Timed automata – Decidability issues

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

y 0

	safe	$\xrightarrow{23}$	safe	 alarm	$\xrightarrow{15.6}$	alarm
х	0		23	0		15.6
у	0		23	23		38.6

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	 failsafe	
х	0		23		0		15.6	15.6	
у	0		23		23		38.6	0	

failsafe

- ... 15.6
 - 0

	safe	$\xrightarrow{23}$	safe	 alarm	$\xrightarrow{15.6}$	alarm	 failsafe	
х	0		23	0		15.6	15.6	
у	0		23	23		38.6	0	

failsafe	$\xrightarrow{2.3}$	failsafe
 15.6		17.9
0		2.3

	safe	$\xrightarrow{23}$	safe	 alarm	$\xrightarrow{15.6}$	alarm	 failsafe	
х	0		23	0		15.6	15.6	
у	0		23	23		38.6	0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
 15.6		17.9		17.9
0		2.3		0

	safe -	$\xrightarrow{23}$ safe $\xrightarrow{\text{prot}}$	$\xrightarrow{\text{lem}}$ alarm $\xrightarrow{15.6}$	alarm —	$\xrightarrow{\text{delayed}}$ failsafe	
х	0	23	0	15.6	15.6	
у	0	23	23	38.6	0	
	failsafe	$\xrightarrow{2.3}$ failsafe	→ repair repairing	$\xrightarrow{22.1}$ re	pairing	
	15.6	17.9	17.9		40	
	0	2.3	0		22.1	

	safe –	$\xrightarrow{23}$ safe	problem	→ alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0	23		0		15.6		15.6	
у	0	23		23		38.6		0	
	failsafe	$\xrightarrow{2.3}$	failsafe -	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
	15.6		17.9		17.9		40		40
	0		2.3		0		22.1		22.1

	safe -	$\xrightarrow{23}$ safe		alarm	$\xrightarrow{15.6}$	alarm		failsafe	
х	0	23		0		15.6		15.6	
у	0	23		23		38.6		0	
	failsafe	$\xrightarrow{2.3}$ fa	ilsafe		repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
•••	15.6	1	17.9		17.9		40		40
	0		2.3		0		22.1		22.1

This run reads the timed word (problem, 23)(delayed, 38.6)(repair, 40.9), (done, 63).

Outline

1. Decidability of basic properties

2. Equivalence (or preorder) checking

3. Some extensions of timed automata

Emptiness problem

Is the language accepted by a timed automaton empty?

- basic reachability/safety properties
- basic liveness properties

(final states)

(ω -regular conditions)

Emptiness problem

Is the language accepted by a timed automaton empty?

• Problem: the set of configurations is infinite ~ classical methods for finite-state systems cannot be applied

Emptiness problem

Is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite ~> classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Emptiness problem

Is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite ~> classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete.

Emptiness problem

Is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite ~> classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete.

Method: construct a finite abstraction

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90). [AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

• "compatibility" between regions and constraints

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

 \rightsquigarrow an equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

 → an equivalence of finite index a time-abstract bisimulation

This is a relation between • and • such that:

... and vice-versa (swap • and •).

The construction of the region graph

It "mimicks" the behaviours of the clocks.

Region automaton \equiv finite bisimulation quotient

Region automaton \equiv finite bisimulation quotient

Region automaton \equiv finite bisimulation quotient

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

• It can be used to check for:

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties
 - liveness properties (like Büchi properties)

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties
 - liveness properties (like Büchi properties)

 \rightsquigarrow problems with Zeno behaviours?

(infinitely many actions in bounded time)

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties
 - liveness properties (like Büchi properties)

→ problems with Zeno behaviours?

(infinitely many actions in bounded time)

NB: standard problem in timed automata...

Outline

1. Decidability of basic properties

2. Equivalence (or preorder) checking

3. Some extensions of timed automata

This is a relation between ${\mbox{ \bullet}}$ and ${\mbox{ \bullet}}$ such that:

... and vice-versa (swap \bullet and \bullet) for the bisimulation relation.

This is a relation between • and • such that:

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and EXPTIME-complete.

(see later for a simple proof of the upper bound)

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(A) = L(B) (resp. $L(A) \subseteq L(B)$)?

Language (or trace) equivalence and inclusion

Question

```
Given two timed automata A and B, is L(A) = L(B) (resp. L(A) \subseteq L(B))?
```

Theorem [AD90, AD94]

Language equivalence and language inclusion are undecidable in timed automata.

... as a special case of the universality problem (are all timed words accepted by the automaton?).

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(A) = L(B) (resp. $L(A) \subseteq L(B)$)?

Theorem [AD90, AD94]

Language equivalence and language inclusion are undecidable in timed automata.

... as a special case of the universality problem (are all timed words accepted by the automaton?).

 → Proof by reduction from the recurring problem of a two-counter machine

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90). [AD94] Alur, Dill. A theory of timed automata (*Theoretical Computer Science*).

Undecidability of universality

Theorem [AD90, AD94]

Universality of timed automata is undecidable.

Undecidability of universality

Theorem [AD90, AD94]

Universality of timed automata is undecidable.

- one configuration is encoded in one time unit
- number of c's: value of counter c
- number of d's: value of counter d
- one time unit between two corresponding *c*'s (resp. *d*'s)

Undecidability of universality

Theorem [AD90, AD94]

Universality of timed automata is undecidable.

- one configuration is encoded in one time unit
- number of c's: value of counter c
- number of d's: value of counter d
- one time unit between two corresponding *c*'s (resp. *d*'s)

 \rightsquigarrow We encode "non-behaviours" of a two-counter machine

Example

Module to check that if instruction *i* does not decrease counter *c*, then all actions *c* appearing less than 1 t.u. after b_i has to be followed by an other *c* 1 t.u. later.

$$b_{i}, x := 0$$

$$b_{i}, x := 0$$

$$b_{i}, x := 0$$

$$c_{i}, x := 0$$

Example

Module to check that if instruction *i* does not decrease counter *c*, then all actions *c* appearing less than 1 t.u. after b_i has to be followed by an other *c* 1 t.u. later.

The union of all small modules is not universal iff The two-counter machine has a recurring computation

[AD90,AD94]

[Tri03,Fin06]

Bad news

- Language inclusion is undecidable (Bad news for the application to verification)
- Complementability is undecidable

• ...

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03). [Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

Bad news

- Language inclusion is undecidable (Bad news for the application to verification)
- Complementability is undecidable

[AD90,AD94]

[Tri03,Fin06]

• ...

An example of non-determinizable/non-complementable timed aut.:

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03). [Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

[AD90,AD94]

[Tri03.Fin06]

Bad news

- Language inclusion is undecidable (Bad news for the application to verification)
- Complementability is undecidable

• ...

An example of non-determinizable/non-complementable aut.: [AM04]

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).

[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

[AD90,AD94]

[Tri03.Fin06]

Bad news

- Language inclusion is undecidable (Bad news for the application to verification)
- Complementability is undecidable

• ...

An example of non-determinizable/non-complementable aut.: [AM04]

UNTIME $(\overline{L} \cap \{(a^*b^*, \tau) \mid all \ a's \text{ happen before 1 and no two } a's \text{ simultaneously}\})$ is not regular (exercise!)

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).

[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).
Outline

1. Decidability of basic properties

2. Equivalence (or preorder) checking

3. Some extensions of timed automata

• Diagonal constraints (*i.e.* $x - y \le 2$)

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

• Linear constraints (i.e. $2x + 3y \sim 5$)

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- Linear constraints (i.e. $2x + 3y \sim 5$)
 - undecidable in general

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- Linear constraints (i.e. $2x + 3y \sim 5$)
 - undecidable in general
 - only decidable in few cases

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- Linear constraints (i.e. $2x + 3y \sim 5$)
 - undecidable in general
 - only decidable in few cases

is a time-abstract bisimulation (when two clocks x and y and constraints $x + y \sim c$)!

that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

	simple constraints	+ diagonal constraints
x := c, x := y		
x := x + 1		
x := y + c		
x := x - 1		
x :< c		
x :> c]	
$x :\sim y + c$]	
y + c <: x :< y + d		
y + c <: x :< z + d		

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

	simple constraints	+ diagonal constraints
x := c, x := y		decidable
x := x + 1	decidable	
x := y + c		undecidable
x := x - 1	undecidable	
x :< c	decidable	decidable
x :> c		
$x :\sim y + c$	uccidable	undecidable
y + c <: x :< y + d		undecidable
y + c <: x :< z + d	undecidable	

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

	simple constraints	+ diagonal constraints
x := c, x := y	decidable	decidable
x := x + 1		
x := y + c		undecidable
x := x - 1	undecidable	
x :< c	decidable	decidable
x :> c		
$x :\sim y + c$	uccidable	undecidable
y + c <: x :< y + d		undecidable
y + c <: x :< z + d	undecidable	

→ need of being very careful when using more operations on clocks!

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

a discrete control (the mode of the system)

 $\ + \$ continuous evolution of the variables within a mode

a discrete control (the mode of the system)

+ continuous evolution of the variables within a mode

The thermostat example

a discrete control (the mode of the system)

+ continuous evolution of the variables within a mode

The thermostat example

a discrete control (the mode of the system)

+ continuous evolution of the variables within a mode

The thermostat example

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

a discrete control (the mode of the system)

+ $\;$ continuous evolution of the variables within a mode $\;$

The thermostat example

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which is decidable?

a discrete control (the mode of the system)

+ $\;$ continuous evolution of the variables within a mode $\;$

The thermostat example

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

A relevant question

Is there something between timed automata and hybrid automata which is decidable? \sim See Nicolas' afternoon lecture