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Adding timing requirements

Need for timed models

the behaviour of most systems depends on time;
faithful modelling has to take time into account.

+ timed automata, time(d) Petri nets, timed process algebras...

Need for timed specification languages
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untimed specifications are not sufficient
(for instance, bounded response timed, etc...)
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Definition of the logics

Metric Temporal Logic (MTL)

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

This is a timed extension of LTL

Can be interpreted over timed words, or over signals

this distinction is fundamental

Can be interpreted over finite or infinite behaviours

this distinction is fundamental
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The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]
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Definition of the logics

Some examples

“Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
in the continuous semantics, F=2 • ≡ F=1 F=1 •
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Definition of the logics

Some further extensions

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)
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Definition of the logics

A note on the expressiveness

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).

[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

This is true in the pointwise semantics.

This is wrong in the continuous semantics!
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Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →


F61 • ∧ F[1,2] •

∨

F61 ( • ∧ F61 • )
∨

F61 ( F61 • ∧ F=1 • )
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The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0

23 0 15.6 15.6 17.9 17.9 40 40

y 0

23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe
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The timed automaton model

Basic result on timed automata

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].
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The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
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The model-checking problem

Results

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

Model-checking linear-time timed temporal logics is hard!

The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]
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The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • ••••• •

s5 is not reachable

insertion errors: any letter can appear on the channel at any time

s5 is reachable
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The model-checking problem

A short visit to channel machines (2)

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

Halting problem: is there an execution ending in a halting state?

Proposition

The halting problem is undecidable for channel machines [BZ83].

The halting problem is decidable but NPR for channel machines with
insertion errors [Sch02].
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The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors
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The model-checking problem

Constraints satisfied by the timed word

states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR
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The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

Why not reverse the previous implication?

G ((F=1 a?) → a!)

correct in the continuous semantics
not correct in the pointwise semantics

Why not look back in the past?

G (a? → F−1
=1 a!)

correct for MTL+Past (in the continuous and in the pointwise sem.)
no direct translation into MTL

A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

this formula is in TPTL (pointwise sem.), not in MTL
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The model-checking problem

What we have proved so far

What remains to be proved

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.

MTL

decidable,

NPR [OW07] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]
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The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into alternating (Büchi) automata

G (a → F b)

q0

q1

¬a

a

¬b
b

¬a

a

a

b
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The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b)

q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5

4.2

¬a,1.2

a,2.6

a,3.5

b,4.2
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The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain
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The model-checking problem

Summary

Theorem
Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]
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The model-checking problem

What about infinite behaviours?

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

the previous algorithm cannot be lifted to the infinite behaviours
framework

there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem
Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

31/48



The model-checking problem

What about infinite behaviours?

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

the previous algorithm cannot be lifted to the infinite behaviours
framework

there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem
Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

31/48



The model-checking problem

What about infinite behaviours?

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

the previous algorithm cannot be lifted to the infinite behaviours
framework

there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem
Over infinite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

31/48



Some interesting fragments
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Some interesting fragments

The fragment without punctuality

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

The undecidability/NPR proofs heavily rely on punctual constraints.

Claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

Examples:

G (• → F=1 •) is not in MITL

G (• → F[1,2] •) is in MITL
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Some interesting fragments

Model-checking MITL is “easy”

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

this requires an unbounded number of clocks

+ something more clever needs to be done
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this requires an unbounded number of clocks

+ something more clever needs to be done
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Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL
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Some interesting fragments

A co-flat fragment of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

Do punctual constraints really need to be banned?

Does punctuality always lead to undecidability?

We define coFlat-MTLLTL: [BMOW07]

coFlat-MTLLTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)
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where I unbounded ⇒ ψ ∈ LTL

Examples:

G (• → F=1 •) is in coFlat-MTLLTL

FG61 • is not in coFlat-MTLLTL

coFlat-MTLLTL contains Bounded-MTL (all modalities are
time-bounded)

36/48



Some interesting fragments

Model-checking coFlat-MTLLTL is “easy”

Theorem
The model-checking problem for coFlat-MTLLTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.
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Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify the formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration
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Some interesting fragments

Algorithm for coFlat-MTLLTL

ϕ ; alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

Only counter-examples of the following form need to be looked for:

LTL LTL LTL LTL

hardhardhardhard

where - the number of hard fragments is at most exponential
- the total duration of hard fragments is at most exponential

hard fragment = sliding window algorithm

LTL fragment = finite automaton computation
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Some interesting fragments

The ultimate fragment?

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP’08).

MITL and coFlat-MTLLTL have ‘low’ complexities for pretty different
reasons...

... why not mix the two logics?

We define coFlat-MTLMITL: [BMOW08]

coFlat-MTLMITL 3 ϕ ::= a | ¬a | ϕ∨ϕ | ϕ∧ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ MITL.

Examples:

FG61 • is in coFlat-MTLMITL

FG=1 • is not in coFlat-MTLMITL

coFlat-MTLMITL generalizes both logics MITL and coFlat-MTLLTL
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Some interesting fragments

Model-checking coFlat-MTLMITL

Theorem
The model-checking problem for coFlat-MTLMITL is
EXPSPACE-complete [BMOW08], regardless of the encoding of
constants in unary or in binary.

Only counter-examples of the following form need to be looked for:

somewhat
stretchable

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

Stretchable signal:
Any model of an LTL
formula is stretchable.

Any model of an MITL
formula is somewhat
stretchable.
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Some interesting fragments

non-punctual part: somewhat stretchable
→ transform into LTL constraints

punctual part:

non-stretchable... /

but not too long... ,

0 1 2 3 4

•→F=1 •

0 1 2

2 3 4

track i

track i+1

|=

•i→•i+1
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Some interesting fragments

A tableau satisfiability problem

[Rey04] Reynolds. The complexity of the temporal logic over the reals (Subm.’04).
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Some interesting fragments

The end of the quest for tractable fragments of MTL?

[PW09] Parys, Walukiewicz. Weak Alternating Timed Automata (ICALP’09).
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We need to integrate those aspects in models and in logics

Models: hybrid automata, timed automata with observer variables
Logics: extensions of classical temporal logics with quantitative
constraints on the observer variables

Very few decidability results, unless strong restrictions..
... but this is a very active field of research!
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Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
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