On the Model Checking of Timed and
Weighted Temporal Logics

Patricia Bouyer

LSV, CNRS & ENS Cachan, France

1/48

On the Model Checking of Timed and
Weighted Temporal Logics

Patricia Bouyer

LSV, CNRS & ENS Cachan, France

1/48

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model
4. The model-checking problem
5. Some interesting fragments

6. Conclusion

2/48

Introduction

Outline

1. Introduction

3/48

Introduction

Model-checking

system:

™

4/48

Model-checking

system:

™

:

O\E‘O’9
N

O

CO

Introduction

G (request—F grant)

4/48

Introduction

Model-checking

system:

™

4/48

Model-checking

system:

™

yes/no

Introduction

<— G (request—F grant)

4/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]

LTL> o = p | oAp | oV | ~p | Xo | ¢Uep

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

O0~0—~0~0—+0—+0+0+0—~0—~0 F Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

—0—0—0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

——0—0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

—0—0—0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]

LTL> o = p | oAp | oV | ~p | Xo | ¢Uep
—@—0O0—0O0—0—0—0—0—0—0- = Xe
o 0--0->-0->0->0— — —(— = eUe

0—~0—>0—~0—+0—>0+~0—>0—~0—0- £ Fe = 1tUs

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]

LTL> o = p | oAp | oV | ~p | Xo | ¢Uep
—@—O0—0O0—0—0—0—0—0—0- = Xe
o 0--0->-0->0->0— — —(— = eUe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

—O— ————————— E Xe
O+0+0+0>0-0— 000 £ U
—(O—O—O—0O0— 00— —0O—0O— E Fe =1ttUe

0—~0—~0—~0—~0—0~>0—>0—>0—>0" Go = Fe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

@ response property:
G (o — F o)

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

@ response property:
G(s—Fe)
@ liveness property:
GFo

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

@ response property:

G(s—Fe)
@ liveness property:

GFo
o safety property:

G —e

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

5/48

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

@ response property:

G(s—Fe)
@ liveness property:

GFo
o safety property:

G —e

@ a more complex property:
(eAN(FeVGe))Ue

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
5/48

Introduction

Adding timing requirements

@ Need for timed models

o the behaviour of most systems depends on time;
o faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

6/48

Introduction

Adding timing requirements

@ Need for timed models

o the behaviour of most systems depends on time;
o faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

@ Need for timed specification languages

o the behaviour of most systems depends on time;
o untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

ww TCTL, MTL, TPTL, timed p-calculus...

6/48

Definition of the logics

Outline

2. Definition of the logics

7/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]
MTLSp == a | ¢ | Ve | Ao | ¢Up

where [is an interval with integral bounds.

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).
8/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]
MTLSp == a | ¢ | Ve | Ao | ¢Up

where [is an interval with integral bounds.

@ This is a timed extension of LTL

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).
8/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]
MTLS @ = a | o | Ve | oAp | pUp

where [is an interval with integral bounds.

@ This is a timed extension of LTL

o Can be interpreted over timed words, or over signals
o this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).
8/48

Definition of the logics

Metric Temporal Logic (MTL)
[Koy90]

MTLS @ = a | o | Ve | oAp | pUp

where [is an interval with integral bounds.

@ This is a timed extension of LTL

o Can be interpreted over timed words, or over signals
o this distinction is fundamental

@ Can be interpreted over finite or infinite behaviours

o this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).
8/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I | | |
r T T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

9/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I | | |
r T T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

1= the system is observed only when actions happen

9/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I
r

| | |
T T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

1= the system is observed only when actions happen

} EoeUpoe
4

<O T
-
N
w

€[1,2]

9/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I |
r T

| |
T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

1= the system is observed only when actions happen

} EoeUpoe

~O T
-
N
w
IS

€[1,2]

} ¥ G, e

o
=
AN+
v w4
»

[2,3]

9/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

tef0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

10/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

tef0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

= the system is observed continuously

10/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

te[0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

= the system is observed continuously

= eUpge

10/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

te[0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

= the system is observed continuously

= eUpge

7% Gpa e

10/48

Definition of the logics

Some examples

o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

11/48

Definition of the logics

Some examples

o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

@ “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

11/48

Definition of the logics

Some examples

o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

@ “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

o F_,repair Vs F_; (F_jrepair)

11/48

Definition of the logics

Some examples

o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

@ “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

o F_,repair Vs F_; (F_jrepair)

0 1 2 0 1 2

EF_,e [£F_;(F_je)

11/48

Definition of the logics

Some examples

o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

@ “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

o F_,repair Vs F_; (F_jrepair)

0 1 2 0 1 2

EF_,e FEF_(F_1e) EF_,e EF_;(F_je)

11/48

Definition of the logics

Some examples

o “Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

@ “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

o F_,repair Vs F_; (F_jrepair)
0 1 2 0 1 2
EF_,e FEF_(F_1e) EF_,e EF_;(F_je)

@ in the pointwise semantics, F—re ZF_; F_; e
e in the continuous semantics, F_pe =F_;F_; e

11/48

Definition of the logics

Some further extensions

@ Timed Propositional Temporal Logic (TPTL) [AH89]
TPTL = LTL + clock variables + clock constraints

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).

12/48

Definition of the logics

Some further extensions

@ Timed Propositional Temporal Logic (TPTL) [AH89]
TPTL = LTL + clock variables + clock constraints

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).

12/48

Definition of the logics

Some further extensions

@ Timed Propositional Temporal Logic (TPTL) [AH89]
TPTL = LTL + clock variables + clock constraints

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

G (problem — x.F (alarm A F (failsafe A x < 56)))

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).

12/48

Definition of the logics

Some further extensions

@ Timed Propositional Temporal Logic (TPTL) [AH89]
TPTL = LTL + clock variables + clock constraints

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

G (problem — x.F (alarm A F (failsafe A x < 56)))

@ MTL+Past: add past-time modalities [AHO2]

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS'92).

12/48

Definition of the logics

Some further extensions

@ Timed Propositional Temporal Logic (TPTL) [AH89]
TPTL = LTL + clock variables + clock constraints

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))
G (problem — x.F (alarm A F (failsafe A x < 56)))
@ MTL+Past: add past-time modalities [AHO2]
G (alarm — F;éﬁ problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS'92).

12/48

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).

13/48

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80].

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

13/48

Definition of the logics

A note on the expressiveness

LTL+Past is as expressive as LTL [Kam68,GPSS80].

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05]. |

Conjecture in 1990: the TPTL formula

Theorem J

G(o—>x.F(0/\F(°/\X<2)))

cannot be expressed in MTL.

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

13/48

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

Conjecture in 1990: the TPTL formula
G (e > xF(e AF (e AXx <2)))

cannot be expressed in MTL.

@ This is true in the pointwise semantics.

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

13/48

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

Conjecture in 1990: the TPTL formula
G (e > xF(e AF (e AXx <2)))

cannot be expressed in MTL.

@ This is true in the pointwise semantics.
@ This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

13/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

Fep o A Fppg e

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

Fep o A Fppg e

G e — F<1(OAF<10)

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

Fep o A Fppg e

G e — F<1(OAF<10)

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

F_1 e
Fq o A Fppg e

G e — F<1(OAF<10)

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

F_1 e
Fq o A Fppg e

G e — F<1(OAF<10)

14/48

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

F_1 e
Fq o A Fppg e
Ge — Fa(e A Fae)

Fgl (F<10 AN F_; 0)

14/48

The timed automaton model

Outline

3. The timed automaton model

15/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

problem, x:=0

safe 2 safe

23

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

2 roblen
safe 2 safe T alarm

23
23 23

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

23 problen 156
safe = safe T alarm % alarm
0 23 [15.6
0 23 23 38.6

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

safe 2 safe ZUN arm B8 gam S gilafe
0 23 0 156 15.6
0 23 23 38.6 0

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe ZN arm B8 gam S gilafe 23 failsafe
x 0 23 0 156 15.6 17.9
y 0 23 23 38.6 0 23

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe PP o 5 gm0 giigfe 22 failsafe ZP2T, reparation
0 23 0 156 15.6 17.9 17.9
0 23 23 38.6 0 23 0

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe PP o B8 Gam S gigre 22 filsafe ST, reparation 22D reparation
0 23 0 156 15.6 17.9 17.9 40
0 23 23 38.6 0 23 0 21

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe PP o 25 Gam S gigfe 22 failsafe ST, reparation 22D reparation S safe
0 23 0 156 15.6 17.9 17.9 40 40
0 23 23 38.6 0 23 0 21 21

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

failsafe

safe 2 safe PP o 25 Gam S gigfe 22 failsafe ST, reparation 22D reparation S safe
x 0 23 0 15.6 15.6 17.9 179 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1
Can be viewed:
@ as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)
30 40 50 60 70

0 10 20

16/48

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

safe 2 safe PP o 25 Gam S gigfe 22 failsafe ST, reparation 22D reparation S safe
x 0 23 0 156 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 23 0 21 21

Can be viewed:

@ as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

@ as the signal

safe alarm failsafe repairing safe

0 10 20 30 40 50 60 70

16/48

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

17/48

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

17/48

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

= |t can be extended to model-check TCTL [ACD93|.

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (1&C, 1993).

17/48

The model-checking problem

Outline

4. The model-checking problem

18/48

The model-checking problem

Back to the model-checking problem

system:

19/48

The model-checking problem

Back to the model-checking problem

system:

™

Q
P
5 %\)’&of(\ - —> <— G (request—F grant)
2
7

yes/no

19/48

The model-checking problem

Back to the model-checking problem

system:

19/48

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

20/48

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

@ Model-checking linear-time timed temporal logics is hard!

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

20/48

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

@ Model-checking linear-time timed temporal logics is hard!

@ The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

20/48

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

@ Model-checking linear-time timed temporal logics is hard!

@ The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

iz we will explain this high complexity, following [Che07]

[OWO05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systemes temporisés : contrdle et expressivité (PhD Thesis ENS Cachan, June 2007).

20/48

The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel

o?

o?

A

A

o? o?

S2

S3

S S5

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel

o?

o?

A

A

o? o?

S2

S3

S S5

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel

o?

o?

A

A

o? o?

S2

S3

S S5

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

0o

o?

A

o? o?
S S5

=)
4 o/

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel
o! o? o!
O o! o? R ? O o?
S1 S2 S3 S4 S5
O
/ \
[] []

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine =

A

S1 S

a finite automaton + a FIFO channel

A

/

S S5

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel
o! o? o!
O o! o? O ? ; L o?
S1 S s3 Sa S5
N\
/ \

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel
o! o? o!
O o! o? O ? R o?
S1 S s3 Sa S5
O
/ \
[]

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel
o! o? o!
O o! o? O o? R o?
S1 S2 S3 S4 S5
O
/ \
[]

S5 is not reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel
o! o? o!
O o! o? O o? R o?
S1 S2 S3 S4 S5
O
/ \
[]

@ insertion errors: any letter can appear on the channel at any time

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

o! o? o!

() () ()

o! o? o? o?
S1 S S3 S4 S5

@ insertion errors: any letter can appear on the channel at any time

21/48

A short visit to channel machines (1)

A channel machine =

0o

S1 S

The model-checking problem

a finite automaton + a FIFO channel

0o

/

S S5

@ insertion errors: any letter can appear on the channel at any time

s is reachable

21/48

The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

22/48

The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

Proposition
@ The halting problem is undecidable for channel machines [BZ83].

@ The halting problem is decidable but NPR for channel machines with
insertion errors [Sch02].

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

22/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) <> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) <> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) <> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.
=1 t.u.

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) <> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.
=1 t.u.
qo0 al q1 bl G2 a? a3 c! g4 b? qs .-
0 .25 6 .7 .85 1.25 14151617 1.9

We will give a formula ¢ such that

the channel machine* halts iff the formula ¢ is satisfiable

* possibly with insertion errors

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) <> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.
=1 t.u.
qo0 al q1 bl G2 a? a3 c! g4 b? qs .-
0 .25 6 .7 .85 1.25 14151617 1.9

We will give a formula ¢ such that

the channel machine* halts iff the formula ¢ is satisfiable

iff Auniv bé '

* possibly with insertion errors

23/48

The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

24/48

The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

o the channel is FIFO: for every letter a,
G(al > F_;a?)

24/48

The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

o the channel is FIFO: for every letter a,
G(al > F_;a?)

g?? This formula is not sufficient!

24/48

The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

o the channel is FIFO: for every letter a,

G(al > F_;a?)
g?? This formula is not sufficient!
=1 t.u.
=1 t.u.
q0 al q1 bl Q2 a? 43 c? qap? qs -

=1 t.u.

24/48

The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

o the channel is FIFO: for every letter a,

G(al > F_;a?)
g% This formula is not sufficient!
=1 t.u.
=1 t.u.
o al Qb @ 2?7 93 c? Qab? G5 -
=1 t.u.

1= only encodes a channel machine with insertion errors!

24/48

The model-checking problem

Constraints satisfied by the timed word

@ states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

o the channel is FIFO: for every letter a,

G(al > F_;a?)
g% This formula is not sufficient!
=1 t.u.
=1 t.u.
o al Qb @ 2?7 93 c? Qab? G5 -
=1 t.u.

1= only encodes a channel machine with insertion errors!
1 model-checking MTL is NPR

24/48

The model-checking problem

We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F=1a?) — a!)

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F=1a?) — a!)

e correct in the continuous semantics

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F=1a?) — a!)

e correct in the continuous semantics
@ not correct in the pointwise semantics

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F=1a?) — a!)
e correct in the continuous semantics
@ not correct in the pointwise semantics
@ Why not look back in the past?
G (a? —» F_; a!)

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F=1a?) — a!)

e correct in the continuous semantics
@ not correct in the pointwise semantics

@ Why not look back in the past?
G (a? — FZ}a))

o correct for MTL+Past (in the continuous and in the pointwise sem.)

25/48

The model-checking problem

We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F:1 a?) — a!)
e correct in the continuous semantics
@ not correct in the pointwise semantics
@ Why not look back in the past?
G (a? — FZ}a))
o correct for MTL+Past (in the continuous and in the pointwise sem.)
e no direct translation into MTL

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F=1a?) — a!)

e correct in the continuous semantics
@ not correct in the pointwise semantics

@ Why not look back in the past?
G (a? — FZ}a))

o correct for MTL+Past (in the continuous and in the pointwise sem.)
e no direct translation into MTL

@ A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F:1 a?) — a!)
e correct in the continuous semantics
@ not correct in the pointwise semantics
@ Why not look back in the past?
G (a? — FZ}a))
o correct for MTL+Past (in the continuous and in the pointwise sem.)
e no direct translation into MTL

@ A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

qo al qr p! Q2 a? 93 ¢? qab? gs ---

=1 t.u.

25/48

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

@ Why not reverse the previous implication?
G ((F:1 a?) — a!)
e correct in the continuous semantics
@ not correct in the pointwise semantics
@ Why not look back in the past?
G (a? — FZ}a))
o correct for MTL+Past (in the continuous and in the pointwise sem.)
e no direct translation into MTL

@ A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

qo al qr p! Q2 a? 93 ¢? qab? gs ---
=1 t.u.

o this formula is in TPTL (pointwise sem.), not in MTL

25/48

What we have proved so far

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL NPR [OWO07] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

26/48

What remains to be proved

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO07] | undecidable [AFHI6]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

26/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Blichi) automata

G(a—Fb)

27/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Blichi) automata

G(a—Fb)

27/48

From LTL to alternating automata

The model-checking problem

LTL formulas can be turned into alternating (Blichi) automata

G(a—Fb)

27/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Blichi) automata

G(a—Fb)

27/48

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— F[172] b)

28/48

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— F[172] b)

28/48

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— F[l,z] b)

28/48

An abstract transition system

b,4.2

The model-checking problem

29/48

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget
| | the precise values of the fractional parts.

29/48

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

29/48

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

29/48

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

= there is a well quasi-order on the set of abstract configurations
(subword relation):

higman C hmountai

29/48

Summary

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

30/48

The model-checking problem

What about infinite behaviours?

@ the previous algorithm cannot be lifted to the infinite behaviours
framework

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoS$SaCS'06).

31/48

The model-checking problem

What about infinite behaviours?

@ the previous algorithm cannot be lifted to the infinite behaviours
framework

@ there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoS$SaCS'06).

31/48

The model-checking problem

What about infinite behaviours?

@ the previous algorithm cannot be lifted to the infinite behaviours
framework

@ there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OWO06]* | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94]| | undecidable [AH94]

* by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).

31/48

Some interesting fragments

Outline

5. Some interesting fragments

32/48

Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48

Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_;) is undecidable”

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48

Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_;) is undecidable”

@ What if we forbid punctual constraints in MTL?

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48

Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_;) is undecidable”

@ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFHO6]

MITLS 9 == a | =o | oV | oAe | U

with / a non-punctual interval

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48

Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_;) is undecidable”

@ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFHO6]

MITLS 9 == a | =o | oV | oAe | U

with / a non-punctual interval

@ Examples:
o G(e — F_;e)isnotin MITL

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48

Some interesting fragments

The fragment without punctuality

@ The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (e — F_;) is undecidable”

@ What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFHO6]

MITLS 9 == a | =o | oV | oAe | U

with / a non-punctual interval

@ Examples:
o G(e — F_;e)isnotin MITL
o G(o = Fye)isin MITL

[AFHO6] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
33/48

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HRO4].

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and lexity (Fund, Informaticae, 2004).

34/48

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HRO4].

= we can bound the variability of the signals

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and lexity (Fund, Informaticae, 2004).

34/48

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HRO4].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = Gg 1) (¢ — Fpy @)

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and ity (Fund, Informaticae, 2004).

34/48

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HRO4].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = Gg 1) (¢ — Fpy @)

@ each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and ity (Fund, Informaticae, 2004).

34/48

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFHI6].
If constants are encoded in unary, it is even PSPACE-complete [HRO4].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = Gg 1) (¢ — Fpy @)

@ each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

@ this requires an unbounded number of clocks

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and ity (Fund, Informaticae, 2004).

34/48

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFHI6].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = Gg 1) (¢ — Fpy @)

@ each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

@ this requires an unbounded number of clocks

1= something more clever needs to be done

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and ity (Fund, Informaticae, 2004).

34/48

Some interesting fragments

¢ = G (a— Fpugb)

35/48

¢ = G (a— Fpugb)

Some interesting fragments

b —-b b

' ® ; °

0 1 2 3
t tr

35/48

Some interesting fragments

—a b —|b b

; ° " Py

i A A X : X
0 2 3

tj—1 th—2 t tr

35/48

Some interesting fragments

—a b —|b b
I [e—— o : & L
i A A X ' x :
0 1 2 3
tj—1 th—2 t tr
z<1 z<2 1§i<2 z<3 —» 2<Z<3

35/48

Some interesting fragments

\J 0/

-4 b —|b b
k Iy " + ? + ’—4—7
0 1 2 3
t1—1 th—2 ty to
0 o
V \
z<1 z<2 B z<3 — 2;;53

\0%

= This idea can be extended to any formula in MITL

35/48

Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

36/48

Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

@ Does punctuality always lead to undecidability?

36/48

Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

@ Does punctuality always lead to undecidability?
We define coFlat-MTL7.: [BMOWO7]
coFlat-MTLi1. 29 == a | ma | Ve | oAe | Uy | WU

where | unbounded = ¥ € LTL

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).
36/48

Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

@ Does punctuality always lead to undecidability?
We define coFlat-MTL7.: [BMOWO7]
coFlat-MTLi1. 29 == a | ma | Ve | oAe | Uy | WU

where | unbounded = ¥ € LTL

@ Examples:
o G (o — F_je)isin coFlat-MTLyr_

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).
36/48

Some interesting fragments
A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

@ Does punctuality always lead to undecidability?

We define coFlat-MTL1.:

[BMOWO7]
coFlat-MTLir. 3 ¢ =

=al|l-aleVe | erne | oUy | U g
where | unbounded = ¥ € LTL

@ Examples:

o G(e — F_je)isin coFlat-MTL7
o FGgyeisnotin coFlat-MTL1.

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).

36/48

Some interesting fragments

A co-flat fragment of MTL

@ Do punctual constraints really need to be banned?

@ Does punctuality always lead to undecidability?

We define coFlat-MTL7.: [BMOWO7]
coFlat-MTLi1. 29 == a | ma | Ve | oAe | Uy | WU

where | unbounded = ¥ € LTL

@ Examples:
o G(e — F_ye)isin coFlat-MTLy7_
o FGgyeisnotin coFlat-MTL1.
e coFlat-MTLi1. contains Bounded-MTL (all modalities are
time-bounded)

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).
36/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

37/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp with ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp with ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp with ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp with ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp with ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

37/48

Some interesting fragments

Model-checking coFlat-MTL 1 is “easy”

The model-checking problem for coFlat-MTL 1 or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

@ The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eAGpwpp with ¢pp= (e = F_i1(eAFgio))
A (o= F=i(eAFqe))

@ A Bounded-MTL formula may define a non timed-regular language:
Gci(e = Fo10) NG o AGpoe
defines the context-free language {e"e™ | n < m}.

37/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~”
3 t.u. = useful duration ;| Feee—ee—eo

| S ——

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~” H———
3 t.u. = useful duration ;| Heee—ee—

| P ——

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~”
3 t.u. = useful duration ;| Fese—ee—o

| N D —

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
O R
3 t.u. = useful duration ;| Feee—ee—

| S D —

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~”
3 t.u. = useful duration ;| Feee—ee—o

R S ———

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~”
3 t.u. = useful duration ;| Feee—ee—o

| TSR ——

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
A b
3 t.u. = useful duration ;| Feee—e o

| TSR —

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~”
3 t.u. = useful duration ;| Feee—ee—eord

v fee—eoe—ro |

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G o (‘ —F_; ')

Offline, we stack all ‘relevant’ time units and use a sliding window:
~
3 t.u. = useful duration ;| Feee—ee—er

vV fee—eoe—or

38/48

Some interesting fragments

Algorithm for coFlat-MTL 1L

 ~ alternating timed automata B-, for =y with a ‘flatness’ property

39/48

Some interesting fragments

Algorithm for coFlat-MTL 1L

 ~ alternating timed automata B-, for =y with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

hard hard hard hard
— — — ——

[— [— —— [
LTL LTL LTL LTL

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

39/48

Some interesting fragments

Algorithm for coFlat-MTL 1L

 ~ alternating timed automata B-, for =y with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

hard hard hard hard
— — — ——

[— [— —— [
LTL LTL LTL LTL

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

@ hard fragment = sliding window algorithm
@ LTL fragment = finite automaton computation

39/48

Some interesting fragments

The ultimate fragment?

e MITL and coFlat-MTL 1. have ‘low’ complexities for pretty different
reasons...

40/48

Some interesting fragments

The ultimate fragment?

e MITL and coFlat-MTL 1. have ‘low’ complexities for pretty different
reasons...

@ ... why not mix the two logics?

40/48

Some interesting fragments

The ultimate fragment?

e MITL and coFlat-MTL 1. have ‘low’ complexities for pretty different
reasons...

@ ... why not mix the two logics?
We define coFlat-MT Ly 1e: [BMOWO08]
coFlat-MTLyirL 3¢ == a | —a | oV | oAe | Ui | © U

where | unbounded = ¢ € MITL.

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP'08).
40/48

Some interesting fragments

The ultimate fragment?

e MITL and coFlat-MTL 1. have ‘low’ complexities for pretty different
reasons...

@ ... why not mix the two logics?
We define coFlat-MT Ly 1e: [BMOWO08]
coFlat-MTLwirL 3¢ == a | ma | oVo | oAp | oUy | v U e
where | unbounded = ¢ € MITL.

o Examples:
o FGgyeisin coFlat-MTLwte
o FG_je is notin coFlat-MTLytL
o coFlat-MTLwrL generalizes both logics MITL and coFlat-MTLt

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP'08).
40/48

Some interesting fragments

Model-checking coFlat-MT L.

The model-checking problem for coFlat-MTLy T is
EXPSPACE-complete [BMOWO08], regardless of the encoding of
constants in unary or in binary.

41/48

Some interesting fragments

Model-checking coFlat-MT L.

The model-checking problem for coFlat-MTLy T is
EXPSPACE-complete [BMOWO08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

punctual punctual punctual punctual
—— — — —
—— —_—— [e—— P ——————7
non-punctual non-punctual non-punctual non-punctual
< P
somewhat

L -
™ stretchable

41/48

Some interesting fragments

Model-checking coFlat-MT L.

The model-checking problem for coFlat-MTLy T is
EXPSPACE-complete [BMOWO08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

punctual punctual punctual punctual
—— — — —
—— —_—— [e—— P ——————7
non-punctual non-punctual non-punctual non-punctual
< P
somewhat

L -
™ stretchable

Stretchable signal:

41/48

Some interesting fragments

Model-checking coFlat-MT L.

The model-checking problem for coFlat-MTLy T is
EXPSPACE-complete [BMOWO08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

punctual punctual punctual punctual
— — —
—— —_—— [e—— P ——————7
non-punctual non-punctual non-punctual non-punctual
< P
somewhat

-
™ stretchable

Stretchable signal: Any model of an LTL

formula is stretchable.

41/48

Some interesting fragments

Model-checking coFlat-MT L.

The model-checking problem for coFlat-MTLy T is
EXPSPACE-complete [BMOWO08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

punctual punctual punctual punctual
— — —
—— —_—— [e—— P ——————7
non-punctual non-punctual non-punctual non-punctual
< P
somewhat

-
™ stretchable

Stretchable signal: Any model of an LTL

formula is stretchable.

@ Any model of an MITL
formula is somewhat
stretchable.

41/48

Some interesting fragments

@ non-punctual part: somewhat stretchable
— transform into LTL constraints

42/48

Some interesting fragments

@ non-punctual part: somewhat stretchable
— transform into LTL constraints

@ punctual part:

42/48

Some interesting fragments

@ non-punctual part: somewhat stretchable
— transform into LTL constraints

@ punctual part: non-stretchable... ®

42/48

Some interesting fragments

@ non-punctual part: somewhat stretchable
— transform into LTL constraints

@ punctual part: non-stretchable... ®
but not too long... ®

42/48

Some interesting fragments

@ non-punctual part: somewhat stretchable
— transform into LTL constraints

@ punctual part: non-stretchable... ®
but not too long... ©
e—F_je
0 1 2 3 4

42/48

Some interesting fragments

@ non-punctual part: somewhat stretchable
— transform into LTL constraints

@ punctual part: non-stretchable... ®
but not too long... ©
e—F_je
| ¥
0 1 2 3 4
\
track i
0 1 2
track i+1
2 3 4
Ll
@i —®i)

42/48

Some interesting fragments

A tableau satisfiability problem

track 1

track 2

track 3

track 4

- - e track 5

boundeq height

track k—3

check punctual formulas

track k—2

track k—1

track k

check non-punctual formulas

43/48

Some interesting fragments

A tableau satisfiability problem

track 1

track 2

track 3

track 4

- - e track 5

boundeq height

track k—3

check punctual formulas

track k—2

track k—1

track k

check non-punctual formulas
15 transform into sat. prob. for LTL+Past over Ry (PSPACE: [Rey04])

[Rey04] Reynolds. The complexity of the temporal logic over the reals (Subm.'04).
43/48

Some interesting fragments

The end of the quest for tractable fragments of MTL?

undec./NPR

Gounded—MTL

coFlat-MTL 1
coFlat-MTLwmrL

PSPACE-c. EXPSPACE-c.

44/48

Some interesting fragments

The end of the quest for tractable fragments of MTL?

undec./NPR

Qnded—MTL

coFlat-MTL 1
coFlat-MTLwmrL

PSPACE-c. EXPSPACE-c.

+ add Positive-MTL [PWO09]

[PWO09] Parys, Walukiewicz. Weak Alternating Timed Automata (ICALP’09).
44/48

Conclusion

Outline

6. Conclusion

45/48

Conclusion

Conclusion

@ Recent advances have raised a new interest for linear-time timed
temporal logics

o Not everything is undecidable

o Some rather ‘efficient’ subclasses

@ non-punctual formulas
o structurally (co-)flat formulas

46/48

Conclusion

Conclusion

@ Recent advances have raised a new interest for linear-time timed
temporal logics

o Not everything is undecidable

o Some rather ‘efficient’ subclasses

@ non-punctual formulas
o structurally (co-)flat formulas

@ No real data structures do exist for these logics.

46/48

Conclusion

Going further with quantities...

@ System resources might be relevant and even crucial information
e energy consumption, memory usage, price to pay, bandwidth, ...

47/48

Conclusion

Going further with quantities...

@ System resources might be relevant and even crucial information
e energy consumption, memory usage, price to pay, bandwidth, ...

@ We need to integrate those aspects in models and in logics

o Models: hybrid automata, timed automata with observer variables
o Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

47/48

Conclusion

Going further with quantities...

@ System resources might be relevant and even crucial information
e energy consumption, memory usage, price to pay, bandwidth, ...

@ We need to integrate those aspects in models and in logics

o Models: hybrid automata, timed automata with observer variables
o Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

@ Very few decidability results, unless strong restrictions..

47/48

Conclusion

Going further with quantities...

@ System resources might be relevant and even crucial information
e energy consumption, memory usage, price to pay, bandwidth, ...

@ We need to integrate those aspects in models and in logics

o Models: hybrid automata, timed automata with observer variables
o Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

@ Very few decidability results, unless strong restrictions..
... but this is a very active field of research!

47/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
0 13 0 0 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~®
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
y 0 13 0 0 0.7
cost :

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching @?

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching @?

5t410(2 —t) +1

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

5t+102—t)+1,5t+(2—-t)+7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

min (5t +10(2—t)+1,5t+(2—t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching @?

inf - min (5t410(2—-t)+1,5t+(2—-t)+7)=9

0<1t<2

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

Conclusion

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

inf - min (5t410(2—-t)+1,5t+(2—-t)+7)=9

0<1t<2

~ strategy: leave immediately fg, go to ¢3, and wait there 2 t.u.

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

48/48

	Introduction
	Definition of the logics
	The timed automaton model
	The model-checking problem
	Some interesting fragments
	Conclusion

