Timed automata — Decidability issues

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

1/22

An example of a timed automaton

£25
aone: 0=

repairing

Y- repair
2<yAx<56
y:=0

problem, x:=0

failsafe

2/22

An example of a timed automaton

<5

<
aone: »=Y

repairing

Y- repair
2<yAx<56
y:=0

problem, x:=0

failsafe

safe
X 0
Yy 0

2/22

An example of a timed automaton

repairing

Y- repair
2<yAx<56
y:=0

problem, x:=0

failsafe

23

safe —> safe
X 0 23
y o 23

2/22

An example of a timed automaton

repairing

Y- repair
2<yAx<56
y:=0

problem, x:=0

failsafe

23 problem

safe —> safe ——> alarm
X 0 23 0
y o 23 23

2/22

An example of a timed automaton

repairing

7 repair
2<yAx<56

problem, x:=0

y:=0

failsafe

problen 15.6
——> alarm —— alarm
0 15.6
23 38.6

23

safe —> safe

X 0 23
y o 23

2/22

An example of a timed automaton

repairing

A .
¥ repair

problem, x:=0

y:=0

failsafe

safe i) safe —pm—) alarm i) alarm
X 0 23 0 15.6
y 0 23 23 38.6
failsafe
15.6
0

2<yAx<56

delayed

failsafe
15.6
0

2/22

An example of a timed automaton

repairing

A .
¥ repair

problem, x:=0

y:=0

failsafe

23 problem 15.6
safe —> safe ——> alarm —— alarm
X 0 23 0 15.6
y 0 23 23 38.6
2.3
failsafe —> failsafe
15.6 17.9
0 2.3

2<yAx<56

delayed

failsafe
15.6
0

2/22

An example of a timed automaton

repairing

2 .
¥* repair

problem, x:=0

y:=0

failsafe

23 problem 15.6
safe —> safe ——> alarm —— alarm

X 0 23 0 15.6
y 0 23 23 38.6
failsafe i} failsafe ﬁ) repairing
15.6 17.9 17.9
0 2.3 0

2<yAx<56

delayed

failsafe
15.6
0

2/22

An example of a timed automaton

problem, x:=0

23 problem 15.6
safe —> safe —— alarm ——
X 0 23 0
y 0 23 23
2.3 repair
failsafe ~—— failsafe ———> repairing
15.6 17.9 17.9
0 2.3 0

repairing

failsafe

y:=0

alarm
15.6
38.6

22.1

—

repair

2<yAx<56

R failsafe
15.6
0
repairing
40
22.1

2/22

An example of a timed automaton

problem, x:=0

23 problem 15.6
safe —> safe —— alarm ——
X 0 23 0
y 0 23 23
2.3 repair
failsafe ~—— failsafe ———> repairing
15.6 17.9 17.9
0 2.3 0

repairing

failsafe

repair

y:=0

alarm
15.6
38.6

22.1

—

2<yAx<56

delayed

repairing
40
22.1

failsafe
15.6
0

done

—_—

safe
40
22.1

2/22

An example of a timed automaton

repairing

¥ repair

2<yAx<56

problem, x:=0

23 problem 15.6 delayed
safe —> safe ——> alarm —— alarm —— failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
2.3 repair 2.1 done
failsafe ~—— failsafe ———> repairing ——> repairing — safe
15.6 17.9 17.9 40 40
0 2.3 0 22.1 22.1

This run reads the timed word
(problem,23)(delayed, 38.6)(repair, 40.9), (done, 63).

2/22

Decidability of basic properties

Outline

1. Decidability of basic properties

3/22

Decidability of basic properties

Verification

Emptiness problem
Is the language accepted by a timed automaton empty?

@ basic reachability/safety properties (final states)

@ basic liveness properties (w-regular conditions)

4/22

Decidability of basic properties

Verification

Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

4/22

Decidability of basic properties

Verification

Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

4/22

Decidability of basic properties

Verification
Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete.

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
4/22

Decidability of basic properties

Verification
Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete.

Method: construct a finite abstraction J

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
4/22

Decidability of basic properties

The region abstraction

clock y

0 clock x

5/22

Decidability of basic properties

The region abstraction

clock y
only constraints: x ~ ¢ with ¢ € {0,1,2}
y ~ ¢ with c € {0,1,2}
2 e ° °
1 e ° °
0 e ° ° clock x
0 1 2

@ ‘“compatibility” between regions and constraints

5/22

The region abstraction

Decidability of basic properties

The path O——Q——0O
s - can be fired from @
- cannot be fired from ®

clock y
2 e ° '." °
\l‘l "4
OI "'
1 o——i—0—o'—o
¢ 1"'
<
Qe °)
0 1 2

clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

5/22

The region abstraction

Decidability of basic properties

The path O——Q——0O
s - can be fired from @
- cannot be fired from ®

clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

5/22

Decidability of basic properties

The region abstraction

clock y

0e ° ° clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
~> an equivalence of finite index

5/22

Decidability of basic properties

The region abstraction

clock y

0e ° ° clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
~> an equivalence of finite index
a time-abstract bisimulation

5/22

Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

6/22

Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

a
—_

v e
o

6/22

Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

a
VvV @— @
I I
I I
1 a 1
@@—> 0

3

6/22

Time-abstract bisimulation

This is a relation between e and e such that:

v

3

a
—
a
—

Vd >0

Decidability of basic properties

6/22

Time-abstract bisimulation

This is a relation between e and e such that:

v

3

a
—
a
—

Vd >0

3d' >0

Decidability of basic properties

6/22

Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

a 3(d)
VvV @ — @ vd >0 o———> 0@
: R : Looo(d)
Jje——e 3d>0 @——®

.. and vice-versa (swap e and e).

6/22

Decidability of basic properties

The region abstraction (2)

clock y
- region R defined by:
(0<x<1
O<y<xl1
2 e ° ®
// y<x
1 ."”””"."””””l

° clock x

7/22

The region abstraction (2)

clock y

Decidability of basic properties

- region R defined by:

[0<x<1
O<y<x1
y <X

- time successors of R

clock x

7/22

Decidability of basic properties

The region abstraction (2)

clock y

- region R defined by:
[0<x<1
O<y<x1
y <X

- time successors of R

clock x

image of R when resetting clock x

7/22

Decidability of basic properties

The construction of the region graph

It “mimicks” the behaviours of the clocks.

’
1 [Ty oy - oo H .. e .

8/22

Decidability of basic properties

Region automaton = finite bisimulation quotient

~ a,x:= v __ -

N A - —> > - 2=+

timed automaton region graph

9/22

Decidability of basic properties

Region automaton = finite bisimulation quotient

~ :]l!" y<1l,a,x:=0 'I,[:YV <§§>]:::ii:iiqz:\\< . ‘—; =" “'|4

A

timed automaton region graph

1%}

T E)

* v

a

14 1 1?2 I

' ¢—————————2—""””"' A
ly ‘ region automaton

9/22

Decidability of basic properties

Region automaton = finite bisimulation quotient

~ a,x:= v __ -
Oy ® T y

NS A - —> > - 2=+

timed automaton region graph

141

4 E

N ¥

a

b | 4y I

' _———————————2—""‘———‘—;" A
2 ‘ region automaton

L(reg. aut.) = UNTIME(L(timed aut.)) J

9/22

Decidability of basic properties

An example [AD94]

x>0,a
[::::] y:=0

x>1,d

y<l,a,y:=0

10/22

Decidability of basic properties

An example [AD94]

x>0,a
[::::] y:=0

x>1,d

y<l,a,y:=0

10/22

Decidability of basic properties

An example [AD94]

x>0,a
—>®—> x>1,d
y:=0
y
S0
—_
x=y=0 [
, b . .
a a |///’/,
———— x
S1 b 2
0=y<x<1 l=y<x
C £’
S3 d 53
O<y<x<1 x>1,y>1

10/22

timed automaton

Decidability of basic properties

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

11/22

Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

11/22

Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

@ It can be used to check for:

11/22

Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

@ It can be used to check for:
o reachability /safety properties

11/22

Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

@ It can be used to check for:
o reachability /safety properties
o liveness properties (like Blichi properties)

11/22

Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

@ It can be used to check for:
o reachability /safety properties
o liveness properties (like Blichi properties)
~~ problems with Zeno behaviours?

(infinitely many actions in bounded time)

11/22

Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

@ It can be used to check for:
o reachability /safety properties
o liveness properties (like Blichi properties)
~~ problems with Zeno behaviours?

(infinitely many actions in bounded time)

NB: standard problem in timed automata...

11/22

Decidability of basic properties

Back to the example

x>0,a
[::::] y:=0

x>1,d

y<l,a,y:=0

12/22

Decidability of basic properties

Back to the example

x>0,a
[::::: y:=0

x>1,d

y<1l,a,y:=0

12/22

Decidability of basic properties

Back to the example

x>0,a
—>®—> x>1,d
y:=0
y
S0
—_
x=y=0 [
, b . .
a a |///’/,
——— x
S1 b 2
0=y<x<1 l=y<x
C £’
s3 d s3
O<y<x<1 x>1,y>1

12/22

Decidability of basic properties

Back to the example

x>0,a
—>®—> x>1,d
y:=0
y<l,a,y:=0 y
S0
—
x=y=0
a b
- Al
/ X
s1 s1 b s1 b s
O=y<x<1 1=y<x
Zeno cycles
c Od
s3 d S3
O0<y<x<1 x>1,y>1

12/22

Decidability of basic properties

Back to the example

S0
—
x=y=0
a b
a a
/ X
s1 s1 b s1 b s

0=y<x<1 y=0,x>1 1=y <x Cycles with

non-Zeno behaviours

s3 s3 d s3

O0<y<x<1 1=y<x x>1,y>1

12/22

Equivalence (or preorder) checking

Outline

2. Equivalence (or preorder) checking

13/22

Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:

14/22

Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:

a
—.

v e
o

14/22

Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:

v

a
®e—— 0
I I
I I
1 a 1
e — 0

3

14/22

Strong timed (bi)simulation

This is a relation between e and e such that:

v

3

a
——
a
——

Vd >0

Equivalence (or preorder) checking

14/22

Strong timed (bi)simulation

This is a relation between e and e such that:

v

3

a
——
a
——

Vd >0

Equivalence (or preorder) checking

14/22

Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:

a 6(d)
V @ — @ vd >0 e— 0
L L s(d)
J @ —— e | e ——— 0

.. and vice-versa (swap e and e) for the bisimulation relation.

14/22

Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:

a 6(d)
V @ — @ vd >0 e— 0
L L s(d)
J @ —— e | e ——— 0

. and vice-versa (swap e and e) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

14/22

Equivalence (or preorder) checking

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(.A) = L(B) (resp.
L(A) C L(B))?

15/22

Equivalence (or preorder) checking

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(.A) = L(B) (resp.
L(A) C L(B))?

Theorem [AD90,AD94|

Language equivalence and language inclusion are undecidable in timed
automata.

. as a special case of the universality problem (are all timed words
accepted by the automaton?).

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

15/22

Equivalence (or preorder) checking

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(.A) = L(B) (resp.
L(A) C L(B))?

Theorem [AD90,AD94|

Language equivalence and language inclusion are undecidable in timed
automata.

. as a special case of the universality problem (are all timed words
accepted by the automaton?).

~» Proof by reduction from the recurring problem
of a two-counter machine

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

15/22

Equivalence (or preorder) checking

Undecidability of universality
Theorem [AD90,AD94] J

Universality of timed automata is undecidable.

16/22

Equivalence (or preorder) checking

Undecidability of universality
Theorem [AD90,AD94| J

Universality of timed automata is undecidable.

1 t.u. = 1 config

P

>

value of ¢ :
ccc ddd d c ccc ddd d c ccc ddd
t++-++—++—+—++—++—+H—+++—t----
bo by T by T b3
<. \E :/ Y
. L4 N . L4
1 t.u. = 1 config decrementation of d

@ one configuration is encoded in one time unit
@ number of ¢'s: value of counter ¢
@ number of d's: value of counter d

@ one time unit between two corresponding c's (resp. d’s)

16/22

Equivalence (or preorder) checking

Undecidability of universality
Theorem [AD90,AD94| J

Universality of timed automata is undecidable.

1 t.u. = 1 config

P

>

value of ¢ :
ccc ddd d c ccc ddd d c ccc ddd
t++-++—++—+—++—++—+H—+++—t----
bo by T by T b3
<. \E :/ Y
. L4 N . L4
1 t.u. = 1 config decrementation of d

@ one configuration is encoded in one time unit
@ number of ¢'s: value of counter ¢
@ number of d's: value of counter d

@ one time unit between two corresponding c's (resp. d’s)

~~ We encode “non-behaviours” of a two-counter machine
16/22

Equivalence (or preorder) checking

Example
Module to check that if instruction i does not decrease counter c, then
all actions ¢ appearing less than 1 t.u. after b; has to be followed by an

other ¢ 1 t.u. later.
x=1,-c

bi,x =0 Q x<1lc,x:=0
S 52

—(So \°L)
x#1

17/22

Equivalence (or preorder) checking

Example
Module to check that if instruction i does not decrease counter c, then
all actions ¢ appearing less than 1 t.u. after b; has to be followed by an

other ¢ 1 t.u. later.
x=1,-c

bi,x =0 Q x<1lc,x:=0
§ S

—{ S0 1
N K41

The union of all small modules is not universal
iff
The two-counter machine has a recurring computation

17/22

Equivalence (or preorder) checking

Bad news
@ Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)
e Complementability is undecidable [Tri03,Fin06]
° ...
[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed (FORMATS'03).

[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

18/22

Equivalence (or preorder) checking

Bad news
@ Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)
e Complementability is undecidable [Tri03,Fin06]
° ...

An example of non-determinizable/non-complementable timed aut.:

a a a

a,x:=0 x=1,a
s

> i\ 2

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

18/22

Equivalence (or preorder) checking

Bad news

@ Language inclusion is undecidable [AD90,AD94]

(Bad news for the application to verification)

e Complementability is undecidable [Tri03,Fin06]

° ..
An example of non-determinizable/non-complementable aut.: [AMO4]

a, b x#1,a,b
a,x:=0
—=>(so Sl

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).
[AMO04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

18/22

Equivalence (or preorder) checking

Bad news

@ Language inclusion is undecidable [AD90,AD94]

(Bad news for the application to verification)

e Complementability is undecidable [Tri03,Fin06]

° ..
An example of non-determinizable/non-complementable aut.: [AMO4]

a, b x#1,a,b
a,x:=0
—=>(so Sl

UNTIME (Zﬂ {(a*b*,7) | all a’s happen before 1 and no two a’s simultaneously}) is
not regular (exercise!)

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).
[AMO04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

18/22

Some extensions of timed automata

Outline

3. Some extensions of timed automata

19/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)

20/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

20/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

//
AN | o
/ // is also a time-abstract bisimulation!

VAVd%

NN

20/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

/ //

??// is al ti bstract bisimulation!

/ IS alsO a time-abstrac Isimulation:
AN/

o Linear constraints (i.e. 2x + 3y ~ 5)

20/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

/ //

??// is al ti bstract bisimulation!

/ IS alsO a time-abstrac Isimulation:
AN/

o Linear constraints (i.e. 2x + 3y ~ 5)
e undecidable in general

20/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

/ //

??// is al ti bstract bisimulation!

/ IS alsO a time-abstrac Isimulation:
AN/

o Linear constraints (i.e. 2x + 3y ~ 5)

e undecidable in general
e only decidable in few cases

20/22

Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

/
N
NN/
Y

is also a time-abstract bisimulation!

o Linear constraints (i.e. 2x + 3y ~ 5)

e undecidable in general

e only decidable in few cases

X/
Nz
/ \l/ \

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ~ ¢)!

20/22

Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ... [BDFPO04]

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).
21/22

Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ... [BDFPO04]

simple constraints + diagonal constraints

X =C, X:=y
x:=x+1
X =y+cC
x=x-—1

x:<c
X:>cC
Xi~y—+c
y+ec<ix<y+d
y+ec<ix<z+d

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

21/22

Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ...

[BDFP04]
simple constraints + diagonal constraints
X =C, X:=y decidable
x:=x+1 decidable
x:=y+c undecidable
x:=x—1 undecidable
x:<c decidable
al :>i decidable
X myre undecidable
y+ec<ix<y+d
y+ec<ix<z+d undecidable

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

21/22

Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ...

[BDFP04]
simple constraints + diagonal constraints
X =C, X:=y decidable
x:=x+1 decidable
x:=y+c undecidable
x:=x—1 undecidable
x:<c decidable
al :>i decidable
X myre undecidable
y+ec<ix<y+d
y+ec<ix<z+d undecidable

~~ need of being very careful when using more operations on clocks!

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

21/22

Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
22/22

Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
22/22

Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
22/22

Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)

+ continuous evolution of the variables within a mode

The thermostat example
T<19
Off On
T=-0.5T T=2.25-0.5T
(T>18) (T<22)

T>21

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for

stopwatch automata.

v

(stopwatch automata: timed automata in which clocks can be stopped)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).

22/22

Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)

+ continuous evolution of the variables within a mode

The thermostat example

T<19

Off
T=—0.5T
(T>18)

On
T=2.25—05T
(T<22)

T>21

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for
stopwatch automata.

v

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which
is decidable?

22/22

Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example
T<19
Off On
T=-0.5T T=2.25-0.5T
(T>18) (T<22)

T>21

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for

stopwatch automata.

v

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which

is decidable?

~> See Nicolas' afternoon lecture |

22/22

	Decidability of basic properties
	Equivalence (or preorder) checking
	Some extensions of timed automata

