}(t) \\
= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\left(\pi(s_2)\right)}{2} d\mu_{s_1}(u)\right) d\mu_{s_0}(t)$$



$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\left(\pi(s_2)\right)}{2} d\mu_{s_1}(u)\right) d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{1}{2} \frac{du}{2}\right) dt = \frac{1}{4}$$

#### Back to the first example



#### Back to the first example



$$\blacktriangleright \ \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = 1$$

## Back to the first example



- $\blacktriangleright \ \mathbb{P} \big( \pi (s_0 \xrightarrow{e_1} \xrightarrow{e_2}) \big) = 1$
- $\blacktriangleright \ \mathbb{P}\Big(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\Big) = 0$

## Back to the first example



- $\blacktriangleright \ \mathbb{P} \Big( \pi \big( s_0 \xrightarrow{e_1} \xrightarrow{e_3} \big) \Big) = 0$
- ▶  $\mathbb{P}(\mathbf{G} \text{ green}) = 1$





$$\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = 0$$



- $\blacktriangleright \ \mathbb{P} \big( \pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3}) \big) = 1$



- $\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = 0$
- $\blacktriangleright \ \mathbb{P}\Big(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\Big) = 1$
- $ightharpoonup \mathbb{P}ig(\mathbf{F} \ \mathsf{red}ig) = 1$

## Almost-sure model-checking

If  $\varphi$  is an LTL formula,

$$s 
otpprox arphi \stackrel{\mathrm{def}}{\Leftrightarrow} \ \mathbb{P}ig(\{arrho \in \mathsf{Runs}(s) \mid arrho \models arphi\}ig) = 1$$

## Almost-sure model-checking

If  $\varphi$  is an LTL formula,

$$s \bowtie \varphi \stackrel{\text{def}}{\Leftrightarrow} \mathbb{P} \big( \{ \varrho \in \mathsf{Runs}(s) \mid \varrho \models \varphi \} \big) = 1$$

(This definition extends naturally to CTL\* specifications...)

## Almost-sure model-checking

If  $\varphi$  is an LTL formula,

$$s \bowtie \varphi \stackrel{\text{def}}{\Leftrightarrow} \mathbb{P} \big( \{ \varrho \in \mathsf{Runs}(s) \mid \varrho \models \varphi \} \big) = 1$$

(This definition extends naturally to CTL\* specifications...)

We want to decide the almost-sure model-checking... (This is a qualitative question)





$$\mathcal{A} \not\models \mathbf{G}(green \Rightarrow \mathbf{F} \operatorname{red})$$



 $\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$  but  $\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$ 



Indeed, almost surely, paths are of the form  $e_1^*e_2ig(e_4e_5ig)^\omega$ 

# The classical region automaton









... viewed as a finite Markov chain  $MC(\mathcal{A})$ 



... viewed as a finite Markov chain MC(A)

#### **Theorem**

For single-clock timed automata,

$$\mathcal{A} \succcurlyeq \varphi$$
 iff  $\mathbb{P}(MC(\mathcal{A}) \models \varphi) = 1$ 

#### **Theorem**

- ▶ of LTL is PSPACE-Complete
- of  $\omega$ -regular properties is NLOGSPACE-Complete

#### **Theorem**

- ▶ of LTL is PSPACE-Complete
- of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:

#### Theorem

- of LTL is PSPACE-Complete
- of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:
  - ► size of single-clock region automata = polynomial [LMS04]

#### **Theorem**

- of LTL is PSPACE-Complete
- of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:
  - size of single-clock region automata = polynomial [LMS04]
  - ▶ apply result of [CSS03] to the finite Markov chain

#### **Theorem**

- of LTL is PSPACE-Complete
- $\triangleright$  of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:
  - ▶ size of single-clock region automata = polynomial [LMS04]
  - ▶ apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved

#### **Theorem**

- of LTL is PSPACE-Complete
- ightharpoonup of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:
  - ▶ size of single-clock region automata = polynomial [LMS04]
  - ▶ apply result of [CSS03] to the finite Markov chain
- ► Correctness: the proof is rather involved
  - requires the definition of a topology over the set of paths

#### **Theorem**

- of LTL is PSPACE-Complete
- $\blacktriangleright$  of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:
  - ▶ size of single-clock region automata = polynomial [LMS04]
  - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
  - requires the definition of a topology over the set of paths
  - ▶ notions of largeness (for proba 1) and meagerness (for proba 0)

#### **Theorem**

- of LTL is PSPACE-Complete
- $\blacktriangleright$  of  $\omega$ -regular properties is NLOGSPACE-Complete
- ► Complexity:
  - ▶ size of single-clock region automata = polynomial [LMS04]
  - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
  - requires the definition of a topology over the set of paths
  - ▶ notions of largeness (for proba 1) and meagerness (for proba 0)
  - link between probabilities and topology thanks to the topological games called Banach-Mazur games





lacktriangle If the previous algorithm was correct,  $\mathcal{A} pprox \mathbf{G} \, \mathbf{F} \, \operatorname{\mathsf{red}} \, \wedge \, \mathbf{G} \, \mathbf{F}$  green



- $\blacktriangleright$  If the previous algorithm was correct,  $\mathcal{A} \approx G\,F$  red  $\wedge$   $G\,F$  green
- ▶ However, we can prove that  $\mathbb{P}(\mathbf{G} \neg \mathsf{red}) > 0$



- ▶ If the previous algorithm was correct,  $\mathcal{A} \approx \mathbf{G} \, \mathbf{F} \, \mathsf{red} \, \wedge \, \mathbf{G} \, \mathbf{F}$  green
- ▶ However, we can prove that  $\mathbb{P}(\mathbf{G} \neg \mathsf{red}) > 0$
- ▶ There is a *strange* convergence phenomenon: along an execution, if  $\delta_i > 0$  is the delay in location  $\ell_4$ , then we have that  $\sum_i \delta_i \leq 1$

▶ The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

▶ The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

▶ In single-clock timed automata, we can decide in NLOGSPACE whether  $\mathbb{P}(\mathsf{Zeno}(s)) = 0$ :

▶ The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl} \big( \pi \big( s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \big) \big)$$

- ▶ In single-clock timed automata, we can decide in NLOGSPACE whether  $\mathbb{P}(\mathsf{Zeno}(s)) = 0$ :
  - check whether there is a purely Zeno BSCC in  $MC(\mathcal{A})$



▶ The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl} \big( \pi \big( s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \big) \big)$$

- ▶ In single-clock timed automata, we can decide in NLOGSPACE whether  $\mathbb{P}(\mathsf{Zeno}(s)) = 0$ :
  - check whether there is a purely Zeno BSCC in MC(A)



an interesting notion of non-Zeno timed automata



▶ Other "probabilistic and timed" (automata-)based models

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM

[KNSS02]

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM

[KNSS02]

► real-time probabilistic systems

[ACD91,ACD92]

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM

[KNSS02] [ACD91, ACD92]

real-time probabilistic systems

[BHHK03]

dense-time Markov chains

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM

[KNSS02]

real-time probabilistic systems

[ACD91,ACD92] [BHHK03]

dense-time Markov chains

NB: our model generalizes dense-time Markov chains

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM

[KNSS02] [ACD91,ACD92]

real-time probabilistic systems

[BHHK03]

dense-time Markov chains

NB: our model generalizes dense-time Markov chains

► Labelled Markov processes over a continuum

[DGJP03,04]

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM

[KNSS02] [ACD91,ACD92]

real-time probabilistic systems

[BHHK03]

dense-time Markov chains

NB: our model generalizes dense-time Markov chains

► Labelled Markov processes over a continuum

[DGJP03,04]

► Strong relation with robustness

▶ Other "probabilistic and timed" (automata-)based models

probabilistic timed automata à la PRISM [KNSS02]

real-time probabilistic systems

[ACD91,ACD92] [BHHK03]

dense-time Markov chains

NB: our model generalizes dense-time Markov chains

► Labelled Markov processes over a continuum

[DGJP03,04]

- ► Strong relation with robustness
  - robust timed automata

[GHJ97,HR00]

robust model-checking

[Puri98,DDR04,DDMR04,ALM05,BMR06,BMR08] cf Pierre-Alain Reynier's talk tomorrow

- ► a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative LTL model-checking

- ▶ a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative LTL model-checking
- remark: extends to hybrid systems with finite bisimulation quotient

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative LTL model-checking
- remark: extends to hybrid systems with finite bisimulation quotient

#### **Ongoing works**

- quantitative analysis
- games

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- ▶ algorithm for qualitative LTL model-checking
- remark: extends to hybrid systems with finite bisimulation quotient

### **Ongoing works**

- quantitative analysis
- games

#### **Further works**

- efficient zone-based algorithm
- apply to relevant examples
- ▶ add non-determinism (à la MDP)
- handle several clocks
- timed properties