
On the Model Checking of Timed and
Weighted Temporal Logics

Patricia Bouyer

LSV, CNRS & ENS Cachan, France

1/48

On the Model Checking of Timed and
Weighted Temporal Logics

Patricia Bouyer

LSV, CNRS & ENS Cachan, France

1/48

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

2/48

Introduction

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

3/48

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)

model-checking

algorithm

yes/no

4/48

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)

model-checking

algorithm

yes/no

4/48

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

4/48

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

4/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

|= F • ≡ ttU •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

|= F • ≡ ttU •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

|= F • ≡ ttU •

|= G • ≡ ¬F¬•

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

response property:

G (• → F •)

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

response property:

G (• → F •)
liveness property:

GF •

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

response property:

G (• → F •)
liveness property:

GF •
safety property:

G¬•

5/48

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

response property:

G (• → F •)
liveness property:

GF •
safety property:

G¬•
a more complex property:

(• ∧ (F • ∨G •))U •

5/48

Introduction

Adding timing requirements

Need for timed models

the behaviour of most systems depends on time;
faithful modelling has to take time into account.

+ timed automata, time(d) Petri nets, timed process algebras...

Need for timed specification languages

the behaviour of most systems depends on time;
untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

+ TCTL, MTL, TPTL, timed µ-calculus...

6/48

Introduction

Adding timing requirements

Need for timed models

the behaviour of most systems depends on time;
faithful modelling has to take time into account.

+ timed automata, time(d) Petri nets, timed process algebras...

Need for timed specification languages

the behaviour of most systems depends on time;
untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

+ TCTL, MTL, TPTL, timed µ-calculus...

6/48

Definition of the logics

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

7/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

This is a timed extension of LTL

Can be interpreted over timed words, or over signals

this distinction is fundamental

Can be interpreted over finite or infinite behaviours

this distinction is fundamental

8/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

This is a timed extension of LTL

Can be interpreted over timed words, or over signals

this distinction is fundamental

Can be interpreted over finite or infinite behaviours

this distinction is fundamental

8/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

This is a timed extension of LTL

Can be interpreted over timed words, or over signals

this distinction is fundamental

Can be interpreted over finite or infinite behaviours

this distinction is fundamental

8/48

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

This is a timed extension of LTL

Can be interpreted over timed words, or over signals

this distinction is fundamental

Can be interpreted over finite or infinite behaviours

this distinction is fundamental

8/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/48

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

10/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

10/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

10/48

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

10/48

Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •

11/48

Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •

11/48

Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •

11/48

Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •

11/48

Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •

11/48

Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •

11/48

Definition of the logics

Some further extensions

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

12/48

Definition of the logics

Some further extensions

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

12/48

Definition of the logics

Some further extensions

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

12/48

Definition of the logics

Some further extensions

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

12/48

Definition of the logics

Some further extensions

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

12/48

Definition of the logics

A note on the expressiveness

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).

[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

This is true in the pointwise semantics.

This is wrong in the continuous semantics!

13/48

Definition of the logics

A note on the expressiveness

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

This is true in the pointwise semantics.

This is wrong in the continuous semantics!

13/48

Definition of the logics

A note on the expressiveness

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

This is true in the pointwise semantics.

This is wrong in the continuous semantics!

13/48

Definition of the logics

A note on the expressiveness

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

This is true in the pointwise semantics.

This is wrong in the continuous semantics!

13/48

Definition of the logics

A note on the expressiveness

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

This is true in the pointwise semantics.

This is wrong in the continuous semantics!

13/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →



F61 • ∧ F[1,2] •
∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)

∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

14/48

The timed automaton model

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

15/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0

23 0 15.6 15.6 17.9 17.9 40 40

y 0

23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0

23 0 15.6 15.6 17.9 17.9 40 40

y 0

23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23

0 15.6 15.6 17.9 17.9 40 40

y 0 23

23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0 23 0

15.6 15.6 17.9 17.9 40 40

y 0 23 23

38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23 0 15.6

15.6 17.9 17.9 40 40

y 0 23 23 38.6

0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0 23 0 15.6 15.6

17.9 17.9 40 40

y 0 23 23 38.6 0

2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23 0 15.6 15.6 17.9

17.9 40 40

y 0 23 23 38.6 0 2.3

0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0 23 0 15.6 15.6 17.9 17.9

40 40

y 0 23 23 38.6 0 2.3 0

22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23 0 15.6 15.6 17.9 17.9 40

40

y 0 23 23 38.6 0 2.3 0 22.1

22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

16/48

The timed automaton model

Basic result on timed automata

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].

17/48

The timed automaton model

Basic result on timed automata

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].

17/48

The timed automaton model

Basic result on timed automata

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].

17/48

The model-checking problem

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

18/48

The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n MTL formula

19/48

The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n

MTL formula

19/48

The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n MTL formula

19/48

The model-checking problem

Results

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

Model-checking linear-time timed temporal logics is hard!

The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

20/48

The model-checking problem

Results

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

Model-checking linear-time timed temporal logics is hard!

The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

20/48

The model-checking problem

Results

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

Model-checking linear-time timed temporal logics is hard!

The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

20/48

The model-checking problem

Results

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).
[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

Model-checking linear-time timed temporal logics is hard!

The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

20/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • ••••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

•

• ••••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• •

••••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2 s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • •

•••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2 s3

s3 s4

s4

s5

s5

•! •? •!

•! •? •? •?

•

• •

•

••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2 s3

s3 s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • ••

•

•• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • ••••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3

s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • ••••

• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable

21/48

The model-checking problem

A short visit to channel machines (2)

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

Halting problem: is there an execution ending in a halting state?

Proposition

The halting problem is undecidable for channel machines [BZ83].

The halting problem is decidable but NPR for channel machines with
insertion errors [Sch02].

22/48

The model-checking problem

A short visit to channel machines (2)

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

Halting problem: is there an execution ending in a halting state?

Proposition

The halting problem is undecidable for channel machines [BZ83].

The halting problem is decidable but NPR for channel machines with
insertion errors [Sch02].

22/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.

=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

23/48

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable
iff Auniv 6|= ¬ϕ

? possibly with insertion errors

23/48

The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

24/48

The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

24/48

The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

24/48

The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

24/48

The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!

+ model-checking MTL is NPR

24/48

The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

24/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics

not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)

no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL

25/48

The model-checking problem

What we have proved so far

What remains to be proved

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.

MTL

decidable,

NPR [OW07] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

26/48

The model-checking problem

What remains to be proved

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.

MTL decidable, NPR [OW07] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

26/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Büchi) automata

G (a → F b)

q0

q1

¬a

a

¬b
b

¬a

a

a

b

27/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Büchi) automata

G (a → F b) q0

q1

¬a

a

¬b
b

¬a

a

a

b

27/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Büchi) automata

G (a → F b) q0

q1

¬a

a

¬b
b

¬a

a

a

b

27/48

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Büchi) automata

G (a → F b) q0

q1

¬a

a

¬b
b

¬a

a

a

b

27/48

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b)

q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5

4.2

¬a,1.2

a,2.6

a,3.5

b,4.2

28/48

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b) q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5

4.2

¬a,1.2

a,2.6

a,3.5

b,4.2

28/48

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b) q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

28/48

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

29/48

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

29/48

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

29/48

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

29/48

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

29/48

The model-checking problem

Summary

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

30/48

The model-checking problem

What about infinite behaviours?

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

the previous algorithm cannot be lifted to the infinite behaviours
framework

there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem
Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

31/48

The model-checking problem

What about infinite behaviours?

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

the previous algorithm cannot be lifted to the infinite behaviours
framework

there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem
Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

31/48

The model-checking problem

What about infinite behaviours?

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

the previous algorithm cannot be lifted to the infinite behaviours
framework

there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem
Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

31/48

Some interesting fragments

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

32/48

Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL

G (• → F[1,2] •) is in MITL

33/48

Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL

G (• → F[1,2] •) is in MITL

33/48

Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL

G (• → F[1,2] •) is in MITL

33/48

Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL

G (• → F[1,2] •) is in MITL

33/48

Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL

G (• → F[1,2] •) is in MITL

33/48

Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL
G (• → F[1,2] •) is in MITL

33/48

Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done

34/48

Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done

34/48

Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)

each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done

34/48

Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done

34/48

Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done

34/48

Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done

34/48

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

35/48

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

35/48

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

35/48

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

35/48

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

35/48

Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48

Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48

Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48

Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48

Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48

Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

37/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

38/48

Some interesting fragments

Algorithm for coFlat-MTLLTL

ϕ ; alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

LTL LTL LTL LTL

hardhardhardhard

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

hard fragment = sliding window algorithm

LTL fragment = finite automaton computation

39/48

Some interesting fragments

Algorithm for coFlat-MTLLTL

ϕ ; alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

LTL LTL LTL LTL

hardhardhardhard

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

hard fragment = sliding window algorithm

LTL fragment = finite automaton computation

39/48

Some interesting fragments

Algorithm for coFlat-MTLLTL

ϕ ; alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

LTL LTL LTL LTL

hardhardhardhard

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

hard fragment = sliding window algorithm

LTL fragment = finite automaton computation

39/48

Some interesting fragments

The ultimate fragment?

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP’08).

MITL and coFlat-MTLLTL have ‘low’ complexities for pretty different
reasons...

... why not mix the two logics?

We define coFlat-MTLMITL: [BMOW08]

coFlat-MTLMITL 3 ϕ ::= a | ¬a | ϕ∨ϕ | ϕ∧ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ MITL.

Examples:

FG61 • is in coFlat-MTLMITL

FG=1 • is not in coFlat-MTLMITL

coFlat-MTLMITL generalizes both logics MITL and coFlat-MTLLTL

40/48

Some interesting fragments

The ultimate fragment?

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP’08).

MITL and coFlat-MTLLTL have ‘low’ complexities for pretty different
reasons...

... why not mix the two logics?

We define coFlat-MTLMITL: [BMOW08]

coFlat-MTLMITL 3 ϕ ::= a | ¬a | ϕ∨ϕ | ϕ∧ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ MITL.

Examples:

FG61 • is in coFlat-MTLMITL

FG=1 • is not in coFlat-MTLMITL

coFlat-MTLMITL generalizes both logics MITL and coFlat-MTLLTL

40/48

Some interesting fragments

The ultimate fragment?

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP’08).

MITL and coFlat-MTLLTL have ‘low’ complexities for pretty different
reasons...

... why not mix the two logics?

We define coFlat-MTLMITL: [BMOW08]

coFlat-MTLMITL 3 ϕ ::= a | ¬a | ϕ∨ϕ | ϕ∧ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ MITL.

Examples:

FG61 • is in coFlat-MTLMITL

FG=1 • is not in coFlat-MTLMITL

coFlat-MTLMITL generalizes both logics MITL and coFlat-MTLLTL

40/48

Some interesting fragments

The ultimate fragment?

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP’08).

MITL and coFlat-MTLLTL have ‘low’ complexities for pretty different
reasons...

... why not mix the two logics?

We define coFlat-MTLMITL: [BMOW08]

coFlat-MTLMITL 3 ϕ ::= a | ¬a | ϕ∨ϕ | ϕ∧ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ MITL.

Examples:

FG61 • is in coFlat-MTLMITL

FG=1 • is not in coFlat-MTLMITL

coFlat-MTLMITL generalizes both logics MITL and coFlat-MTLLTL

40/48

Some interesting fragments

Model-checking coFlat-MTLMITL

Theorem
The model-checking problem for coFlat-MTLMITL is
EXPSPACE-complete [BMOW08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

somewhat
stretchable

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

Stretchable signal:
Any model of an LTL
formula is stretchable.

Any model of an MITL
formula is somewhat
stretchable.

41/48

Some interesting fragments

Model-checking coFlat-MTLMITL

Theorem
The model-checking problem for coFlat-MTLMITL is
EXPSPACE-complete [BMOW08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

somewhat
stretchable

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

Stretchable signal:
Any model of an LTL
formula is stretchable.

Any model of an MITL
formula is somewhat
stretchable.

41/48

Some interesting fragments

Model-checking coFlat-MTLMITL

Theorem
The model-checking problem for coFlat-MTLMITL is
EXPSPACE-complete [BMOW08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

somewhat
stretchable

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

Stretchable signal:

Any model of an LTL
formula is stretchable.

Any model of an MITL
formula is somewhat
stretchable.

41/48

Some interesting fragments

Model-checking coFlat-MTLMITL

Theorem
The model-checking problem for coFlat-MTLMITL is
EXPSPACE-complete [BMOW08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

somewhat
stretchable

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

Stretchable signal:
Any model of an LTL
formula is stretchable.

Any model of an MITL
formula is somewhat
stretchable.

41/48

Some interesting fragments

Model-checking coFlat-MTLMITL

Theorem
The model-checking problem for coFlat-MTLMITL is
EXPSPACE-complete [BMOW08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

somewhat
stretchable

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

Stretchable signal:
Any model of an LTL
formula is stretchable.

Any model of an MITL
formula is somewhat
stretchable.

41/48

Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part:

non-stretchable... /

but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1

42/48

Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part:

non-stretchable... /

but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1

42/48

Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part: non-stretchable... /

but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1

42/48

Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part: non-stretchable... /
but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1

42/48

Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part: non-stretchable... /
but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1

42/48

Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part: non-stretchable... /
but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1

42/48

Some interesting fragments

A tableau satisfiability problem

[Rey04] Reynolds. The complexity of the temporal logic over the reals (Subm.’04).

track k

track k−1

track k−2

track k−3

track 5

track 4

track 3

track 2

track 1

...

...

...

...

...

...

...

...

...

...
...

...
...

...
...

...
...

...
...

1 time unit

b
o
u
n
d
ed

h
ei

g
h
t

check non-punctual formulas

ch
ec

k
p
u
n
ct

u
a
l
fo

rm
u
la

s

+ transform into sat. prob. for LTL+Past over R+ (PSPACE: [Rey04])

43/48

Some interesting fragments

A tableau satisfiability problem

[Rey04] Reynolds. The complexity of the temporal logic over the reals (Subm.’04).

track k

track k−1

track k−2

track k−3

track 5

track 4

track 3

track 2

track 1

...

...

...

...

...

...

...

...

...

...
...

...
...

...
...

...
...

...
...

1 time unit

b
o
u
n
d
ed

h
ei

g
h
t

check non-punctual formulas

ch
ec

k
p
u
n
ct

u
a
l
fo

rm
u
la

s

+ transform into sat. prob. for LTL+Past over R+ (PSPACE: [Rey04])

43/48

Some interesting fragments

The end of the quest for tractable fragments of MTL?

[PW09] Parys, Walukiewicz. Weak Alternating Timed Automata (ICALP’09).

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

PSPACE-c.

undec./NPR

EXPSPACE-c.

+ add Positive-MTL [PW09]

44/48

Some interesting fragments

The end of the quest for tractable fragments of MTL?

[PW09] Parys, Walukiewicz. Weak Alternating Timed Automata (ICALP’09).

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

PSPACE-c.

undec./NPR

EXPSPACE-c.

+ add Positive-MTL [PW09]

44/48

Conclusion

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

45/48

Conclusion

Conclusion

Recent advances have raised a new interest for linear-time timed
temporal logics

Not everything is undecidable

Some rather ‘efficient’ subclasses

non-punctual formulas
structurally (co-)flat formulas

No real data structures do exist for these logics.

46/48

Conclusion

Conclusion

Recent advances have raised a new interest for linear-time timed
temporal logics

Not everything is undecidable

Some rather ‘efficient’ subclasses

non-punctual formulas
structurally (co-)flat formulas

No real data structures do exist for these logics.

46/48

Conclusion

Going further with quantities...

System resources might be relevant and even crucial information

energy consumption, memory usage, price to pay, bandwidth, ...

We need to integrate those aspects in models and in logics

Models: hybrid automata, timed automata with observer variables
Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

Very few decidability results, unless strong restrictions..
... but this is a very active field of research!

47/48

Conclusion

Going further with quantities...

System resources might be relevant and even crucial information

energy consumption, memory usage, price to pay, bandwidth, ...

We need to integrate those aspects in models and in logics

Models: hybrid automata, timed automata with observer variables
Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

Very few decidability results, unless strong restrictions..
... but this is a very active field of research!

47/48

Conclusion

Going further with quantities...

System resources might be relevant and even crucial information

energy consumption, memory usage, price to pay, bandwidth, ...

We need to integrate those aspects in models and in logics

Models: hybrid automata, timed automata with observer variables
Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

Very few decidability results, unless strong restrictions..

... but this is a very active field of research!

47/48

Conclusion

Going further with quantities...

System resources might be relevant and even crucial information

energy consumption, memory usage, price to pay, bandwidth, ...

We need to integrate those aspects in models and in logics

Models: hybrid automata, timed automata with observer variables
Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

Very few decidability results, unless strong restrictions..
... but this is a very active field of research!

47/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
06t62

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
06t62

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
06t62

min (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
06t62

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
06t62

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

48/48

Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x62,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
06t62

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

48/48

	Introduction
	Definition of the logics
	The timed automaton model
	The model-checking problem
	Some interesting fragments
	Conclusion

