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@ Need for timed models

o the behaviour of most systems depends on time;
o faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

@ Need for timed specification languages

o the behaviour of most systems depends on time;
o untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

ww TCTL, MTL, TPTL, timed p-calculus...
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o Can be interpreted over timed words, or over signals
o this distinction is fundamental

@ Can be interpreted over finite or infinite behaviours

o this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).
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o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

@ “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

o F_,repair Vs F_; (F_jrepair)
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Conjecture in 1990: the TPTL formula
G (e > xF(e AF (e AXx <2)))

cannot be expressed in MTL.

@ This is true in the pointwise semantics.
@ This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
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The TPTL formula
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can be expressed in MTL in the continuous semantics
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Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

= |t can be extended to model-check TCTL [ACD93|.

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (1&C, 1993).
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The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

20/48



The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

@ Model-checking linear-time timed temporal logics is hard!

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

20/48



The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

@ Model-checking linear-time timed temporal logics is hard!

@ The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

20/48



The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
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@ Model-checking linear-time timed temporal logics is hard!

@ The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

iz we will explain this high complexity, following [Che07]

[OWO05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systemes temporisés : contrdle et expressivité (PhD Thesis ENS Cachan, June 2007).
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The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).
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The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

Proposition
@ The halting problem is undecidable for channel machines [BZ83].

@ The halting problem is decidable but NPR for channel machines with
insertion errors [Sch02].

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).
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The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) <> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5, ) -

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---
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The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

o the channel is FIFO: for every letter a,

G(al > F_;a?)
g% This formula is not sufficient!
=1 t.u.
=1 t.u.
o al Qb @ 2?7 93 c? Qab? G5 -
=1 t.u.

1= only encodes a channel machine with insertion errors!
1 model-checking MTL is NPR
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The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F:1 a?) — a!)
e correct in the continuous semantics
@ not correct in the pointwise semantics
@ Why not look back in the past?
G (a? — FZ}a))
o correct for MTL+Past (in the continuous and in the pointwise sem.)
e no direct translation into MTL

@ A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

qo al qr p! Q2 a? 93 ¢? qab? gs ---
=1 t.u.

o this formula is in TPTL (pointwise sem.), not in MTL
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What we have proved so far

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL NPR [OWO07] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]
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The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO07] | undecidable [AFHI6]
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The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— F[172] b)
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The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— F[l,z] b)
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An abstract transition system

b,4.2

The model-checking problem
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The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

= there is a well quasi-order on the set of abstract configurations
(subword relation):

higman C hmountai
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Summary

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|
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The model-checking problem

What about infinite behaviours?

@ the previous algorithm cannot be lifted to the infinite behaviours
framework

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoS$SaCS'06).
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The model-checking problem

What about infinite behaviours?

@ the previous algorithm cannot be lifted to the infinite behaviours
framework

@ there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OWO06]* | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94]| | undecidable [AH94]

* by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).
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Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48



Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_; ) is undecidable”

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48



Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_; ) is undecidable”

@ What if we forbid punctual constraints in MTL?

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48



Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_; ) is undecidable”

@ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFHO6]

MITLS 9 == a | =o | oV | oAe | U

with / a non-punctual interval

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48



Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_; ) is undecidable”

@ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFHO6]

MITLS 9 == a | =o | oV | oAe | U

with / a non-punctual interval

@ Examples:
o G(e — F_;e)isnotin MITL

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48



Some interesting fragments
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@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_; ) is undecidable”

@ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFHO6]

MITLS 9 == a | =o | oV | oAe | U

with / a non-punctual interval

@ Examples:
o G(e — F_;e)isnotin MITL
o G(o = Fye)isin MITL

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
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Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HRO4].

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and lexity (Fund, Informaticae, 2004).
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1= an MITL formula defines a timed regular language
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Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFHI6].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = Gg 1) (¢ — Fpy @)

@ each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

@ this requires an unbounded number of clocks

1= something more clever needs to be done

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and ity (Fund, Informaticae, 2004).
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Some interesting fragments

¢ = G (a— Fpugb)
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Some interesting fragments

—a b —|b b
I [e—— o : & L
i A A X ' x :
0 1 2 3
tj—1 th—2 t tr
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Some interesting fragments

\J 0/

-4 b —|b b
k Iy " + ? + ’—4—7
0 1 2 3
t1—1 th—2 ty to
0 o
V \
z<1 z<2 B z<3 — 2;;53

\0%

= This idea can be extended to any formula in MITL
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Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?
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We define coFlat-MTL1.:

[BMOWO7]
coFlat-MTLir. 3 ¢ =

=al|l-aleVe | erne | oUy | U g
where | unbounded = ¥ € LTL

@ Examples:

o G(e — F_je)isin coFlat-MTL7
o FGgyeisnotin coFlat-MTL1.
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Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

@ Does punctuality always lead to undecidability?

We define coFlat-MTL7.: [BMOWO7]
coFlat-MTLi1. 29 == a | ma | Ve | oAe | Uy | WU

where | unbounded = ¥ € LTL

@ Examples:
o G(e — F_ye)isin coFlat-MTLy7_
o FGgyeisnotin coFlat-MTL1.
e coFlat-MTLi1. contains Bounded-MTL (all modalities are
time-bounded)

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).
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Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.
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Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp  with  ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48



Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp  with  ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48



Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp  with  ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48



Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp  with  ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48



Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp  with  ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48



Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp  with  ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

@ A Bounded-MTL formula may define a non timed-regular language:
Gci(e = Fo10) NG o AGpoe
defines the context-free language {e"e™ | n < m}.
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 ~ alternating timed automata B-, for =y with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

hard hard hard hard
— — — ——

[ — [ — —— [
LTL LTL LTL LTL

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

@ hard fragment = sliding window algorithm
@ LTL fragment = finite automaton computation
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e MITL and coFlat-MTL 1. have ‘low’ complexities for pretty different
reasons...

@ ... why not mix the two logics?
We define coFlat-MT Ly 1e: [BMOWO08]
coFlat-MTLwirL 3¢ == a | ma | oVo | oAp | oUy | v U e
where | unbounded = ¢ € MITL.

o Examples:
o FGgyeisin coFlat-MTLwte
o FG_je is notin coFlat-MTLytL
o coFlat-MTLwrL generalizes both logics MITL and coFlat-MTLt

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP'08).
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The model-checking problem for coFlat-MTLy T is
EXPSPACE-complete [BMOWO08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:
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— — —
—— —_—— [e—— P ——————7
non-punctual non-punctual non-punctual non-punctual
< P
somewhat

-
™ stretchable

Stretchable signal:  Any model of an LTL

formula is stretchable.

@ Any model of an MITL
formula is somewhat
stretchable.
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Some interesting fragments

@ non-punctual part: somewhat stretchable
—  transform into LTL constraints

@ punctual part: non-stretchable... ®
but not too long... ©
e—F_je
| ¥
0 1 2 3 4
\
track i
0 1 2
track i+1
2 3 4
Ll
@i —®i)
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A tableau satisfiability problem
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A tableau satisfiability problem

track 1

track 2

track 3

track 4

- - e track 5

boundeq height

track k—3

check punctual formulas

track k—2

track k—1

track k

check non-punctual formulas
15 transform into sat. prob. for LTL+Past over Ry (PSPACE: [Rey04])

[Rey04] Reynolds. The complexity of the temporal logic over the reals (Subm.'04).
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Some interesting fragments

The end of the quest for tractable fragments of MTL?

undec./NPR

Gounded—MTL

coFlat-MTL 1
coFlat-MTLwmrL
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Some interesting fragments

The end of the quest for tractable fragments of MTL?

undec./NPR

Qnded—MTL

coFlat-MTL 1
coFlat-MTLwmrL

PSPACE-c. EXPSPACE-c.

+ add Positive-MTL [PWO09]

[PWO09] Parys, Walukiewicz. Weak Alternating Timed Automata (ICALP’09).
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Conclusion

@ Recent advances have raised a new interest for linear-time timed
temporal logics

o Not everything is undecidable

o Some rather ‘efficient’ subclasses

@ non-punctual formulas
o structurally (co-)flat formulas

@ No real data structures do exist for these logics.
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@ System resources might be relevant and even crucial information
e energy consumption, memory usage, price to pay, bandwidth, ...

@ We need to integrate those aspects in models and in logics

o Models: hybrid automata, timed automata with observer variables
o Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

@ Very few decidability results, unless strong restrictions..
... but this is a very active field of research!
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+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142
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[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48



Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching @?

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48



Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching @?

5t410(2 —t) +1

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48



Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

5t+102—t)+1,5t+(2—-t)+7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48



Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

min (5t +10(2—t)+1,5t+(2—t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48



Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching @?

inf - min (5t410(2—-t)+1,5t+(2—-t)+7)=9

0<1t<2

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48



Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

inf - min (5t410(2—-t)+1,5t+(2—-t)+7)=9

0<1t<2

~ strategy: leave immediately fg, go to ¢3, and wait there 2 t.u.

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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