When are timed automata determinizable?

Christel Baier¹ Nathalie Bertrand² Patricia Bouyer³ Thomas Brihaye⁴

¹ Technische Universität Dresden – Germany
² IRISA – INRIA Rennes – France
³ LSV – CNRS & ENS Cachan – France
⁴ Université de Mons – Belgium

June 12, 2009

Outline

1. General framework

2. Timed automata

- Towards a determinization procedure for timed automata... Unfolding Region equivalence Symbolic determinization Reducing the number of clocks
 - Reducing the number of locations
- 4. When can we apply the procedure?

5. Conclusion

Real systems Syst $\rightsquigarrow A_{Syst}$

Specification Spec $\rightsquigarrow \mathcal{A}_{\varphi}$

Real systems Syst $\rightsquigarrow A_{Syst}$

Specification Spec $\rightsquigarrow \mathcal{A}_{\varphi}$

The question Syst \models Spec ? $\rightsquigarrow \mathcal{L}(\mathcal{A}_{Syst}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$?

Real systems Syst $\rightsquigarrow A_{Syst}$

Specification Spec $\rightsquigarrow \mathcal{A}_{\varphi}$

The question Syst \models Spec ? $\rightsquigarrow \mathcal{L}(\mathcal{A}_{Syst}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$?

Importance to have efficient algorithms to check language inclusion!

Real systems $Syst \sim A_{Syst}$

Specification Spec $\rightsquigarrow \mathcal{A}_{\varphi}$

The question Syst \models Spec ? $\rightsquigarrow \mathcal{L}(\mathcal{A}_{Syst}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$?

Importance to have efficient algorithms to check language inclusion!

Two special instances:

- The emptiness problem: $\mathcal{L}(\mathcal{A}) \subseteq \emptyset$
- The universality problem: $\Sigma^* \subseteq \mathcal{L}(\mathcal{A})$

Verification and formal languages (finite automata)

Real systems Syst $\rightsquigarrow A_{Syst}$

Specification Spec $\rightsquigarrow \mathcal{A}_{\varphi}$

The question Syst \models Spec ? $\rightsquigarrow \mathcal{L}(\mathcal{A}_{Syst}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$?

Importance to have efficient algorithms to check language inclusion! (PSPACE-complete)

Two special instances:

- The emptiness problem: $\mathcal{L}(\mathcal{A}) \subseteq \emptyset$ (NL-complete)
- The universality problem: $\Sigma^* \subseteq \mathcal{L}(\mathcal{A})$ (PSPACE-complete)

Verification and formal languages (finite automata)

Real systems Syst $\rightsquigarrow A_{Syst}$

Specification Spec $\rightsquigarrow \mathcal{A}_{\varphi}$

The question Syst \models Spec ? $\rightsquigarrow \mathcal{L}(\mathcal{A}_{Syst}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$?

Importance to have efficient algorithms to check language inclusion! (PSPACE-complete)

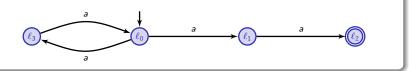
Two special instances:

- The emptiness problem: $\mathcal{L}(\mathcal{A}) \subseteq \emptyset$ (NL-complete)
- The universality problem: $\Sigma^* \subseteq \mathcal{L}(\mathcal{A})$ (PSPACE-complete)

Every finite automaton is determinizable into an exponential size finite automaton.

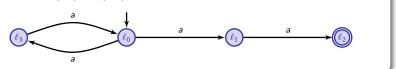
Determinizing finite automata (on finite words)

Example: $\mathcal{L}(\mathcal{A}) = (aa)^*aa$

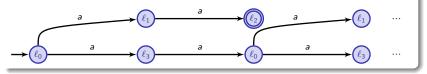


Determinizing finite automata (on finite words)

Example: $\mathcal{L}(\mathcal{A}) = (aa)^*aa$

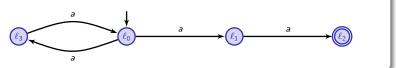


Unfolding \mathcal{A}

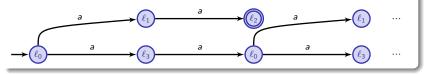


Determinizing finite automata (on finite words)

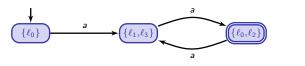
Example: $\mathcal{L}(\mathcal{A}) = (aa)^*aa$



Unfolding \mathcal{A}



A deterministic version of ${\cal A}$



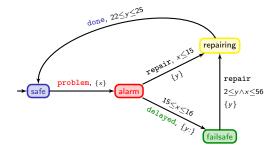
Outline

1. General framework

2. Timed automata

- 3. Towards a determinization procedure for timed automata...
 - Unfolding Region equivalence Symbolic determinization Reducing the number of clocks Reducing the number of locations
- 4. When can we apply the procedure?
- 5. Conclusion

What is a timed automaton?



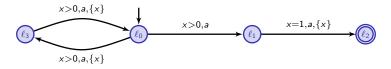
	safe -	²³ → sa	fe	lem → alarr	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
x	0	23		0		15.6		15.6	
y	0	23		23		38.6		0	
	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
	15.6		17.9		17.9		40		40
	0		2.3		0		22.1		22.1

 \sim It reads the timed word (problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

Timed languages accepted by timed automata

Example

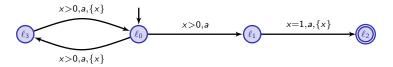
Let ${\mathcal A}$ be the following timed automaton:



Timed languages accepted by timed automata

Example

Let ${\mathcal A}$ be the following timed automaton:



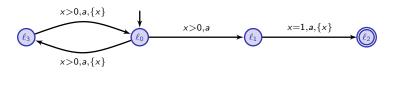
$$\begin{aligned} \mathcal{L}(\mathcal{A}) &= \{ (a, t_1)(a, t_2) \cdots (a, t_{2n}) \mid \\ &n \geq 1, \ 0 < t_1 < t_2 < \cdots < t_{2n-1} \\ &\text{and} \ t_{2n} - t_{2n-2} = 1 \} \end{aligned}$$

Timed languages accepted by timed automata

Example

т

Let ${\mathcal A}$ be the following timed automaton:



$$\begin{split} \mathcal{L}(\mathcal{A}) &= \{(a,t_1)(a,t_2)\cdots(a,t_{2n}) \mid \\ &n \geq 1, \ 0 < t_1 < t_2 < \cdots < t_{2n-1} \\ &\text{ and } t_{2n} - t_{2n-2} = 1 \} \end{split}$$

The timed word $w = (a,0.2)(a,0.5)(a,1.2)(a,1.5)$ is in $\mathcal{L}(\mathcal{A})$.

Emptiness problem

The emptiness problem is PSPACE-complete for timed automata.

Emptiness problem

The emptiness problem is PSPACE-complete for timed automata.

Universality problem

The universality problem is undecidable for timed automata.

Emptiness problem

The emptiness problem is PSPACE-complete for timed automata.

Universality problem

The universality problem is **undecidable** for timed automata.

Inclusion problem

The (language) inclusion problem is undecidable for timed automata.

Emptiness problem

The emptiness problem is PSPACE-complete for timed automata.

Universality problem

The universality problem is **undecidable** for timed automata.

Inclusion problem

The (language) inclusion problem is undecidable for timed automata.

 \rightsquigarrow prevents using timed automata as a specification language

Deterministic timed automaton

A timed automaton \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run (starting from $(\ell_0, 0)$) which reads u.

Deterministic timed automaton

A timed automaton \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run (starting from $(\ell_0, 0)$) which reads u.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for deterministic timed automata.

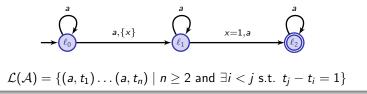
Deterministic timed automaton

A timed automaton \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run (starting from $(\ell_0, 0)$) which reads u.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for deterministic timed automata.

There exist timed automata that are not determinizable [AD90]



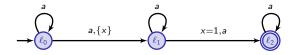
Deterministic timed automaton

A timed automaton \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run (starting from $(\ell_0, 0)$) which reads u.

Theorem [AD94]

Checking universality (and language inclusion) is PSPACE-complete for deterministic timed automata.

There exist timed automata that are not determinizable [AD90]



 $\mathcal{L}(\mathcal{A}) = \{(a, t_1) \dots (a, t_n) \mid n \geq 2 \text{ and } \exists i < j \text{ s.t. } t_j - t_i = 1\}$

Theorem [Tri03, Fin06]

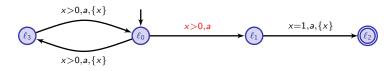
We cannot decide whether a timed automaton can be determinized.

Event-clock timed automata

An event-clock timed automaton is a timed automaton that contains only event-recording clocks: for every letter $a \in \Sigma$, there is a clock x_a , which is reset at every occurrence of an a.

Event-clock timed automata

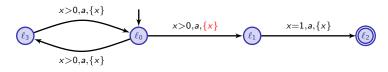
An event-clock timed automaton is a timed automaton that contains only event-recording clocks: for every letter $a \in \Sigma$, there is a clock x_a , which is reset at every occurrence of an a.



 $\ensuremath{\mathcal{A}}$ is not an event-clock timed automaton

Event-clock timed automata

An event-clock timed automaton is a timed automaton that contains only event-recording clocks: for every letter $a \in \Sigma$, there is a clock x_a , which is reset at every occurrence of an a.



 ${\mathcal A}$ is an event-clock timed automaton

Event-clock timed automata

An event-clock timed automaton is a timed automaton that contains only event-recording clocks: for every letter $a \in \Sigma$, there is a clock x_a , which is reset at every occurrence of an a.

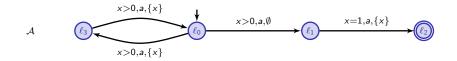
Theorem

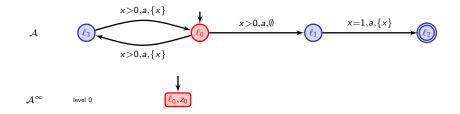
- Event-clock timed automata are determinizable.
- Checking universality (and language inclusion) is PSPACE-complete for event-clock timed automata.

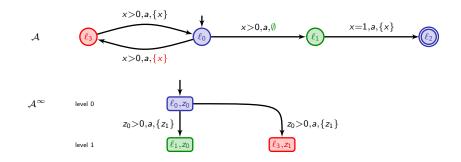
Outline

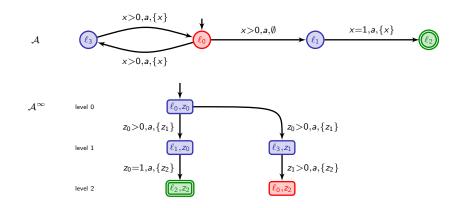
- 1. General framework
- 2. Timed automata
- 3. Towards a determinization procedure for timed automata... Unfolding Region equivalence Symbolic determinization Reducing the number of clocks Reducing the number of locations
- 4. When can we apply the procedure?

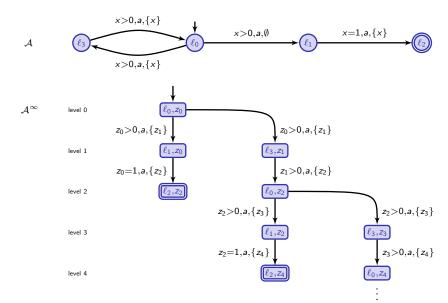
5. Conclusion











Properties of the unfolding

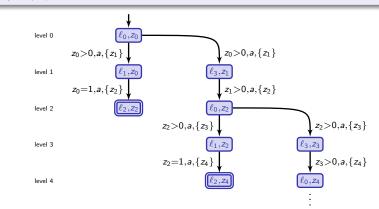
Advantage of the unfolding: "input-determinacy"

Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.

Properties of the unfolding

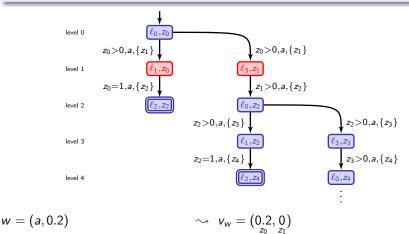
Advantage of the unfolding: "input-determinacy"

Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.



Advantage of the unfolding: "input-determinacy"

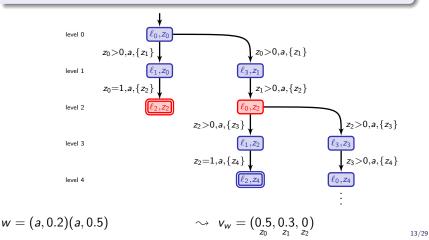
Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.



13/29

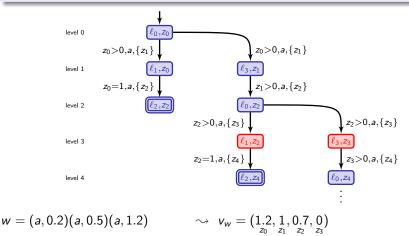
Advantage of the unfolding: "input-determinacy"

Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.



Advantage of the unfolding: "input-determinacy"

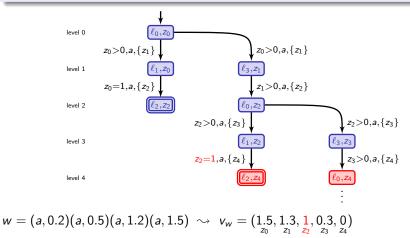
Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.



13/29

Advantage of the unfolding: "input-determinacy"

Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.



13/29

Advantage of the unfolding: "input-determinacy"

Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.

Drawbacks of the unfolding

- \mathcal{A}^{∞} has infinitely many locations.
- \mathcal{A}^{∞} has infinitely many clocks.
- \mathcal{A}^{∞} is not deterministic.

Advantage of the unfolding: "input-determinacy"

Given a finite timed word w, there is a unique valuation v_w such that every initial run reading w ends in a configuration (n, v_w) with level(n) = |w|.

Drawbacks of the unfolding

- \mathcal{A}^{∞} has infinitely many locations.
- \mathcal{A}^{∞} has infinitely many clocks.
- \mathcal{A}^{∞} is not deterministic.

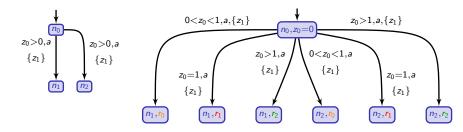
Lemma

 \mathcal{A} and \mathcal{A}^{∞} are strongly timed bisimilar. In particular $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\infty})$.

Region equivalence on \mathcal{A}^{∞}

The standard region equivalence naturally extends to \mathcal{A}^{∞} ,

at level *i* we only consider region over $\{z_1, \ldots, z_i\}$.

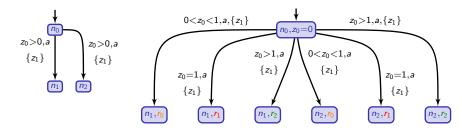


where $r_0 = (0 = z_1 < z_0 < 1)$, $r_1 = (0 = z_1 < z_0 = 1)$, $r_2 = (0 = z_1 < 1 < z_0)$.

Region equivalence on \mathcal{A}^{∞}

The standard region equivalence naturally extends to \mathcal{A}^{∞} ,

at level *i* we only consider region over $\{z_1, \ldots, z_i\}$.

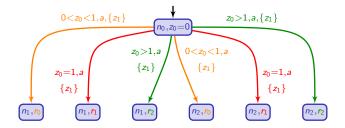


where $r_0 = (0 = z_1 < z_0 < 1)$, $r_1 = (0 = z_1 < z_0 = 1)$, $r_2 = (0 = z_1 < 1 < z_0)$.

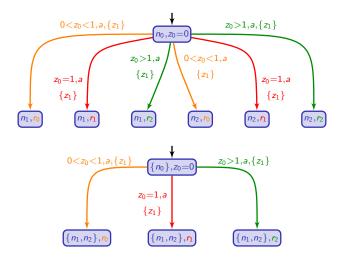
Lemma

 \mathcal{A}^{∞} and $R(\mathcal{A}^{\infty})$ are strongly timed bisimilar. In particular, $\mathcal{L}(\mathcal{A}^{\infty}) = \mathcal{L}(R(\mathcal{A}^{\infty}))$.

Symbolic determinization of $R(\mathcal{A}^{\infty})$



Symbolic determinization of $R(\mathcal{A}^{\infty})$



Properties of the symbolic determinization

Advantage of SymbDet($R(\mathcal{A}^{\infty})$)

SymbDet($R(A^{\infty})$) is deterministic!

Properties of the symbolic determinization

Advantage of SymbDet($R(\mathcal{A}^{\infty})$)

SymbDet($R(A^{\infty})$) is deterministic!

Drawbacks of SymbDet($R(\mathcal{A}^{\infty})$)

- SymbDet($R(\mathcal{A}^{\infty})$) has infinitely many locations.
- SymbDet($R(\mathcal{A}^{\infty})$) has infinitely many clocks.

Properties of the symbolic determinization

Advantage of SymbDet($R(\mathcal{A}^{\infty})$)

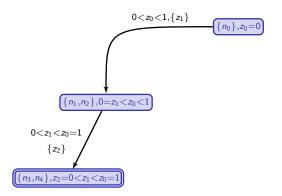
SymbDet($R(A^{\infty})$) is deterministic!

Drawbacks of SymbDet($R(\mathcal{A}^{\infty})$)

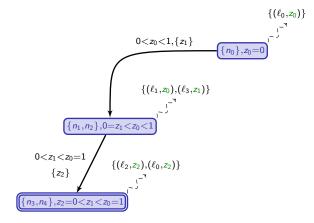
- SymbDet($R(\mathcal{A}^{\infty})$) has infinitely many locations.
- SymbDet($R(\mathcal{A}^{\infty})$) has infinitely many clocks.

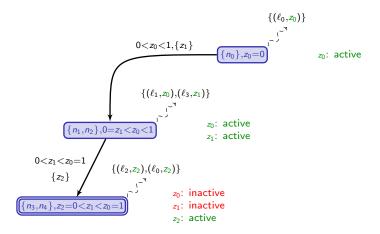
Lemma

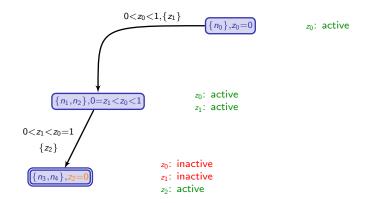
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))).$

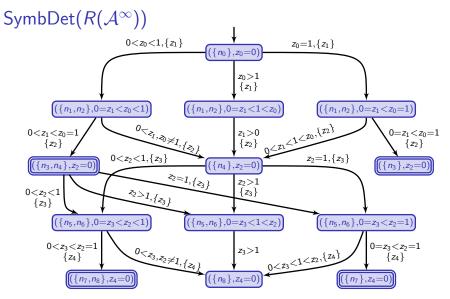


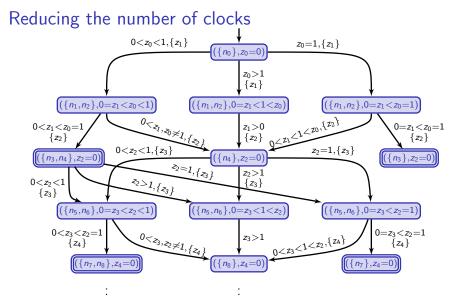
Remember where nodes come from!

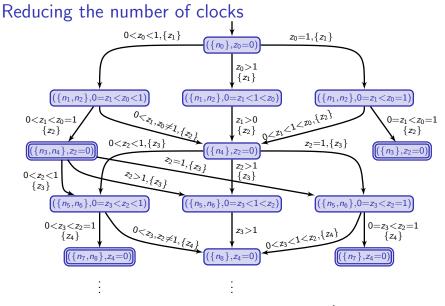








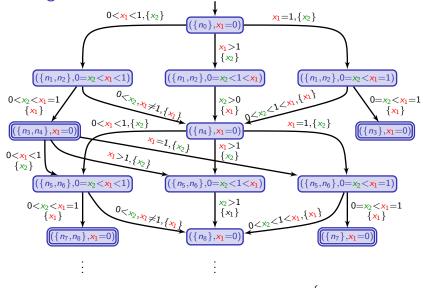




Two clocks are sufficient to get full timing information!

 $\begin{cases} z_{2i} \mapsto x_1 \\ z_{2i+1} \mapsto x_2 \end{cases}$

Reducing the number of clocks



Two clocks are sufficient to get full timing information!

 $\begin{cases} z_{2i} \mapsto \mathbf{x}_1 \\ z_{2i+1} \mapsto z_2 \end{cases}$

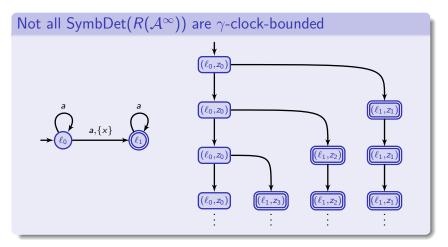
Given $\gamma \in \mathbb{N}$, we say that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded if in every node, the number of active clocks is bounded by γ .

Given $\gamma \in \mathbb{N}$, we say that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded if in every node, the number of active clocks is bounded by γ . In our case: $\gamma = 2$.

Given $\gamma \in \mathbb{N}$, we say that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded if in every node, the number of active clocks is bounded by γ . In our case: $\gamma = 2$.

Not all SymbDet($R(\mathcal{A}^{\infty})$) are γ -clock-bounded

Given $\gamma \in \mathbb{N}$, we say that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded if in every node, the number of active clocks is bounded by γ . In our case: $\gamma = 2$.



Given $\gamma \in \mathbb{N}$, we say that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded if in every node, the number of active clocks is bounded by γ . In our case: $\gamma = 2$.

In case SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded, we construct using a deterministic policy $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$, an equivalent timed system with clocks $\{x_1, \ldots, x_{\gamma}\}$.

Given $\gamma \in \mathbb{N}$, we say that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded if in every node, the number of active clocks is bounded by γ . In our case: $\gamma = 2$.

In case SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded, we construct using a deterministic policy $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$, an equivalent timed system with clocks $\{x_1, \ldots, x_{\gamma}\}$.

Advantages of $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$

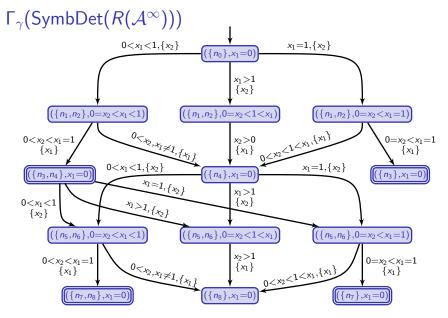
- Γ_γ(SymbDet(R(A[∞]))) is deterministic!
- $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$ has finitely many clocks.

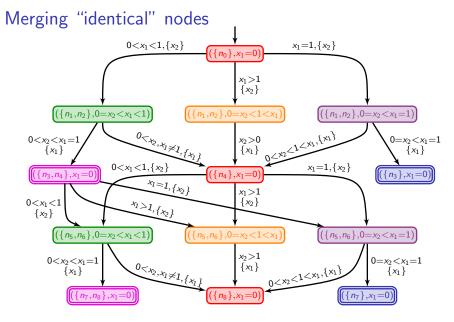
Drawback of $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$

 $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$ has infinitely many locations.

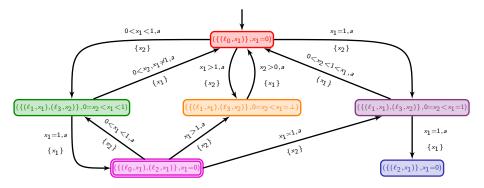
Lemma

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty})))).$$





A deterministic timed automaton equivalent to ${\cal A}$



Properties of the location reduction

In case SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded, we define $\mathcal{B}_{\mathcal{A},\gamma}$ obtained by merging the nodes of $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$ with "the same labels".

Theorem

In case SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock-bounded, $\mathcal{B}_{\mathcal{A},\gamma}$ is a deterministic timed automaton such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}_{\mathcal{A},\gamma})$.

Outline

- 1. General framework
- 2. Timed automata
- Towards a determinization procedure for timed automata... Unfolding Region equivalence Symbolic determinization Reducing the number of clocks Reducing the number of locations
- 4. When can we apply the procedure?
- 5. Conclusion

We need to have that SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock bounded.

We need to have that $SymbDet(R(\mathcal{A}^{\infty}))$ is γ -clock bounded.

The *p*-assumption

Given $p \in \mathbb{N}$, \mathcal{A} satisfies the *p*-assumption if for every $n \ge p$, for every run

$$\varrho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \dots \xrightarrow{\tau_n, a_n} (\ell_n, v_n)$$

for every clock $x \in X$, either x is reset along ρ or $v_n(x) > M$.

We need to have that $SymbDet(R(\mathcal{A}^{\infty}))$ is γ -clock bounded.

The *p*-assumption

Given $p \in \mathbb{N}$, \mathcal{A} satisfies the *p*-assumption if for every $n \ge p$, for every run

$$\varrho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \dots \xrightarrow{\tau_n, a_n} (\ell_n, v_n)$$

for every clock $x \in X$, either x is reset along ρ or $v_n(x) > M$.

If \mathcal{A} satisfies the *p*-assumption then SymbDet($R(\mathcal{A}^{\infty})$) is *p*-clock bounded.

We need to have that $SymbDet(R(\mathcal{A}^{\infty}))$ is γ -clock bounded.

The *p*-assumption

Given $p \in \mathbb{N}$, \mathcal{A} satisfies the *p*-assumption if for every $n \ge p$, for every run

$$\varrho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \dots \xrightarrow{\tau_n, a_n} (\ell_n, v_n)$$

for every clock $x \in X$, either x is reset along ρ or $v_n(x) > M$.

If \mathcal{A} satisfies the *p*-assumption then SymbDet($R(\mathcal{A}^{\infty})$) is *p*-clock bounded.

Classes to which the procedure applies

- Event-clock timed automata (with $\gamma = |\Sigma|$)
- Strongly non-Zeno timed automata (since they satisfy the p-assumption)
- timed automata with integer resets [SPKM08]

Hardness issues

We can prove EXPSPACE-hardness of:

- the universality problem for timed automata satisfying the *p*-assumption and for timed automata with integer resets;
- the inclusion problem for strongly non-Zeno timed automata.

The results

Summary of the complexity results

	size of the det. TA	universality problem	inclusion problem
TA _p	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.
SnZTA	doubly exp.	trivial	EXPSPACE-compl.
ECTA [AFH94]	exp.	PSPACE-compl.	PSPACE-compl.
IRTA [SPKM08]	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.

The results

Summary of the complexity results

	size of the det. TA	universality problem	inclusion problem
TA _p	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.
SnZTA	doubly exp.	trivial	EXPSPACE-compl.
ECTA [AFH94]	exp.	PSPACE-compl.	PSPACE-compl.
IRTA [SPKM08]	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.

Remark

In case A has one clock, SymbDet($R(A^{\infty})$) allows to recover the decidability of the universality problem in one-clock TA [OW04].

Outline

- 1. General framework
- 2. Timed automata
- Towards a determinization procedure for timed automata... Unfolding Region equivalence Symbolic determinization Reducing the number of clocks Reducing the number of locations
- 4. When can we apply the procedure?
- 5. Conclusion

Conclusion

What we have done

- We have described a procedure to determinize timed automata...
- ... which terminates for several subclasses of timed automata
 - event-clock timed automata
 - timed automata with integer resets
 - strongly non-Zeno timed automata
 - ...
- We recover known results, but also describe new determinizable classes of timed automata.
- This procedure gives optimal complexity bounds.

Conclusion

What we have done

- We have described a procedure to determinize timed automata...
- ... which terminates for several subclasses of timed automata
 - event-clock timed automata
 - timed automata with integer resets
 - strongly non-Zeno timed automata
 - ...
- We recover known results, but also describe new determinizable classes of timed automata.
- This procedure gives optimal complexity bounds.

What we will do now

- We want to see whether other determinizable classes (open timed automata) could fit our framework.
- We will extend to infinite timed words (with a Safra-like construction mixed with our procedure?)