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» Timed automata, an idealized mathematical model for real-time
systems

> assumes infinite precision of clocks
> assumes instantaneous actions
> etc...

=» notion of strong robustness defined in [DDRO04]

» In a model, only few traces may violate the correctness property:
they may hence not be relevant...

=» topological notion of tube acceptance in [GHJ97]

=» notion of fair correctness in [VV06] based on probabilities
(for untimed systems) + topological characterization

Aim: Use probabilities to “relax” the semantics of timed automata J
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Initial example

Intuition: from the initial state,

this automaton almost-surely satisfies “G green”
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A maybe less intuitive example

Does it almost-surely satisfy “F red”?
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Our proposition

» (s = ... 25 ): symbolic path from s firing edges ey, ...
» Example:

x<2, ¢ x<5, e
y=>1

y:=0
XS3, €4

’/T(SO i1—>£2—>) = {50

> ldea:

From state sg:

7en

T1,€; T2,€2
s =59 | m<2, n+n<5 n>1}
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Our proposition

e €, . .
» 7(s = ... —): symbolic path from s firing edges e1, ..., e,
» Example:
X§2, er X§5, €

y:=0 y=>1

x<3, e
S €2 T1,€1 T2,€2
7T(50-1—>-—>)={50————>51————>52 | 71 <2, 11+ 7 <5, TQZ].}

> ldea:

From state sg:
> randomly choose a delay
> then randomly select an edge

» then continue
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Our proposition

. € €n T1,€1 Th,€
symbolic path: 7(s =5 -+ 5 ) ={s —= 5.+ 5 5,

P(r(s e ) = pose(er)

> I(s,e1) = {7 | s =2} and ps distrib. over I(s) = J, I(s, e)
> psy¢ distrib. over transitions enabled in s+ ¢
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Our proposition

€1 €n )_ {S T1,€1 Tny€n

symbolic path: m(s — -+ = A L LN
P(r(s %o ) = P(r(se 2 - )

> I(s,e1) = {7 | s 22} and ps distrib. over I(s) = U. (s, e)
> psy¢ distrib. over transitions enabled in s+ ¢

t e
> s Ss+t-—s
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Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t)

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths

me(s o ) ={s 28 5 2% s | (71, 5 Ta) EC)
» Definition over sets of infinite runs:

> Cyl(me(s = -+ ) ={o- 0 |e€me(s = - )}

> P(Cyl(me(s NN ))) =P(me(s Ay )

> unique extension of PP to the generated o-algebra
» Property: P is a probability measure over sets of infinite runs
» Example:

> Zeno(s U ﬂ U Cyl(7s,7,<m(s B TN )

MeN neN (ep,--- ,en)EEN
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An example of computation (with uniform distributions)

e, x<1 .
63,X§2 .
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x<1 x:=0 x <2

The probability of the symbolic path 7(sp == ) is I

8/18



An example of computation (with uniform distributions)

e, x<1 .
63,X§2 .

e, x =1

e, x<1

x<1 x:=0 x <2

The probability of the symbolic path 7(sp == ) is I

1 1L P(7w S1 i
P(r(sp ) = | Pr(ss = ))dus(t) + Mduso(t)
0 1 2

8/18



An example of computation (with uniform distributions)

62,X§1 .
63,X§2 .

e07X:1

e, x<1

x<1 x:=0 x <2

The probability of the symbolic path 7(sp == ) is I

1 1L P(7w S1 i
P(r(s ) = [ Pr(st2))dus (t) + Mowso(t)
0 1 2

B [ [ (Wd“ﬂ(“)> dpis(2)

8/18



An example of computation (with uniform distributions)

62,X§1 .
63,X§2 .

e07X:1

e, x<1

x<1 x:=0 x <2

The probability of the symbolic path 7(sp == ) is I

1 1L P(7w S1 i
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Almost-sure model-checking

If ¢ is an LTL formula,

ske E P({eeRuns(s) o= g}) =1

(This definition extends naturally to CTL* specifications...)

We want to decide the almost-sure model-checking...
(This is a qualitative question)
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An example

e, x<1 e7, x<1

e, x>3, x:=0

e, x<1

es, x=1 es, XS].
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An example

e, x<1 er, x<1

e, x>3, x:=0

e3, x=1 es, x<1

A £ G(green = F red) but A R G(green = F red)

w
Indeed, almost surely, paths are of the form efeg(e4e5)
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The pruned region automaton
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The pruned region automaton

.. viewed as a finite Markov chain MC(A)

Theorem

For single-clock timed automata,

AR o iff P(MC(A) E¢) =1
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Result

For single-clock timed automata, the almost-sure model-checking
» of LTL is PSPACE-Complete
» of w-regular properties is NLOGSPACE-Complete

v

Complexity:
> size of single-clock region automata = polynomial [LMS04]
> apply result of [CSS03] to the finite Markov chain
Correctness: the proof is rather involved
> requires the definition of a topology over the set of paths
> notions of largeness (for proba 1) and meagerness (for proba 0)
> link between probabilities and topology thanks to the topological
games called Banach-Mazur games

v
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An example with two clocks

> If the previous algorithm was correct, A & GF red A GF green

» However, we can prove that ]P’(G —|red) >0

» There is a strange convergence phenomenon: along an execution, if
d; > 0 is the delay in location /4, then we have that }.6; <1
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A note on Zeno behaviours

» The set of Zeno behaviours is measurable:

Zeno(s U ﬂ U Cyl(n (s L )

MEN neN (e, ,e,)EE"

> In single-clock timed automata, we can decide in NLOGSPACE
whether P(Zeno(s)) =0

» check whether there is a purely Zeno BSCC in MC(A)

+T1

l\
x<1 (Q g

> an interesting notion of non-Zeno timed automata

x<1, x:=0
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Related works

» Other “probabilistic and timed” (automata-)based models

> probabilistic timed automata a /la PRISM [KNSS02]
> real-time probabilistic systems [ACD91,ACD92]
> dense-time Markov chains [BHHKO3]

NB: our model generalizes dense-time Markov chains
> Labelled Markov processes over a continuum [DGJP03,04]

» Strong relation with robustness

> robust timed automata [GHJ97,HRO00]
> robust model-checking

[Puri98,DDR04,DDMR04,ALM05,BMR06,BMR08]

cf Pierre-Alain Reynier’s talk tomorrow
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Conclusions

> a probabilistic semantics for timed automata which removes
“unlikely” (sequences of) events

» qualitative model-checking has a topological interpretation
» algorithm for qualitative LTL model-checking

» remark: extends to hybrid systems with finite bisimulation quotient

Ongoing works
> quantitative analysis

> games

Further works

» efficient zone-based algorithm

> apply to relevant examples

» add non-determinism (& /la MDP)
» handle several clocks
>

timed properties
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