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23 problem 15.6
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X 0 23 0
y 0 23 23
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An example of a timed automaton

repairing

¥ repair

2<yAx<56

problem, x:=0

23 problem 15.6 delayed
safe —> safe ——> alarm —— alarm —— failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
2.3 repair 2.1 done
failsafe ~——  failsafe ———> repairing ——> repairing — safe
15.6 17.9 17.9 40 40
0 2.3 0 22.1 22.1

This run reads the timed word
(problem,23)(delayed, 38.6)(repair, 40.9), (done, 63).
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Decidability of basic properties

Verification

Emptiness problem
Is the language accepted by a timed automaton empty?

@ basic reachability/safety properties (final states)

@ basic liveness properties (w-regular conditions)
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Verification
Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete.

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Decidability of basic properties

Verification
Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete.

Method: construct a finite abstraction J

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Decidability of basic properties

The region abstraction

clock y
only constraints: x ~ ¢ with ¢ € {0,1,2}
y ~ ¢ with c € {0,1,2}
2 e ° °
1 e ° °
0 e ° ° clock x
0 1 2

@ ‘“compatibility” between regions and constraints
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The region abstraction

Decidability of basic properties
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The region abstraction

clock y

0e ° ° clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
~> an equivalence of finite index
a time-abstract bisimulation
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Decidability of basic properties

Time-abstract bisimulation
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6/22



Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

a
—_

v e
o

6/22



Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

a
VvV @— @
I I
I I
1 a 1
@@—> 0

3

6/22



Time-abstract bisimulation

This is a relation between e and e such that:

v

3

a
—
a
—

Vd >0

Decidability of basic properties

6/22



Time-abstract bisimulation

This is a relation between e and e such that:

v

3

a
—
a
—

Vd >0

3d' >0

Decidability of basic properties

6/22



Decidability of basic properties

Time-abstract bisimulation

This is a relation between e and e such that:

a 3(d)
VvV @ — @ vd >0 o———> 0@
: R : Looo(d)
Jje——e 3d>0 @——®

.. and vice-versa (swap e and e).
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Decidability of basic properties

The region abstraction (2)

clock y
- region R defined by:
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The region abstraction (2)

clock y

Decidability of basic properties

- region R defined by:

[0<x<1
O<y<x1
y <X

- time successors of R

clock x
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Decidability of basic properties

The region abstraction (2)

clock y

- region R defined by:
[0<x<1
O<y<x1
y <X

- time successors of R

clock x

image of R when resetting clock x
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Decidability of basic properties

The construction of the region graph

It “mimicks” the behaviours of the clocks.

’
1 [Ty oy - oo H .. e .
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Decidability of basic properties

Region automaton = finite bisimulation quotient

~ a,x:= v __ -
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Decidability of basic properties

Region automaton = finite bisimulation quotient

~ :]l!" y<1l,a,x:=0 'I,[ :YV <§§> ]:::ii:iiqz:\\< . ‘—; =" “'|4
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timed automaton region graph
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Decidability of basic properties

Region automaton = finite bisimulation quotient

~ a,x:= v __ -
Oy ® T y

NS A - —> > - 2=+

timed automaton region graph

141

4 E

N ¥

a

b | 4y I

' _———————————2—""‘———‘—;" A
2 ‘ region automaton

L(reg. aut.) = UNTIME(L(timed aut.)) J
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Decidability of basic properties

An example [AD94]

x>0,a
—>®—> x>1,d
y:=0
y
S0
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———— x
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Decidability of basic properties

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X
xeX

@ It can be used to check for:
o reachability /safety properties
o liveness properties (like Blichi properties)
~~ problems with Zeno behaviours?

(infinitely many actions in bounded time)

NB: standard problem in timed automata...
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Decidability of basic properties

Back to the example

x>0,a
—>®—> x>1,d
y:=0
y<l,a,y:=0 y
S0
—
x=y=0
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/ X
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Decidability of basic properties

Back to the example

S0
—
x=y=0
a b
a a
/ X
s1 s1 b s1 b s

0=y<x<1 y=0,x>1 1=y <x Cycles with

non-Zeno behaviours

s3 s3 d s3

O0<y<x<1 1=y<x x>1,y>1
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Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:
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J @ —— e | e ——— 0

.. and vice-versa (swap e and e) for the bisimulation relation.

14/22



Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between e and e such that:

a 6(d)
V @ — @ vd >0 e— 0
L L s(d)
J @ —— e | e ——— 0

. and vice-versa (swap e and e) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)
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L(A) C L(B))?

Theorem [AD90,AD94|

Language equivalence and language inclusion are undecidable in timed
automata.

. as a special case of the universality problem (are all timed words
accepted by the automaton?).

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
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Equivalence (or preorder) checking

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(.A) = L(B) (resp.
L(A) C L(B))?

Theorem [AD90,AD94|

Language equivalence and language inclusion are undecidable in timed
automata.

. as a special case of the universality problem (are all timed words
accepted by the automaton?).

~» Proof by reduction from the recurring problem
of a two-counter machine

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Equivalence (or preorder) checking

Undecidability of universality
Theorem [AD90,AD94| J

Universality of timed automata is undecidable.

1 t.u. = 1 config

P

>

value of ¢ :
ccc ddd d c ccc ddd d c ccc ddd
t++-++—++—+—++—++—+H—+++—t----
bo by T by T b3
<. \E :/ Y
. L4 N . L4
1 t.u. = 1 config decrementation of d

@ one configuration is encoded in one time unit
@ number of ¢'s: value of counter ¢
@ number of d's: value of counter d

@ one time unit between two corresponding c's (resp. d’s)
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Equivalence (or preorder) checking

Undecidability of universality
Theorem [AD90,AD94| J

Universality of timed automata is undecidable.

1 t.u. = 1 config

P

>

value of ¢ :
ccc ddd d c ccc ddd d c ccc ddd
t++-++—++—+—++—++—+H—+++—t----
bo by T by T b3
<. \E :/ Y
. L4 N . L4
1 t.u. = 1 config decrementation of d

@ one configuration is encoded in one time unit
@ number of ¢'s: value of counter ¢
@ number of d's: value of counter d

@ one time unit between two corresponding c's (resp. d’s)

~~ We encode “non-behaviours” of a two-counter machine
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Equivalence (or preorder) checking

Example
Module to check that if instruction i does not decrease counter c, then
all actions ¢ appearing less than 1 t.u. after b; has to be followed by an

other ¢ 1 t.u. later.
x=1,-c

bi,x =0 Q x<1lc,x:=0
S 52

—( So \°L)
x#1
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Equivalence (or preorder) checking

Example
Module to check that if instruction i does not decrease counter c, then
all actions ¢ appearing less than 1 t.u. after b; has to be followed by an

other ¢ 1 t.u. later.
x=1,-c

bi,x =0 Q x<1lc,x:=0
§ S

—{ S0 1
N K41

The union of all small modules is not universal
iff
The two-counter machine has a recurring computation
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Equivalence (or preorder) checking

Bad news
@ Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)
e Complementability is undecidable [Tri03,Fin06]
° ...
[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed (FORMATS'03).

[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).
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(Bad news for the application to verification)
e Complementability is undecidable [Tri03,Fin06]
° ...

An example of non-determinizable/non-complementable timed aut.:

a a a

a,x:=0 x=1,a
s

> i\ 2

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).
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(Bad news for the application to verification)

e Complementability is undecidable [Tri03,Fin06]

° ..
An example of non-determinizable/non-complementable aut.: [AMO4]

a, b x#1,a,b
a,x:=0
—=>( so Sl

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).
[AMO04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).
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Equivalence (or preorder) checking

Bad news

@ Language inclusion is undecidable [AD90,AD94]

(Bad news for the application to verification)

e Complementability is undecidable [Tri03,Fin06]

° ..
An example of non-determinizable/non-complementable aut.: [AMO4]

a, b x#1,a,b
a,x:=0
—=>( so Sl

UNTIME (Zﬂ {(a*b*,7) | all a’s happen before 1 and no two a’s simultaneously}) is
not regular (exercise!)

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).
[AMO04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).
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//
AN | o
/ // is also a time-abstract bisimulation!
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Some extensions of timed automata

What if we extend the clock constraints?

e Diagonal constraints (i.e. x —y <2)
e decidable (with the same complexity)

/
N
NN/
Y

is also a time-abstract bisimulation!

o Linear constraints (i.e. 2x + 3y ~ 5)

e undecidable in general

e only decidable in few cases

X/
Nz
/ \l/ \

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ~ ¢)!
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Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ... [BDFPO04]

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).
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Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ... [BDFPO04]

simple constraints + diagonal constraints

X =C, X:=y
x:=x+1
X =y+cC
x=x-—1

x:<c
X:>cC
Xi~y—+c
y+ec<ix<y+d
y+ec<ix<z+d

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).
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What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ...

[BDFP04]
simple constraints + diagonal constraints
X =C, X:=y decidable
x:=x+1 decidable
x:=y+c undecidable
x:=x—1 undecidable
x:<c decidable
al :>i decidable
X myre undecidable
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y+ec<ix<z+d undecidable
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Some extensions of timed automata

What if we allow more operations on clocks?

@ that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x :=4), or ...

[BDFP04]
simple constraints + diagonal constraints
X =C, X:=y decidable
x:=x+1 decidable
x:=y+c undecidable
x:=x—1 undecidable
x:<c decidable
al :>i decidable
X myre undecidable
y+ec<ix<y+d
y+ec<ix<z+d undecidable

~~ need of being very careful when using more operations on clocks!

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).
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Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
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The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)
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Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)

+  continuous evolution of the variables within a mode

The thermostat example
T<19
Off On
T=-0.5T T=2.25-0.5T
(T>18) (T<22)

T>21

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for

stopwatch automata.

v

(stopwatch automata: timed automata in which clocks can be stopped)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
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Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)

+  continuous evolution of the variables within a mode

The thermostat example

T<19

Off
T=—0.5T
(T>18)

On
T=2.25—05T
(T<22)

T>21

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for
stopwatch automata.

v

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which
is decidable?
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Some extensions of timed automata

A note on hybrid automata (see more on Friday)

a discrete control (the mode of the system)
+  continuous evolution of the variables within a mode

The thermostat example
T<19
Off On
T=-0.5T T=2.25-0.5T
(T>18) (T<22)

T>21

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for

stopwatch automata.

v

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which

is decidable?

~> See Nicolas' afternoon lecture |
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