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An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ⋅⋅⋅

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9), (done, 63).
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Decidability of basic properties

Outline

1. Decidability of basic properties

2. Equivalence (or preorder) checking

3. Some extensions of timed automata
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Decidability of basic properties

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem

Is the language accepted by a timed automaton empty?

basic reachability/safety properties (final states)

basic liveness properties (!-regular conditions)

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

Method: construct a finite abstraction
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Decidability of basic properties

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

⇝ an equivalence of finite index

a time-abstract bisimulation
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Decidability of basic properties

Time-abstract bisimulation

This is a relation between ∙ and ∙ such that:

a
∀

∃
a

�(d)
∀d > 0

∃d ′ > 0
�(d ′)

... and vice-versa (swap ∙ and ∙).
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Decidability of basic properties

The region abstraction (2)

- region R defined by:8
<
:

0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x
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Decidability of basic properties

The construction of the region graph

It “mimicks” the behaviours of the clocks.

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x :=0

x :=0

ℓ1 ℓ2
y<1, x :=0
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Decidability of basic properties

Region automaton ≡ finite bisimulation quotient

N

region graphtimed automaton

ℓ1 ℓ2
y<1,a,x :=0

ℓ1

ℓ1

ℓ1

ℓ2
a

a

a

region automaton

ℒ(reg. aut.) = UNTIME(ℒ(timed aut.))
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Decidability of basic properties

An example [AD94]

s0 s1

s2

s3
x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x
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Decidability of basic properties

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

Y
x∈X

(2Mx + 2) ⋅ ∣X ∣! ⋅ 2∣X ∣

It can be used to check for:
reachability/safety properties
liveness properties (like Büchi properties)

⇝ problems with Zeno behaviours?
(infinitely many actions in bounded time)

NB: standard problem in timed automata...
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⇝ problems with Zeno behaviours?
(infinitely many actions in bounded time)

NB: standard problem in timed automata...

11/22



Decidability of basic properties

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

Y
x∈X

(2Mx + 2) ⋅ ∣X ∣! ⋅ 2∣X ∣

It can be used to check for:

reachability/safety properties
liveness properties (like Büchi properties)
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(infinitely many actions in bounded time)

NB: standard problem in timed automata...
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Decidability of basic properties

Back to the example

s0 s1

s2

s3
x>0,a

y :=0
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non-Zeno behaviours
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Equivalence (or preorder) checking

Outline

1. Decidability of basic properties

2. Equivalence (or preorder) checking

3. Some extensions of timed automata

13/22



Equivalence (or preorder) checking

Strong timed (bi)simulation

This is a relation between ∙ and ∙ such that:

a
∀

∃
a

�(d)
∀d > 0

∃
�(d)

... and vice-versa (swap ∙ and ∙) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)
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Equivalence (or preorder) checking

Language (or trace) equivalence and inclusion

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Question

Given two timed automata A and ℬ, is L(A) = L(ℬ) (resp.
L(A) ⊆ L(ℬ))?

Theorem [AD90,AD94]

Language equivalence and language inclusion are undecidable in timed
automata.

... as a special case of the universality problem (are all timed words

accepted by the automaton?).

⇝ Proof by reduction from the recurring problem
of a two-counter machine
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Equivalence (or preorder) checking

Undecidability of universality

Theorem [AD90,AD94]

Universality of timed automata is undecidable.

b0 b1 b2 b3

1 t.u. = 1 config

c c c c c cc c c ccd d d d d d d d d d d

value of c

1 t.u. = 1 config

decrementation of d

one configuration is encoded in one time unit

number of c ’s: value of counter c

number of d ’s: value of counter d

one time unit between two corresponding c ’s (resp. d ’s)

⇝ We encode “non-behaviours” of a two-counter machine
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Equivalence (or preorder) checking

Example

Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

s0 s1 s2
bi , x := 0 x < 1, c , x := 0

x = 1,¬c

x ∕= 1

The union of all small modules is not universal
iff

The two-counter machine has a recurring computation
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Equivalence (or preorder) checking

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).

[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Bad news

Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)

Complementability is undecidable [Tri03,Fin06]

...
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a, x := 0 x = 1, a
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...

An example of non-determinizable/non-complementable aut.: [AM04]

s0 s1
a, x := 0

a, b x ∕= 1, a, b

UNTIME
�
L ∩ {(a∗b∗, �) ∣ all a′s happen before 1 and no two a′s simultaneously}

�
is

not regular (exercise!)
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Some extensions of timed automata
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Some extensions of timed automata

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)

decidable (with the same complexity)

is also a time-abstract bisimulation!

Linear constraints (i.e. 2x + 3y ∼ 5)

undecidable in general

only decidable in few cases

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ∼ c)!
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Some extensions of timed automata

What if we allow more operations on clocks?

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x := 4), or ... [BDFP04]

simple constraints + diagonal constraints

x := c , x := y
x := x + 1
x := y + c
x := x − 1

x :< c
x :> c

x :∼ y + c
y + c <: x :< y + d
y + c <: x :< z + d

⇝ need of being very careful when using more operations on clocks!
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Some extensions of timed automata

A note on hybrid automata (see more on Friday)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for
stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which
is decidable? ⇝ See Nicolas’ afternoon lecture
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Ṫ=−0.5T

(T≥18)

On
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