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General framework

Verification and formal languages

(finite automata)

Real systems Syst ; ASyst

Specification Spec ; Aϕ

The question Syst |= Spec ? ; L(ASyst) ⊆ L(Aϕ) ?

Importance to have efficient algorithms to check language inclusion!

(PSPACE-complete)

Two special instances:

The emptiness problem: L(A) ⊆ ∅

(NL-complete)

The universality problem: Σ∗ ⊆ L(A)

(PSPACE-complete)

Every finite automaton is determinizable
into an exponential size finite automaton.
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General framework

Determinizing finite automata (on finite words)

Example: L(A) = (aa)∗aa

`0 `1`3 `2

a a

a

a

Unfolding A

`0

`1

`3

`2

`0

`1

`3

···

···

a

a

a

a

a

a

A deterministic version of A

{`0} {`1,`3} {`0,`2}
a

a

a
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Timed automata

What is a timed automaton?

safe alarm

repairing

failsafe

problem, {x}
re
pa
ir

, x≤15

{y}

delayed, {y :}

15≤x≤16

repair

2≤y∧x≤56

{y}

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

; It reads the timed word (problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)
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Timed automata

Timed languages accepted by timed automata

Example

Let A be the following timed automaton:

`0 `1`3 `2

x>0,a x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

L(A) = {(a, t1)(a, t2) · · · (a, t2n) |
n ≥ 1, 0 < t1 < t2 < · · · < t2n−1

and t2n − t2n−2 = 1}

The timed word w = (a, 0.2)(a, 0.5)(a, 1.2)(a, 1.5) is in L(A).
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Timed automata

Results on timed automata [AD90,AD94]

Emptiness problem

The emptiness problem is PSPACE-complete for timed automata.

Universality problem

The universality problem is undecidable for timed automata.

Inclusion problem

The (language) inclusion problem is undecidable for timed automata.

; prevents using timed automata as a specification language
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Timed automata

Timed automata and determinism

Deterministic timed automaton
A timed automaton A is deterministic whenever for every timed word w ,
there is at most one initial run (starting from (`0, 0)) which reads u.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for
deterministic timed automata.

There exist timed automata that are not determinizable [AD90]

`0 `1 `2

a,{x} x=1,a

a a a

L(A) = {(a, t1) . . . (a, tn) | n ≥ 2 and ∃i < j s.t. tj − ti = 1}

Theorem [Tri03,Fin06]

We cannot decide whether a timed automaton can be determinized.
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Timed automata

Event-clock timed automata [AFH94]

Event-clock timed automata
An event-clock timed automaton is a timed automaton that contains
only event-recording clocks: for every letter a ∈ Σ, there is a clock xa,
which is reset at every occurrence of an a.

Theorem
Event-clock timed automata are determinizable.

Checking universality (and language inclusion) is PSPACE-complete
for event-clock timed automata.
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Unfolding

Unfolding

A `0 `1`3 `2

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

A∞ `0,z0level 0
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Unfolding

Unfolding

A

`0

`0 `1`3 `2

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

A∞

`0,z0

`0,z0level 0
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Unfolding

Unfolding

A `0 `1`3

`1`3

`2

x>0,a,∅

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

x>0,a,{x}

A∞ `0,z0level 0

`1,z0 `3,z1

z0>0,a,{z1} z0>0,a,{z1}

level 1 `1,z0 `3,z1
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Unfolding

Unfolding

A

`0

`0 `1`3

`2

`2

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

A∞ `0,z0level 0

`1,z0 `3,z1

z0>0,a,{z1} z0>0,a,{z1}

level 1

`2,z2 `0,z2

level 2

z0=1,a,{z2} z1>0,a,{z2}

`2,z2 `0,z2
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Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w , there is a unique valuation vw such that
every initial run reading w ends in a configuration (n, vw ) with
level(n) = |w |.

Drawbacks of the unfolding

A∞ has infinitely many locations.

A∞ has infinitely many clocks.

A∞ is not deterministic.

Lemma
A and A∞ are strongly timed bisimilar.
In particular L(A) = L(A∞).
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Region equivalence

Region equivalence on A∞

The standard region equivalence naturally extends to A∞,

at level i we only consider region over {z1, . . . , zi}.

n0

n1 n2

z0>0,a

{z1}

z0>0,a

{z1}

n0,z0=0

n1,r0 n1,r1 n1,r2 n2,r0 n2,r1 n2,r2

0<z0<1,a,{z1} z0>1,a,{z1}

z0=1,a

{z1}

z0=1,a

{z1}

z0>1,a

{z1}

0<z0<1,a

{z1}

where r0 = (0 = z1 < z0 < 1), r1 = (0 = z1 < z0 = 1), r2 = (0 = z1 < 1 < z0).

Lemma

A∞ and R(A∞) are strongly timed bisimilar.
In particular, L(A∞) = L(R(A∞)).
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Symbolic determinization

Symbolic determinization of R(A∞)

n0,z0=0

n1,r0 n1,r1 n1,r2 n2,r0 n2,r1 n2,r2
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z0=1,a
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z0>1,a,{z1}
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Symbolic determinization

Properties of the symbolic determinization

Advantage of SymbDet(R(A∞))

SymbDet(R(A∞)) is deterministic!

Drawbacks of SymbDet(R(A∞))

SymbDet(R(A∞)) has infinitely many locations.

SymbDet(R(A∞)) has infinitely many clocks.

Lemma

L(A) = L(SymbDet(R(A∞))).
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Symbolic determinization

Notion of active clocks

Remember where nodes come from!

{n0},z0=0

{(`0,z0)}

z0: active

{n1,n2},0=z1<z0<1

{(`1,z0),(`3,z1)}

z0: active
z1: active

{n3,n4},z2=0<z1<z0=1

{(`2,z2),(`0,z2)}

{n3,n4},z2=0

z0: inactive
z1: inactive
z2: active

0<z0<1,{z1}

0<z1<z0=1

{z2}
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Symbolic determinization

SymbDet(R(A∞))

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<1<z0) ({n1,n2},0=z1<z0=1)

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<1<z2) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0) ({n8},z4=0) ({n7},z4=0)

...
...

0<z0<1,{z1}

z0>1
{z1}

z0=1,{z1}

0<z1<z0=1
{z2}

0<z1 ,z0 6=1,{z2}

z1>0
{z2}

0<z1<
1<z0,{z2} 0=z1<z0=1

{z2}

0<z2<1
{z3}

z2>1,{z3}

z2=1,{z3}

0<z2<1,{z3}

z2>1
{z3}

z2=1,{z3}

0<z3<z2=1
{z4}

0<z3 ,z2 6=1,{z4}
z3>1

0<z3<1<z2,{z4}
0=z3<z2=1

{z4}
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Reducing the number of clocks

Reducing the number of clocks

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<1<z0) ({n1,n2},0=z1<z0=1)

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<1<z2) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0) ({n8},z4=0) ({n7},z4=0)

...
...

0<z0<1,{z1}

z0>1
{z1}

z0=1,{z1}

0<z1<z0=1
{z2}

0<z1 ,z0 6=1,{z2}
z1>0
{z2}

0<z1<
1<z0,{z2} 0=z1<z0=1

{z2}

0<z2<1
{z3}

z2>1,{z3}

z2=1,{z3}

0<z2<1,{z3}

z2>1
{z3}

z2=1,{z3}

0<z3<z2=1
{z4}

0<z3 ,z2 6=1,{z4}
z3>1

0<z3<1<z2,{z4}
0=z3<z2=1

{z4}

Two clocks are sufficient to get full timing information! ;
(

z2i 7→ x1

z2i+1 7→ x2
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Reducing the number of clocks

Reducing the number of clocks
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Reducing the number of clocks

Properties of the clock reduction

Given γ ∈ N, we say that SymbDet(R(A∞)) is γ-clock-bounded if in
every node, the number of active clocks is bounded by γ.

In our case: γ = 2.

In case SymbDet(R(A∞)) is γ-clock-bounded, we construct using a
deterministic policy Γγ(SymbDet(R(A∞))), an equivalent timed system
with clocks {x1, . . . , xγ}.

Advantages of Γγ(SymbDet(R(A∞)))

Γγ(SymbDet(R(A∞))) is deterministic!

Γγ(SymbDet(R(A∞))) has finitely many clocks.

Drawback of Γγ(SymbDet(R(A∞)))

Γγ(SymbDet(R(A∞))) has infinitely many locations.

Lemma

L(A) = L(Γγ(SymbDet(R(A∞)))).
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a a
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Reducing the number of locations

Γγ(SymbDet(R(A∞)))

({n0},x1=0)

({n1,n2},0=x2<x1<1) ({n1,n2},0=x2<1<x1) ({n1,n2},0=x2<x1=1)

({n3,n4},x1=0) ({n4},x1=0) ({n3},x1=0)

({n5,n6},0=x2<x1<1) ({n5,n6},0=x2<1<x1) ({n5,n6},0=x2<x1=1)

({n7,n8},x1=0) ({n8},x1=0) ({n7},x1=0)

...
...

0<x1<1,{x2}

x1>1
{x2}

x1=1,{x2}

0<x2<x1=1
{x1}

0<x2 ,x1 6=1,{x1}

x2>0
{x1}

0<x2<
1<x1,{x1} 0=x2<x1=1

{x1}

0<x1<1
{x2}

x1>1,{x2}

x1=1,{x2}

0<x1<1,{x2}

x1>1
{x2}

x1=1,{x2}

0<x2<x1=1
{x1} 0<x2 ,x1 6=1,{x1}

x2>1
{x1}

0<x2<1<x1,{x1}
0=x2<x1=1

{x1}
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Reducing the number of locations

Merging “identical” nodes

({n0},x1=0)

({n0},x1=0)
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({n3,n4},x1=0)
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Reducing the number of locations

A deterministic timed automaton equivalent to A

({(`0,x1)},x1=0)

({(`1,x1),(`3,x2)},0=x2<x1<1) ({(`1,x1),(`3,x2)},0=x2<x1=⊥) ({(`1,x1),(`3,x2)},0=x2<x1=1)

({(`0,x1),(`2,x1)},x1=0) ({(`2,x1)},x1=0)

0<x1<1,a

{x2}

x1>1,a

{x2}

x2>0,a

{x1}

x1=1,a

{x2}

x1=1,a

{x1}

0<
x2

,x1
6=1,a

{x1
}

0<x2 <1<x1 ,a
{x1 }

x1=1,a

{x1}

0<
x
1 <

1,a{x
2 }

x 1
>

1,
a

{x 2
}

x1=
1,a

{x2}
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Reducing the number of locations

Properties of the location reduction

In case SymbDet(R(A∞)) is γ-clock-bounded, we define BA,γ obtained
by merging the nodes of Γγ(SymbDet(R(A∞))) with “the same labels”.

Theorem

In case SymbDet(R(A∞)) is γ-clock-bounded, BA,γ is a deterministic
timed automaton such that L(A) = L(BA,γ).
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When can we apply the procedure?

Outline

1. General framework

2. Timed automata

3. Towards a determinization procedure for timed automata...
Unfolding
Region equivalence
Symbolic determinization
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Reducing the number of locations
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When can we apply the procedure?

When can we apply our procedure?
We need to have that SymbDet(R(A∞)) is γ-clock bounded.

The p-assumption

Given p ∈ N, A satisfies the p-assumption if for every n ≥ p, for every run

% = (`0, v0)
τ1,a1−−−→ (`1, v1) . . .

τn,an−−−→ (`n, vn)

for every clock x ∈ X , either x is reset along % or vn(x) > M.

IfA satisfies the p-assumption then SymbDet(R(A∞)) is p-clock bounded.

Classes to which the procedure applies

Event-clock timed automata (with γ = |Σ|)
Strongly non-Zeno timed automata
(since they satisfy the p-assumption)

timed automata with integer resets [SPKM08]
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When can we apply the procedure?

Hardness issues

We can prove EXPSPACE-hardness of:

the universality problem for timed automata satisfying the
p-assumption and for timed automata with integer resets;

the inclusion problem for strongly non-Zeno timed automata.
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When can we apply the procedure?

The results

Summary of the complexity results

size of the det. TA universality problem inclusion problem

TAp doubly exp. EXPSPACE-compl. EXPSPACE-compl.

SnZTA doubly exp. trivial EXPSPACE-compl.

ECTA [AFH94] exp. PSPACE-compl. PSPACE-compl.

IRTA [SPKM08] doubly exp. EXPSPACE-compl. EXPSPACE-compl.

Remark

In case A has one clock, SymbDet(R(A∞)) allows to recover the
decidability of the universality problem in one-clock TA [OW04].
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Conclusion

Conclusion

What we have done

We have described a procedure to determinize timed automata...

... which terminates for several subclasses of timed automata

event-clock timed automata
timed automata with integer resets
strongly non-Zeno timed automata
...

We recover known results, but also describe new determinizable
classes of timed automata.

This procedure gives optimal complexity bounds.

What we will do now

We want to see whether other determinizable classes (open timed
automata) could fit our framework.

We will extend to infinite timed words (with a Safra-like
construction mixed with our procedure?)
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