When are timed automata determinizable?

Christel Baier ' Nathalie Bertrand 2 Patricia Bouyer 3 Thomas Brihaye *

1 Technische Universitat Dresden — Germany
2 IRISA — INRIA Rennes — France

3 LSV — CNRS & ENS Cachan — France
4 Université de Mons — Belgium

June 12, 2009

General framework

Outline

1. General framework

2/29

General framework

Verification and formal languages

Real systems Syst ~ Agyq

Specification ~ Spec ~ A,

3/29

General framework

Verification and formal languages

Real systems Syst ~ Agyq

Specification ~ Spec ~ A,

The question Syst = Spec 7 ~ L(Asyst) C L(Ay) ?

3/29

General framework

Verification and formal languages

Real systems Syst ~ Agyq

Specification ~ Spec ~ A,

The question Syst = Spec 7 ~ L(Asyst) C L(Ay) ?

Importance to have efficient algorithms to check language inclusion!

3/29

General framework

Verification and formal languages

Real systems Syst ~ Agyq

Specification ~ Spec ~ A,

The question Syst = Spec 7 ~ L(Asyst) C L(Ay) ?
Importance to have efficient algorithms to check language inclusion!
Two special instances:

@ The emptiness problem: £(A) C ()
@ The universality problem: X* C £(A)

3/29

General framework

Verification and formal languages (finite automata)

Real systems Syst ~ Agyq

Specification ~ Spec ~ A,

The question Syst |= Spec 7 ~ L(Asys) € L(A,) ?
Importance to have efficient algorithms to check language inclusion!
(PSPACE-complete)

Two special instances:
@ The emptiness problem: £(A) C) (NL-complete)
@ The universality problem: ¥* C £(A) (PSPACE-complete)

3/29

General framework

Verification and formal languages (finite automata)

Real systems Syst ~ Agyq

Specification ~ Spec ~ A,

The question Syst |= Spec 7 ~ L(Asys) € L(A,) ?

Importance to have efficient algorithms to check language inclusion!
(PSPACE-complete)
Two special instances:
@ The emptiness problem: £(A) C) (NL-complete)
@ The universality problem: ¥* C £(A) (PSPACE-complete)

Every finite automaton is determinizable
into an exponential size finite automaton.

3/29

General framework

Determinizing finite automata (on finite words)
Example: £(A) = (aa)*aa

a

® 0@

4/29

Determinizing finite automata (on finite words)

Example: £(A) = (aa)*aa

a

® ¢ ® 0
Unfolding A
a (&) 2

4/29

Determinizing finite automata (on finite words)
Example: £(A) = (aa)*aa

a

General framework

@ ——O———@
’ y
Unfolding A
: D—— a

A deterministic version of A

ol oD

4/29

Timed automata

Outline

2. Timed automata

5/29

Timed automata

What is a timed automaton?

repairing

repair
2<yAx<56

problem, {x}

23 problem 15.6 delayed)
safe —> safe — > alarm —— alarm —— failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
. 2.3 . repair L. 2.1 . done
failsafe ~—— failsafe ———— repairing —— repairing —— safe
15.6 17.9 17.9 40 40
0 2.3 0 22.1 22.1

~ It reads the timed word (problem,23)(delayed,38.6)(repair,40.9)(done, 63)

6/29

Timed languages accepted by timed automata

Example

Let A be the following timed automaton:

x=1,a,{x}

Timed automata

x>0,a,{x}
x>0,

x>0,a,{x}

7/29

Timed automata

Timed languages accepted by timed automata

Example

Let A be the following timed automaton:

x>0,a,{x} i
x>0, =1,a,
x>0,a,{x}

L(A) ={(a,t1)(a t2) -~ (a, t2n) |
n>1L 0<thi<tr<- <ty
and ty, — top_o = 1}

7/29

Timed automata

Timed languages accepted by timed automata

Example

Let A be the following timed automaton:

x>0,a,{x} l
x>0, =1,a,
x>0,a,{x}

L(A) ={(a,t1)(a t2) -~ (a, t2n) |
n>1L 0<thi<tr<- <ty
and ty, — top_o = 1}

The timed word w = (a,0.2)(a,0.5)(a, 1.2)(a, 1.5) is in L(A).

7/29

Timed automata

Results on timed automata [AD90,AD94]

Emptiness problem
The emptiness problem is PSPACE-complete for timed automata. J

8/29

Timed automata

Results on timed automata [AD90,AD94|

Emptiness problem
The emptiness problem is PSPACE-complete for timed automata. J

The universality problem is undecidable for timed automata. I

8/29

Timed automata

Results on timed automata [AD90,AD94|

Emptiness problem

_

The emptiness problem is PSPACE-complete for timed automata.

The universality problem is undecidable for timed automata.

The (language) inclusion problem is undecidable for timed automata.

8/29

Timed automata

Results on timed automata [AD90,AD94|

Emptiness problem
The emptiness problem is PSPACE-complete for timed automata.

_

The universality problem is undecidable for timed automata.

The (language) inclusion problem is undecidable for timed automata.

~ prevents using timed automata as a specification language

8/29

Timed automata

Timed automata and determinism

Deterministic timed automaton

A timed automaton A is deterministic whenever for every timed word w,
there is at most one initial run (starting from (¢o,0)) which reads wu.

9/29

Timed automata

Timed automata and determinism

Deterministic timed automaton

A timed automaton A is deterministic whenever for every timed word w,
there is at most one initial run (starting from (¢o,0)) which reads wu.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for
deterministic timed automata.)

9/29

Timed automata

Timed automata and determinism

Deterministic timed automaton

A timed automaton A is deterministic whenever for every timed word w,
there is at most one initial run (starting from (¢o,0)) which reads wu.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for
deterministic timed automata.)

There exist timed automata that are not determinizable [AD90]

a a a

Ax =1,
O SR G T ©

L(A)={(a,t1)...(a,tn) | n>2and Ji <js.t. tj—t; =1}

9/29

Timed automata

Timed automata and determinism

Deterministic timed automaton

A timed automaton A is deterministic whenever for every timed word w,
there is at most one initial run (starting from (4o, 0)) which reads wv.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for
deterministic timed automata.

There exist timed automata that are not determinizable [AD90]

a a a

L(A)={(a,t1)...(a,tn) | n>2and Ji <js.t. tj—t; =1}

[Tri03,Fin06]
We cannot decide whether a timed automaton can be determinized.
9/29

Timed automata

Event-clock timed automata [AFH94]

Event-clock timed automata
An event-clock timed automaton is a timed automaton that contains
only event-recording clocks: for every letter a € ¥, there is a clock x,,
which is reset at every occurrence of an a.

10/29

Timed automata

Event-clock timed automata [AFH94]

Event-clock timed automata
An event-clock timed automaton is a timed automaton that contains
only event-recording clocks: for every letter a € ¥, there is a clock xj,
which is reset at every occurrence of an a.

x>0,a,{x} l
x>0,a,{x}

A is not an event-clock timed automaton

10/29

Timed automata

Event-clock timed automata [AFH94]

Event-clock timed automata
An event-clock timed automaton is a timed automaton that contains
only event-recording clocks: for every letter a € ¥, there is a clock xj,
which is reset at every occurrence of an a.

x>0,a,{x} l
x>0,a,{x}

A is an event-clock timed automaton

10/29

Timed automata

Event-clock timed automata [AFH94]

Event-clock timed automata

An event-clock timed automaton is a timed automaton that contains
only event-recording clocks: for every letter a € ¥, there is a clock x,,
which is reset at every occurrence of an a.

Theorem
@ Event-clock timed automata are determinizable.
@ Checking universality (and language inclusion) is PSPACE-complete
for event-clock timed automata.

10/29

Towards a determinization procedure for timed automata...

Outline

3. Towards a determinization procedure for timed automata...
Unfolding
Region equivalence
Symbolic determinization
Reducing the number of clocks
Reducing the number of locations

11/29

Unfolding

Unfolding

x>0,a,{x}

¥ x>0,a,0 x=1,a,{x}
x>0,a,{x}

12/29

Unfolding

Unfolding

x>0,a,{x} *
x>0,a,0 x=1,a,{x}
A ® ©
x>0,a,{x}
A level 0

12/29

Unfolding

Unfolding

x>0,a,{x} *
x>0,a,0 x=1,a,{x}
’ ® ©
x>0,a,{x}
A>® level 0 £o,20
20>0,a,{z1} 20>0,a,{z}

level 1 '[1,20'

12/29

Unfolding

Unfolding

x>0,a,{x} ¥
x>0.a,0 x=1,a,{x}
,a, ,a,
’ ®
x>0,a,{x}
A>® level 0 £o,20
20>0,a,{z1} 20>0,a,{z}
level 1 @,@ '53721'
z=1,a,{z} z1>0,a,{z}

level 2 |£2,zz| '%722 '

12/29

Unfolding

Unfolding

x>0,a,{x} *
x>0,a,{x}
A>® level 0 £o,20
20>0,a,{z1} 20>0,a,{z}
level 1 @,@ 03,21
z=1,a,{z} 2>0,a,{z}
level 2 [@ @722
2>0,a,{z} 2>0,a,{z3}
zn=1,a,{z4} 23>0,a,{z}

level 4 |Z2,24| '£0,24 '

12/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that
every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w].

13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that

every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

level 0

20>0,a,{z1}

level 1 @

z0=1,a,{z} z1>0,a,{z}

level 2 [&.2) Lo,2>
zg>0,a,{25 'Zz>0,a,{l3}
level 3 % ,a 43,23
22—1,3,{25 %>O,a,{a}

level 4 |€2,Z4| '20,24'

13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that
every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

level 0

20>0,a,{z1}

level 1 @
z1>0,a,{z}

level 2 [&.2) Lo,2>
zg>0,a,{25 'Zz>0,a,{l3}
level 3 % ,a 43,23
22—1,3,{25 %>O,a,{a}

level 4 |€2,Z4| '20,24'

w = (a,0.2) ~ v, =(0.2,0)

zy 1 13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that
every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

level 0

20>0,a,{z1}

level 1 @
z1>0,a,{z}

level 2 (£2,2,] Lo,2>
zz>0,a,{25 |Zz>0,a,{23}
level 3 % ,a 43,23
22—1,3,{25 %>O,a,{a}

level 4 |€2,Z4| '20,24'
w = (a,0.2)(a,0.5) ~ vy =(05,0.3,0)
2y zZ] Zp 13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that
every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

level 0

20>0,a,{z1}

level 1 @
z1>0,a,{z}

level 2 [&.2) Lo,2>
zz>0,a,{25 |Zz>0,a,{23}
level 3 % ,a 43,23
22—1,3,{25 %>O,a,{a}

level 4 |€2,Z4| '20,24'
w = (a,0.2)(a,0.5)(a, 1.2) ~ vy =(1.2,1,0.7,0)

20 1z 3 13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that

every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

level 0

20>0,a,{z1}

level 1 @

z0=1,a,{z} z1>0,a,{z}

level 2 |Z2,22| 50722
2>0,a,{z} 2>0,a,{z3}

level 3 2 ,a 23 ,Z3
z=1,a,{z4} 23>0,a,{z}

level 4 |€2,Z4| '20,24'

w = (2,02)(2,05)(2,1.2)(a,15) ~ vy = (L5.13,1,03, 0)

2 7 13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that

every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

@ A has infinitely many locations.

@ A has infinitely many clocks.

@ A is not deterministic.

13/29

Unfolding

Properties of the unfolding

Advantage of the unfolding: “input-determinacy”

Given a finite timed word w, there is a unique valuation v,, such that

every initial run reading w ends in a configuration (n, v,,) with
level(n) = |w|.

@ A has infinitely many locations.

@ A has infinitely many clocks.

@ A is not deterministic.

Lemma

A and A are strongly timed bisimilar.
In particular £(A) = L(A>).

13/29

Region equivalence

Region equivalence on A
The standard region equivalence naturally extends to A,

at level / we only consider region over {zj, ..., z}.
* 0<z<1l,a,{z} + z2>1l,a,{z}
20>0,a 2>0,a
{z} (2} 0<z9<1,a
20:1,2 {Zl} 20:1,3
(2} (n}

where rp = (0 = z; <

ZO\‘l),r1:(0121<20:1),r2:(0121<1<20).

14/29

Region equivalence

Region equivalence on A
The standard region equivalence naturally extends to A,

at level / we only consider region over {zj, ..., z}.

0<z<1l,a,{z} + z2>1l,a,{z}

-
2>0,a 20>0,a
{z1} {21} s 0<z9<1,a
zp=1,a tai} tai} zp=1,a
{21} {2}

where rp = (0=2z <z2<1),n=0=z1<z2=1),n=(0=2z <1< z).

Lemma

A and R(A>) are strongly timed bisimilar.
In particular, L(A®) = L(R(A>)).

14/29

Symbolic determinization

Symbolic determinization of R(A™)

0<z<1,a,{z1} z>1,a,{z1}

0<z<1,a
{z1}

15/29

Symbolic determinization

Symbolic determinization of R(A™)

0<z<1,a,{z1} z>1,a,{z1}

0<z<1,a
{z1}

zp=1,a

{z}

zp=1,a

{z1}

0<z<1,a,{z1} *

20>1,a,{z}

Z():].,a

{z1}

[{nl,nz},m] [{nl,nz},n] [{n17n2}7f2]

15/29

Symbolic determinization

Properties of the symbolic determinization

SymbDet(R(A>)) is deterministic! I

16/29

Symbolic determinization

Properties of the symbolic determinization

SymbDet(R(A>)) is deterministic! l

o SymbDet(R(.A>)) has infinitely many locations.
o SymbDet(R(A>)) has infinitely many clocks.

16/29

Symbolic determinization

Properties of the symbolic determinization

SymbDet(R(A>)) is deterministic!

o SymbDet(R(.A>)) has infinitely many locations.
o SymbDet(R(A>)) has infinitely many clocks.

Lemma
L(A) = L(SymbDet(R(.A>))).

16/29

Notion of active clocks

0<z<1,{z1}

{n1,m},0=21<2<1

0<z1<z=1

{z}

[[{n3,n4}722:0<21 <20:1]]

Symbolic determinization

17/29

Symbolic determinization

Notion of active clocks

Remember where nodes come from!
{(€o,20)}

0<z<1,{z1})

{(£1,20),(€3,21) }

|
\
)

)

{m,m},0=2<z<1

0<z1<z=1

(2} {(42’22);(50,22)}

-

[[{ n3,ns},20=0<z <20:1]]

17/29

Symbolic determinization

Notion of active clocks

{(¢0,20)}

z: active

z9: active

{n1,m},0=2<2<1

71 active
0<z1<z=1
{(£2,22),(40,22) }
{22} ‘iw
i z5: inactive
[[{n3,n4}722:0<21<20:1]] z: inactive
2. active

17/29

Symbolic determinization

Notion of active clocks

0<Zo<1,{21}

z: active

z9: active
2. active

{n1,m},0=2z<2<1

0<z1<z9=1

{z}

z5: inactive
z: inactive
2. active

17/29

Symbolic determinization

SymbDet(R(.A))

0<z<1,{z L z=1,{z
0<1,{z1} oT.0=0) 0=1,{z1}

zo>1

{z}
[({nl,ng},0:21<zo<1)] [({nl,n2}70:21<1<zo)] [({nl,nz},0:21<zo:1)]

S\Z’L\S

/‘XLZD "

0
&
1
>, {22}

0<2z<1,{z3}

0<z1<z=1 z1>0

{z} s

2=1,{z}

({n3,ns},22=0)

({n3},22=0)

0<z<1

(({ns,ns},0=2,<2<1)) (({ns,ne} ,0=2:<1<2)) (({ns,ne} ,0=2:<2=1))

0<z3<2n=1 0=z3<2n=1
0 z3>1
{z4} 3%,z Az} {z4}
7Lz, L s

({n7,ns},24=0) ({ns},24=0) ({n7},24=0)

18/29

Reducing the number o
0<z<1,{z1}

(.m0} 0=21<2<1))

0<z1<z=1 oTz

0<z<1,{z}

({n3,n4},20=0)

0<z<1

205, /

f clocks

Reducing the number of clocks

z=1{z1}

({no},20=0)

zo>1
{z}

[({n17n2}70:zl<1<20)]

2

(({rim2} 0=21<2=1))

(({7s.n6}.0=23<2,<1))

0<z3<zp=1
{za}

({’77,”8},2420)

(({"57’76}70:Z3<1<22)]

(({ns,ns},0=2:<2=1))

O0=z3<2z=1
1
> <23<1<22,{2A} {2}
0
({ns},2=0) (D)

19/29

Reducing the number of clocks

Reducing the number of clocks

0<z<1,{z1} z0=1,{z1}

({no},20=0)

Zg>1
{z}

(({n1,m2},0=21<z<1)) (({r1,m},0=21<1<20)) (({n1,n2},0=21<z=1))
0<z1<z=1 OT?J,eo% 21>0 X/_ZNV'L\S 0=z<z=1
14 {2} (. ns

22=1,{Z3}

0<z<1,{z} ({n3},22=0)

({n3,ns},22=0)

0<z<1
(({ns,ns},0=2:<2<1)) (({ns,ne},0=2:<1<2)) (({ns,ns},0=2:<2=1))
0<zzs<zo=1 0 1 0=z3<2n=1
<z, 73> ’{ZA}
{z} 2;51,{24 0<23<1<zz {z1}
({n7,ns},24=0) ({ns},z4=0) ({n7},22=0)

) 2] X
Two clocks are sufficient to get full timing information! ~ 20 1
2241 = X2

19/29

Reducing the number of clocks

Reducing the number of clocks

0<x<1,{x} x1=1,{x}

x1>1
{2}

(({n1,m2} ,0=x<x<1)) (({n1,n2},0=x:<1<x)) (({n1,m2},0=x<x=1))
0<xe<x1=1 OV\@H,I% x>0 XLﬁ’VX\ 0=x<x1=1
L1 bal el

x1=1,{x}

7

0<x1<1,{x}

({n3,ns},x1=0) ({n3},x=0)

0<x <1
((rs,m} 0=x<x1 <1)) (s, },0=x0<1<x)) ((ns.ns}.0=x0<x1=1))
0<x<x=1 0 x>1 0=x<x1=1
{xi} <%, < {x} 0<X2<1<x17f\’“} D)
({n7,n8},x1=0) ({ns},x1=0) ({n7}x=0)

. 2] X
Two clocks are sufficient to get full timing information! ~ 20 1
2241 = X2

19/29

Reducing the number of clocks

Properties of the clock reduction

Given v € N, we say that SymbDet(R(.A>)) is y-clock-bounded if in
every node, the number of active clocks is bounded by ~.

20/29

Reducing the number of clocks

Properties of the clock reduction

Given v € N, we say that SymbDet(R(.A>)) is y-clock-bounded if in
every node, the number of active clocks is bounded by ~.
In our case: v = 2.

20/29

Reducing the number of clocks

Properties of the clock reduction

Given v € N, we say that SymbDet(R(A>)) is y-clock-bounded if in
every node, the number of active clocks is bounded by ~.
In our case: v = 2.

Not all SymbDet(R(.,A>)) are v-clock-bounded

a a

() . O
¢!, a,{x “!"

20/29

Reducing the number of clocks

Properties of the clock reduction

Given v € N, we say that SymbDet(R(.A>)) is y-clock-bounded if in
every node, the number of active clocks is bounded by ~.
In our case: v = 2.

Not all SymbDet(R(.,A>)) are v-clock-bounded

(o,))

a a (£0,20) (£1,21)

(40,20)

[(lo 120)] (((c1,2) (e 22) (2. 20))

20/29

Reducing the number of clocks

Properties of the clock reduction

Given v € N, we say that SymbDet(R(.A>)) is y-clock-bounded if in
every node, the number of active clocks is bounded by ~.
In our case: v = 2.

In case SymbDet(R(.A>)) is v-clock-bounded, we construct using a
deterministic policy I',(SymbDet(R(A>))), an equivalent timed system
with clocks {x1,...,x,}.

20/29

Reducing the number of clocks

Properties of the clock reduction

Given v € N, we say that SymbDet(R(.A>)) is y-clock-bounded if in
every node, the number of active clocks is bounded by ~.
In our case: v = 2.

In case SymbDet(R(.A>)) is v-clock-bounded, we construct using a
deterministic policy I',(SymbDet(R(A>))), an equivalent timed system
with clocks {xi,...,xy}.
Advantages of I, (SymbDet(R(.A>)))

o I, (SymbDet(R(A>))) is deterministic!

o [, (SymbDet(R(.A>))) has finitely many clocks.

I (SymbDet(R(A>))) has infinitely many locations.

Lemma
L(A) = L(T,(SymbDet(R(A>)))). J

20/29

[, (SymbDet(R(A>)))

0<x1<1,{x2}

({no},x1=0)

Reducing the number of locations

x1=1,{x2}

x1>1
{x}

({r1.n2} 0= <x1<1))

0<x<xy=1

0<x1<1

({n3,n4},x1=0)

[({n1,n2}70:x2<1<x1)] [({nl,nQ},0:X2<X1:1)]
%2>0 ch»s\’“\ 0=x<x1=1
{xi} Al
04X

x1=1,{x2}

({n3},x1=0),

{x}

\

({75,176} 0=x0<x1<1))

[({"5’"6}’0:X2<1<X1)] [({"5,"6},0:X2<x1:1)]

0<xo<x1=1

{x}

({n7,ns},x1=0)

0
<)(2,,\r1 %1 {)(
21X

x2>1
{xal

({ns},x1=0)

21/29

Merging “identical” nodes

O<X1<1,{X2}

({no},x1=0)

x1>1
{x}

(({nl.nz}.O*Xg «;1<X1)]

(({r1.n2} 0= <x<1))

x>0
ta} 0L%

0<x<xy=1

{xa}

({n3,ns},x1=0)

0<x1<1

Reducing the number of locations

x1=1,{x2}

(({r,m} 0= <x=1)

S\m\i

AXA)(X’ 0=xp<x1=1

Sl Ty

(({ns,ns},O:xz<x1<1)] {({ﬂs»n@}.O:xz /\1<X1)]

(({75.76}.0=x0<x1=1))

<<=t 0 ?f}l 0=xp<x=1
{al <)(2’*17¥1 { ' & {x1}
Sy 0Lx2
({rr,ns},=0) ({ns}x1=0) ({r}.x1=0)

21/29

Reducing the number of locations

A deterministic timed automaton equivalent to A

0<x1<1,a {lﬁ x1=1,a
{()})

,x1=0

£o,x1

(€e2.x0). (83590} 0=x, <30 <)) ((tcerx0). (83,001 00 <x1=1) (e .x0).(85.59)}.0=x,<x=D)
x1=1,a x1=1,a
) {a}

({(€0,x1),(€2,x1)} ,x1=0), ({(£2,x1)},x1=0)

22/29

Reducing the number of locations

Properties of the location reduction

In case SymbDet(R(.A>)) is y-clock-bounded, we define B 4 , obtained
by merging the nodes of I, (SymbDet(R(.A>°))) with “the same labels".

Theorem

In case SymbDet(R(A>)) is y-clock-bounded, B4, is a deterministic
timed automaton such that £(A) = £L(Ba.).

23/29

When can we apply the procedure?

Outline

4. When can we apply the procedure?

24/29

When can we apply the procedure?

When can we apply our procedure?
We need to have that SymbDet(R(A>)) is y-clock bounded.

25/29

When can we apply the procedure?

When can we apply our procedure?
We need to have that SymbDet(R(A>)) is y-clock bounded.

The p-assumption
Given p € N, A satisfies the p-assumption if for every n > p, for every run

Tn,an

0= (fo, Vo) ﬂ (fl, Vl) coo &% (gn, Vn)

for every clock x € X, either x is reset along o or v,(x) > M.

25/29

When can we apply the procedure?

When can we apply our procedure?
We need to have that SymbDet(R(A>)) is y-clock bounded.

The p-assumption
Given p € N, A satisfies the p-assumption if for every n > p, for every run

Tn,an

0= (fo, Vo) ﬂ (fl, Vl) coo &% (gn, Vn)

for every clock x € X, either x is reset along o or v,(x) > M.

If A satisfies the p-assumption then SymbDet(R(.A>°)) is p-clock bounded.J

25/29

When can we apply the procedure?

When can we apply our procedure?
We need to have that SymbDet(R(A>)) is y-clock bounded.

The p-assumption
Given p € N, A satisfies the p-assumption if for every n > p, for every run

0= (fo, Vo) ﬂ (fl, Vl) 000 M (gn, Vn)

for every clock x € X, either x is reset along o or v,(x) > M.

If A satisfies the p-assumption then SymbDet(R(.A>)) is p-clock bounded.J

Classes to which the procedure applies
@ Event-clock timed automata (with v = |X|)

@ Strongly non-Zeno timed automata
(since they satisfy the p-assumption)

o timed automata with integer resets [SPKMO08]

25/29

When can we apply the procedure?

Hardness issues

We can prove EXPSPACE-hardness of:

@ the universality problem for timed automata satisfying the
p-assumption and for timed automata with integer resets;

@ the inclusion problem for strongly non-Zeno timed automata.

26/29

The results

Summary of the complexity results

When can we apply the procedure?

size of the det. TA | universality problem

inclusion problem

TA, doubly exp. EXPSPACE-compl. | EXPSPACE-compl.

SnZTA doubly exp. trivial EXPSPACE-compl.
ECTA [AFH94] exp. PSPACE-compl. PSPACE-compl.

IRTA [SPKMO8] doubly exp. EXPSPACE-compl. | EXPSPACE-compl.

27/29

The results

Summary of the complexity results

When can we apply the procedure?

size of the det. TA | universality problem

inclusion problem

TA, doubly exp. EXPSPACE-compl. | EXPSPACE-compl.
SnZTA doubly exp. trivial EXPSPACE-compl.
ECTA [AFH94] exp. PSPACE-compl. PSPACE-compl.
IRTA [SPKMO8] doubly exp. EXPSPACE-compl. | EXPSPACE-compl.
Remark

In case A has one clock, SymbDet(R(.A>)) allows to recover the
decidability of the universality problem in one-clock TA [OW04].

27/29

Conclusion

Outline

5. Conclusion

28/29

Conclusion
Conclusion

What we have done

@ We have described a procedure to determinize timed automata...
@ ... which terminates for several subclasses of timed automata

event-clock timed automata
timed automata with integer resets
strongly non-Zeno timed automata

@ We recover known results, but also describe new determinizable
classes of timed automata.

@ This procedure gives optimal complexity bounds.

29/29

Conclusion
Conclusion

What we have done
@ We have described a procedure to determinize timed automata...

@ ... which terminates for several subclasses of timed automata

event-clock timed automata
timed automata with integer resets
strongly non-Zeno timed automata

@ We recover known results, but also describe new determinizable
classes of timed automata.

@ This procedure gives optimal complexity bounds.

What we will do now

@ We want to see whether other determinizable classes (open timed
automata) could fit our framework.

@ We will extend to infinite timed words (with a Safra-like
construction mixed with our procedure?)

29/29

	General framework
	Timed automata
	Towards a determinization procedure for timed automata...
	Unfolding
	Region equivalence
	Symbolic determinization
	Reducing the number of clocks
	Reducing the number of locations

	When can we apply the procedure?
	Conclusion

