
QEST'04 � Tutorial � September 2004

Timed Models: From Theory
to Implementation

Patricia Bouyer

LSV � CNRS & ENS de Cachan

Timed Models: From Theory to Implementation � p. 1 QEST'04 � Tutorial � September 2004

Model-checking

Does the system

Modelling

satisfy

�

the property?

Timed Models: From Theory to Implementation � p. 2

QEST'04 � Tutorial � September 2004

Model-checking

Does the system

Modelling

satisfy

j=
Model-checking

Algorithm

�

the property?

Timed Models: From Theory to Implementation � p. 2 QEST'04 � Tutorial � September 2004

Time!

Context: veri�cation of embedded critical systems

Time

4 naturally appears in real systems
4 appears in properties (for ex. bounded response time)

Ü Need of models and speci�cation languages integrating timing aspects

Timed Models: From Theory to Implementation � p. 3

QEST'04 � Tutorial � September 2004

A Case for Dense-Time

Time domain: discrete (e.g. N) or dense (e.g. Q+)

4 A compositionality problem with discrete time
4 Dense-time is a more general model than discrete time
4

x = 1; a; x := 0 b; y := 0
x = 1; a; x := 0

y < 1; b; y := 0

� Dense-time: Ldense = f((ab)!; �) j �i; �2i�1 = i and �2i � �2i�1 > �2i+2 � �2i+1g� Discrete-time: Ldiscrete =

�

Timed Models: From Theory to Implementation � p. 4 QEST'04 � Tutorial � September 2004

Roadmap

4 Timed automata, decidability issues

4 Some extensions of the model

4 Implementation of timed automata

Timed Models: From Theory to Implementation � p. 5

QEST'04 � Tutorial � September 2004

Timed automata, decidability issues
4 presentation of the model
4 decidability of the model
4 the region automaton construction

Timed Models: From Theory to Implementation � p. 6 QEST'04 � Tutorial � September 2004

Timed automata

4 A �nite control structure + variables (clocks)

4 A transition is of the form:
g; a; C := 0

Enabling condition Reset to zero

4 An enabling condition (or guard) is:

g ::= x � c j x � y � c j g � g
where � � f<; �; =; �; >g

Timed Models: From Theory to Implementation � p. 7

QEST'04 � Tutorial � September 2004

Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

Timed Models: From Theory to Implementation � p. 8 QEST'04 � Tutorial � September 2004

Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0 �(4:1) �

0 a

�
1 �(1:4) �

1 b

�

2

x 0 4:1 4:1 5:5 0
y 0 4:1 0 1:4 1:4

Timed Models: From Theory to Implementation � p. 8

QEST'04 � Tutorial � September 2004

Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0 �(4:1) �

0 a

�

1 �(1:4) �

1 b

�

2

x 0 4:1 4:1 5:5 0
y 0 4:1 0 1:4 1:4

(clock) valuation

Timed Models: From Theory to Implementation � p. 8 QEST'04 � Tutorial � September 2004

Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0 �(4:1) �

0 a

�

1 �(1:4) �

1 b

�

2

x 0 4:1 4:1 5:5 0
y 0 4:1 0 1:4 1:4

(clock) valuation

Ü timed word (a;4:1)(b;5:5)

Timed Models: From Theory to Implementation � p. 8

QEST'04 � Tutorial � September 2004

TA Semantics

4

	

= (�; L;X;) is a TA

4 Con�gurations: (

�

; v)
 L � TX where T is the time domain

4 Timed Transition System:

� action transition: (

�

; v) a (

� �

; v

�

) if �� g;a;r� �
 	

s.t. v j= g
v

�

= v[r
 0]

� delay transition: (q; v) �(d) (q; v + d) if d
 T

Timed Models: From Theory to Implementation � p. 9 QEST'04 � Tutorial � September 2004

Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

4 reachability properties (�nal states)

4 basic liveness properties (Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]

Timed Models: From Theory to Implementation � p. 10

QEST'04 � Tutorial � September 2004

Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

Problem: the set of con�gurations is in�nite
Ü classical methods can not be applied

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]

Timed Models: From Theory to Implementation � p. 10 QEST'04 � Tutorial � September 2004

Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

Problem: the set of con�gurations is in�nite
Ü classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]

Timed Models: From Theory to Implementation � p. 10

QEST'04 � Tutorial � September 2004

Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

Problem: the set of con�gurations is in�nite
Ü classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]

Timed Models: From Theory to Implementation � p. 10 QEST'04 � Tutorial � September 2004

Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

Problem: the set of con�gurations is in�nite
Ü classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]

Method: construct a �nite abstraction

Timed Models: From Theory to Implementation � p. 10

QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Timed Models: From Theory to Implementation � p. 11 QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Timed Models: From Theory to Implementation � p. 11

QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

� �

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Timed Models: From Theory to Implementation � p. 11 QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

� �

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Timed Models: From Theory to Implementation � p. 11

QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Ü a bisimulation property

Timed Models: From Theory to Implementation � p. 11 QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

region de�ned by
Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Ü a bisimulation property

Timed Models: From Theory to Implementation � p. 11

QEST'04 � Tutorial � September 2004

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

region de�ned by
Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

successor regions

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Ü a bisimulation property

Timed Models: From Theory to Implementation � p. 11 QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation

� a

d > 0
�(d)

Timed Models: From Theory to Implementation � p. 12

QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation

�
�

a

a

d > 0
�(d)

Timed Models: From Theory to Implementation � p. 12 QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation
�

�

a

a

�d > 0
�(d)

Timed Models: From Theory to Implementation � p. 12

QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

Timed Models: From Theory to Implementation � p. 12 QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :

Timed Models: From Theory to Implementation � p. 12

QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :� � �

(� 0; R0) a1 (� 1; R1) a2 (� 2; R2) a3 : : :

with vi

 Ri for all i.

Timed Models: From Theory to Implementation � p. 12 QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation
�

�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :� � �

(� 0; R0) a1 (� 1; R1) a2 (� 2; R2) a3 : : :

with vi

 Ri for all i.

Timed Models: From Theory to Implementation � p. 12

QEST'04 � Tutorial � September 2004

Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :� � �

(� 0; R0) a1 (� 1; R1) a2 (� 2; R2) a3 : : :

with vi

 Ri for all i.

Remark: We can not check real-time properties with a time-abstract bisimulation.
We need to add clocks for the formula we want to check.

Timed Models: From Theory to Implementation � p. 12 QEST'04 � Tutorial � September 2004

The region automaton

timed automaton

�

region abstraction

� g;a;C:=0 � � is transformed into:

(�; R) a (� �; R �

) if there exists R

� �� Succ
�

t (R) s.t.

4 R

� �� g

4 [C � 0]R
� � � R

�

Ü time-abstract bisimulation

�

(reg. aut.) = UNTIME(

�

(timed aut.))

where UNTIME((a1; t1)(a2; t2) : : :) = a1a2 : : :

Timed Models: From Theory to Implementation � p. 13

QEST'04 � Tutorial � September 2004

An example [AD 90's]

0 1 x

1

y

Timed Models: From Theory to Implementation � p. 14 QEST'04 � Tutorial � September 2004

PSPACE-Easyness

¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

Timed Models: From Theory to Implementation � p. 15

QEST'04 � Tutorial � September 2004

PSPACE-Easyness

4 ¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space

Timed Models: From Theory to Implementation � p. 15 QEST'04 � Tutorial � September 2004

PSPACE-Easyness

4 ¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space� a region:
� an interval for each clock
� an interval for each pair of clocks

Timed Models: From Theory to Implementation � p. 15

QEST'04 � Tutorial � September 2004

PSPACE-Easyness

4 ¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space� a region:
� an interval for each clock
� an interval for each pair of clocks

Ü needs polynomial space

Timed Models: From Theory to Implementation � p. 15 QEST'04 � Tutorial � September 2004

PSPACE-Easyness

4 ¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space� a region:
� an interval for each clock
� an interval for each pair of clocks

Ü needs polynomial space

4 By guessing a path: needs only to store two con�gurations

Timed Models: From Theory to Implementation � p. 15

QEST'04 � Tutorial � September 2004

PSPACE-Easyness

¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space� a region:
� an interval for each clock
� an interval for each pair of clocks

Ü needs polynomial space

4 By guessing a path: needs only to store two con�gurations

Ü in NPSPACE, thus in PSPACE

Timed Models: From Theory to Implementation � p. 15 QEST'04 � Tutorial � September 2004

PSPACE-Hardness

�

LBTM
w0

� fa; bg � } � A �

;w0 s.t.

�

accepts w0 iff the �nal state of A �
;w0 is reachable

Cjw0

fxj; yjg

Cj contains a �a� iff xj = yj
Cj contains a �b� iff xj < yj

(these conditions are invariant by time elapsing)

Ü proof taken in [Aceto & Laroussinie 2002]

Timed Models: From Theory to Implementation � p. 16

QEST'04 � Tutorial � September 2004

PSPACE-Hardness (cont.)

If q �;�

�

;� q

�

is a transition of

�

, then for each position i of the tape, we have a
transition

(q; i) g;r:=0 (q

�

; i

�

)

where:

4 g is xi = yi (resp. xi < yi) if � = a (resp. � = b)

4 r = fxi; yig (resp. r = fxig) if � = a (resp. � = b)

4 i

�

= i + 1 (resp. i

�

= i � 1) if � is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1 and clock t is reset.

Initialization: init t=1;r0:=0 (q0; 1) where r0 = fxi j w0[i] = bg � ftg
Termination: (qf; i) end

Timed Models: From Theory to Implementation � p. 17 QEST'04 � Tutorial � September 2004

A Model Not Far From Undecidability

4 Universality is undecidable [Alur & Dill 90's]

4 Inclusion is undecidable [Alur & Dill 90's]

4 Determinizability is undecidable [Tripakis 2003]

4 Complementability is undecidable [Tripakis 2003]

4 ...

Timed Models: From Theory to Implementation � p. 18

QEST'04 � Tutorial � September 2004

A Model Not Far From Undecidability

4 Universality is undecidable [Alur & Dill 90's]

4 Inclusion is undecidable [Alur & Dill 90's]

4 Determinizability is undecidable [Tripakis 2003]

4 Complementability is undecidable [Tripakis 2003]

4 ...

An example of non-determinizable TA:
a

a; x := 0

a

x = 1; a

a

Timed Models: From Theory to Implementation � p. 18 QEST'04 � Tutorial � September 2004

A Model Not Far From Undecidability

4 Universality is undecidable [Alur & Dill 90's]

4 Inclusion is undecidable [Alur & Dill 90's]

4 Determinizability is undecidable [Tripakis 2003]

4 Complementability is undecidable [Tripakis 2003]

4 ...

An example of non-complementable TA:
a; b

a; x := 0

x � 1; a; b

Timed Models: From Theory to Implementation � p. 18

QEST'04 � Tutorial � September 2004

Partial conclusion

Ü a timed model interesting for veri�cation purposes

Numerous works have been (and are) devoted to:

4 the �theoretical� comprehension of timed automata

4 extensions of the model (to ease the modelling)

� expressiveness

� analyzability

4 algorithmic problems and implementation

Timed Models: From Theory to Implementation � p. 19 QEST'04 � Tutorial � September 2004

Some extensions of the model
4 adding constraints of the form x � y c
4 adding silent actions

4 adding constraints of the form x + y c
4 adding new operations on clocks

Timed Models: From Theory to Implementation � p. 20

QEST'04 � Tutorial � September 2004

Adding diagonal constraints

x � y � c and x � c

4 Decidability: yes, using the region abstraction

0 1 2 x

1

y

4 Expressiveness: no additional expressive power

Timed Models: From Theory to Implementation � p. 21 QEST'04 � Tutorial � September 2004

Adding diagonal constraints (cont.)

c is positive

x � y � c

x := 0
y := 0

copy where x � y � c

x := 0
y := 0
x � c

x > c
y := 0

x := 0

y := 0

copy where x � y > c
Ü proof in [Bérard,Diekert,Gastin,Petit 1998]

Timed Models: From Theory to Implementation � p. 22

QEST'04 � Tutorial � September 2004

Adding diagonal constraints (cont.)

Open question: is this construction �optimal�?
In the sense that timed automata with diagonal constraints
are exponentially more concise than diagonal-free timed automata.

Timed Models: From Theory to Implementation � p. 22 QEST'04 � Tutorial � September 2004

Adding silent actions

g; "; C := 0
[Bérard,Diekert,Gastin,Petit 1998]

4 Decidability: yes (actions has no in�uence on the previous construction)

4 Expressiveness: strictly more expressive!

x = 1
a

x := 0 0 < x < 1; b

x = 1; "; x := 0

a

0 1

a b

2

b

3 4

a

Timed Models: From Theory to Implementation � p. 23

QEST'04 � Tutorial � September 2004

Adding constraints of the form x + y ! c

x + y � c and x � c [Bérard,Dufourd 2000]

4 Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

4 Expressiveness: more expressive! (even using two clocks)

f(an; t1 : : : tn) j n � 1 and ti = 1 � 1
2i g

x + y = 1; a; x := 0

Timed Models: From Theory to Implementation � p. 24 QEST'04 � Tutorial � September 2004

The two-counter machine

De�nition. A two-counter machine is a �nite set of instructions over two
counters (x and y):

4 Incrementation:
(p): x := x + 1; goto (q)

4 Decrementation:
(p): if x > 0 then x := x � 1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.

Timed Models: From Theory to Implementation � p. 25

QEST'04 � Tutorial � September 2004

Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd ddd d dd d dd

c is unchanged c is incremented

d is decremented

Ü simulation of � decrement of d� increment of c

We will use 4 clocks: � u, �tic� clock (each time unit)� x0, x1, x2: reference clocks for the two counters

�xi reference for c� " �the last time xi has been reset is
the last time action c has been performed�

[Bérard,Dufourd 2000]

Timed Models: From Theory to Implementation � p. 26 QEST'04 � Tutorial � September 2004

Undecidability proof (cont.)
4 Increment of counter c:

u = 1; #; u := 0
x2 := 0

x0 � 2; u + x2 = 1; c; x2 := 0

u + x2 = 1
x0 > 2; c; x2 := 0

ref for c is x0 ref for c is x2

4 Decrement of counter c:

u = 1; #; u := 0
x2 := 0

x0 < 2; u + x2 = 1; c; x2 := 0

u + x2 = 1
x0 = 2; c; x2 := 0

u = 1; x0 = 2; #; u := 0; x2 := 0

Timed Models: From Theory to Implementation � p. 27

QEST'04 � Tutorial � September 2004

Adding constraints of the form x + y ! c

4 Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

4 Three clocks: open question

4 Four clocks (or more): undecidable!

Timed Models: From Theory to Implementation � p. 28 QEST'04 � Tutorial � September 2004

Adding constraints of the form x + y ! c

4 Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

4 Three clocks: open question

4 Four clocks (or more): undecidable!

Timed Models: From Theory to Implementation � p. 28

QEST'04 � Tutorial � September 2004

Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

4 The general model is undecidable.
(simulation of a two-counter machine)

4 Only decrementation also leads to undecidability
Incrementation of counter x

z = 1; z := 0 z = 0; y := y � 1z = 0

Decrementation of counter x

x � 1 z = 0; x := x � 1z = 0

x = 0

Timed Models: From Theory to Implementation � p. 29 QEST'04 � Tutorial � September 2004

Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

4 The general model is undecidable.
(simulation of a two-counter machine)

4 Only decrementation also leads to undecidability
Incrementation of counter x

z = 1; z := 0 z = 0; y := y � 1z = 0

Decrementation of counter x

x � 1 z = 0; x := x � 1z = 0

x = 0

Timed Models: From Theory to Implementation � p. 29

QEST'04 � Tutorial � September 2004

Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

4 The general model is undecidable.
(simulation of a two-counter machine)

4 Only decrementation also leads to undecidability

� Incrementation of counter x

z = 1; z := 0 z = 0; y := y � 1z = 0

� Decrementation of counter x

x � 1 z = 0; x := x � 1z = 0

x = 0

Timed Models: From Theory to Implementation � p. 29 QEST'04 � Tutorial � September 2004

Decidability

y := 0 y := 1 x � y < 1

1

1

0

image by y := 1

Ü the bisimulation property is not met

The classical region automaton construction is not correct.

Timed Models: From Theory to Implementation � p. 30

QEST'04 � Tutorial � September 2004

Decidability (cont.)

$ % Diophantine linear inequations system

% is there a solution?

% if yes, belongs to a decidable class

Examples:
4 constraint x � c c � maxx
4 constraint x � y � c c � maxx;y

4 update x : � y + c maxx � maxy +c
and for each clock z, maxx;z � maxy;z + c, maxz;x � maxz;y � c

4 update x :< c c � maxx
and for each clock z, maxz � c + maxz;x

The constants (maxx) and (maxx;y) de�ne a set of regions.

Timed Models: From Theory to Implementation � p. 31 QEST'04 � Tutorial � September 2004

Decidability (cont.)

y := 0 y := 1 x � y < 1

&(')'*'*'*')'*'*'*')+
'*')'*'*'*')'*'*'),

maxy � 0
maxx � 0 + maxx;y

maxy � 1
maxx � 1 + maxx;y

maxx;y � 1

= -

&('*')'*'*'*')+
'*')'*'*'*'),

maxx = 2
maxy = 1
maxx;y = 1
maxy;x = �1

The bisimulation property is met.
1 2

1

0 x

y

Timed Models: From Theory to Implementation � p. 32

QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

Timed Models: From Theory to Implementation � p. 33 QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

��

Timed Models: From Theory to Implementation � p. 33

QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

��

Timed Models: From Theory to Implementation � p. 33 QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

�

�

Timed Models: From Theory to Implementation � p. 33

QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

�

�

Timed Models: From Theory to Implementation � p. 33 QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

Timed Models: From Theory to Implementation � p. 33

QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

etc...

Timed Models: From Theory to Implementation � p. 33 QEST'04 � Tutorial � September 2004

Decidability (cont.)

Diagonal-free constraints General constraints

x := c, x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x � 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x : � y + c

y + c <: x :< y + d
y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]

Timed Models: From Theory to Implementation � p. 34

QEST'04 � Tutorial � September 2004

Implementation of Timed Automata

4 analysis algorithms
4 the DBM data structure
4 a bug in the forward analysis

Timed Models: From Theory to Implementation � p. 35 QEST'04 � Tutorial � September 2004

Notice

The region automaton is not used for implementation:

4 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

4 no really adapted data structure

Algorithms for �minimizing� the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-�y technics are preferred.

Timed Models: From Theory to Implementation � p. 36

QEST'04 � Tutorial � September 2004

Notice

The region automaton is not used for implementation:

4 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

4 no really adapted data structure

Algorithms for �minimizing� the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-�y technics are preferred.

Timed Models: From Theory to Implementation � p. 36 QEST'04 � Tutorial � September 2004

Notice

The region automaton is not used for implementation:

4 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

4 no really adapted data structure

Algorithms for �minimizing� the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-�y technics are preferred.

Timed Models: From Theory to Implementation � p. 36

QEST'04 � Tutorial � September 2004

Reachability analysis

4 forward analysis algorithm:
compute the successors of initial con�gurations

F

I

Timed Models: From Theory to Implementation � p. 37 QEST'04 � Tutorial � September 2004

Reachability analysis

4 forward analysis algorithm:
compute the successors of initial con�gurations

F

I

Timed Models: From Theory to Implementation � p. 37

QEST'04 � Tutorial � September 2004

Reachability analysis

4 forward analysis algorithm:
compute the successors of initial con�gurations

F

I

4 backward analysis algorithm:
compute the predecessors of �nal con�gurations

I

F

Timed Models: From Theory to Implementation � p. 37 QEST'04 � Tutorial � September 2004

Reachability analysis

4 forward analysis algorithm:
compute the successors of initial con�gurations

F

I

4 backward analysis algorithm:
compute the predecessors of �nal con�gurations

I

F

Timed Models: From Theory to Implementation � p. 37

QEST'04 � Tutorial � September 2004

Note on the backward analysis

� � �g; a; C := 0

[C
 0]�1(Z . (C = 0)) . g Z

Z [C 0]�1(Z (C = 0)) [C 0]�1(Z (C = 0)) g

The exact backward computation terminates and is correct!

Timed Models: From Theory to Implementation � p. 38 QEST'04 � Tutorial � September 2004

Note on the backward analysis

� � �g; a; C := 0

[C
 0]�1(Z . (C = 0)) . g Z

Z

[C 0]�1(Z (C = 0)) [C 0]�1(Z (C = 0)) g

The exact backward computation terminates and is correct!

Timed Models: From Theory to Implementation � p. 38

QEST'04 � Tutorial � September 2004

Note on the backward analysis

� � �g; a; C := 0

[C
 0]�1(Z . (C = 0)) . g Z

Z [C / 0]�1(Z 0 (C = 0))

[C 0]�1(Z (C = 0)) g

The exact backward computation terminates and is correct!

Timed Models: From Theory to Implementation � p. 38 QEST'04 � Tutorial � September 2004

Note on the backward analysis

� � �g; a; C := 0

[C
 0]�1(Z . (C = 0)) . g Z

Z [C / 0]�1(Z 0 (C = 0))

[C 0]�1(Z (C = 0)) g

The exact backward computation terminates and is correct!

Timed Models: From Theory to Implementation � p. 38

QEST'04 � Tutorial � September 2004

Note on the backward analysis

� � �g; a; C := 0

[C
 0]�1(Z . (C = 0)) . g Z

Z [C / 0]�1(Z 0 (C = 0)) [C / 0]�1(Z 0 (C = 0)) 0 g

The exact backward computation terminates and is correct!

Timed Models: From Theory to Implementation � p. 38 QEST'04 � Tutorial � September 2004

Note on the backward analysis

� � �g; a; C := 0

[C
 0]�1(Z . (C = 0)) . g Z

Z [C / 0]�1(Z 0 (C = 0)) [C / 0]�1(Z 0 (C = 0)) 0 g

The exact backward computation terminates and is correct!

Timed Models: From Theory to Implementation � p. 38

QEST'04 � Tutorial � September 2004

Note on the backward analysis (cont.)

If

	

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k + :m

Timed Models: From Theory to Implementation � p. 39 QEST'04 � Tutorial � September 2004

Note on the backward analysis (cont.)

If

	

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

Let R be a region. Assume:

4 v � /�
R (for ex. v + t � R)

4 v

�1 reg. v

There exists t

�

s.t. v

�

+ t

�1 reg. v + t, which implies that v

�

+ t

� � R and thus v

� � /�
R .

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k + :m

Timed Models: From Theory to Implementation � p. 39

QEST'04 � Tutorial � September 2004

Note on the backward analysis (cont.)

If

	

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k +

�

:m

Timed Models: From Theory to Implementation � p. 39 QEST'04 � Tutorial � September 2004

Forward analysis of TA

� � �g; a; C := 0

Z [C
 0](
� 2
Z . g)zones

A zone is a set of valuations de�ned by a clock constraint

3 ::= x � c j x � y � c j 3 � 3

Z �
Z

�
Z g [y 0](

�
Z g)

Ü a termination problem

Timed Models: From Theory to Implementation � p. 40

QEST'04 � Tutorial � September 2004

Forward analysis of TA

� � �g; a; C := 0

Z [C
 0](
� 2

Z . g)zones

Z

�
Z

�
Z g [y 0](

�
Z g)

Ü a termination problem

Timed Models: From Theory to Implementation � p. 40 QEST'04 � Tutorial � September 2004

Forward analysis of TA

� � �g; a; C := 0

Z [C
 0](
� 2

Z . g)zones

Z � 2

Z

�
Z g [y 0](

�
Z g)

Ü a termination problem

Timed Models: From Theory to Implementation � p. 40

QEST'04 � Tutorial � September 2004

Forward analysis of TA

� � �g; a; C := 0

Z [C
 0](
� 2

Z . g)zones

Z � 2

Z
� 2

Z . g

[y 0](
�
Z g)

Ü a termination problem

Timed Models: From Theory to Implementation � p. 40 QEST'04 � Tutorial � September 2004

Forward analysis of TA

� � �g; a; C := 0

Z [C
 0](
� 2
Z . g)zones

Z � 2
Z

� 2

Z . g [y
 0](
� 2

Z . g)

Ü a termination problem

Timed Models: From Theory to Implementation � p. 40

QEST'04 � Tutorial � September 2004

Forward analysis of TA

� � �g; a; C := 0

Z [C
 0](
� 2

Z . g)zones

Z � 2

Z
� 2

Z . g [y
 0](
� 2

Z . g)

Ü a termination problem

Timed Models: From Theory to Implementation � p. 40 QEST'04 � Tutorial � September 2004

Non termination of the forward analysis

y := 0,
x := 0

x � 1 � y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Ü an in�nite number of steps...

Timed Models: From Theory to Implementation � p. 41

QEST'04 � Tutorial � September 2004

�Solutions� to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

4 inclusion checking: if Z� Z

�

and Z

�

still handled, then we don't need
to handle Z

Ü correct w.r.t. reachability

4 activity: eliminate redundant clocks [Daws,Yovine 1996]

Ü correct w.r.t. reachability

q g;a;C:=0�������������� q = Act(q) = clocks(g) (Act(q) n C)

: : :
Timed Models: From Theory to Implementation � p. 42 QEST'04 � Tutorial � September 2004

�Solutions� to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

4 inclusion checking: if Z� Z

�

and Z

�

still handled, then we don't need
to handle Z

Ü correct w.r.t. reachability

4 activity: eliminate redundant clocks [Daws,Yovine 1996]

Ü correct w.r.t. reachability

q g;a;C:=0�������������� 4 q �
= - Act(q) = clocks(g) 5 (Act(q

�

) n C)

: : :

Timed Models: From Theory to Implementation � p. 42

QEST'04 � Tutorial � September 2004

�Solutions� to this problem (cont.)

4 convex-hull approximation: if Z and Z

�

are computed then we
overapproximate using �Z 6 Z �

�.

Ü �semi-correct� w.r.t. reachability

4 extrapolation, a widening operator on zones

Timed Models: From Theory to Implementation � p. 43 QEST'04 � Tutorial � September 2004

�Solutions� to this problem (cont.)

4 convex-hull approximation: if Z and Z

�

are computed then we
overapproximate using �Z 6 Z �

�.

Ü �semi-correct� w.r.t. reachability

4 extrapolation, a widening operator on zones

Timed Models: From Theory to Implementation � p. 43

QEST'04 � Tutorial � September 2004

The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3) � (x2 � 5) � (x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1
+1 +1 4
5 +1 +1

4 Existence of a normal form

3 4 9

5

2

0 -3 0
9 0 4
5 2 0

4 All previous operations on zones can be computed using DBMs

Timed Models: From Theory to Implementation � p. 44 QEST'04 � Tutorial � September 2004

The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3) � (x2 � 5) � (x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1
+1 +1 4
5 +1 +1

4 Existence of a normal form

3 4 9

5

2

0 -3 0
9 0 4
5 2 0

4 All previous operations on zones can be computed using DBMs

Timed Models: From Theory to Implementation � p. 44

QEST'04 � Tutorial � September 2004

The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3) � (x2 � 5) � (x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1
+1 +1 4
5 +1 +1

4 Existence of a normal form

3 4 9

5

2

0 -3 0
9 0 4
5 2 0

4 All previous operations on zones can be computed using DBMs

Timed Models: From Theory to Implementation � p. 44 QEST'04 � Tutorial � September 2004

The extrapolation operator

Fix an integer k (� #� represents an integer between �k and +k)

7 89 :;> k 7

7 7 789 : ;< �k 7 7

<

7 => ?@+1 7

7 7 789 :;�k 7 7

4 �intuitively�, erase non-relevant constraints

2

2

Ü ensures termination

Timed Models: From Theory to Implementation � p. 45

QEST'04 � Tutorial � September 2004

The extrapolation operator

Fix an integer k (� #� represents an integer between �k and +k)

7 89 :;> k 7

7 7 789 :;< �k 7 7

<

7 => ?@+1 7

7 7 789 :;�k 7 7

4 �intuitively�, erase non-relevant constraints

2

2

Ü ensures termination

Timed Models: From Theory to Implementation � p. 45 QEST'04 � Tutorial � September 2004

The extrapolation operator

Fix an integer k (� #� represents an integer between �k and +k)

7 89 :;> k 7

7 7 789 : ;< �k 7 7

<

7 => ?@+1 7

7 7 789 :;�k 7 7

4 �intuitively�, erase non-relevant constraints

2

2

Ü ensures termination

Timed Models: From Theory to Implementation � p. 45

QEST'04 � Tutorial � September 2004

Challenge

Propose a good constant for the extrapolation:
4 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

4 Several correctness proofs can be found
4 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
4 Successfully used on real-life examples

Timed Models: From Theory to Implementation � p. 46 QEST'04 � Tutorial � September 2004

Challenge

Propose a good constant for the extrapolation:
4 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

4 Several correctness proofs can be found
4 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
4 Successfully used on real-life examples

However...

Timed Models: From Theory to Implementation � p. 46

QEST'04 � Tutorial � September 2004

A problematic automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0
x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

Timed Models: From Theory to Implementation � p. 47 QEST'04 � Tutorial � September 2004

A problematic automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0
x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0
v(x2) = d
v(x3) = 2� + 5
v(x4) = 2� + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

Timed Models: From Theory to Implementation � p. 47

QEST'04 � Tutorial � September 2004

A problematic automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0
x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0
v(x2) = d
v(x3) = 2� + 5
v(x4) = 2� + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

Timed Models: From Theory to Implementation � p. 47 QEST'04 � Tutorial � September 2004

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.

Timed Models: From Theory to Implementation � p. 48

QEST'04 � Tutorial � September 2004

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.

If � is suf�ciently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply
x1 � x2 = x3 � x4.

Timed Models: From Theory to Implementation � p. 48 QEST'04 � Tutorial � September 2004

General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs Post) is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Timed Models: From Theory to Implementation � p. 49

QEST'04 � Tutorial � September 2004

General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs Post) is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Timed Models: From Theory to Implementation � p. 49 QEST'04 � Tutorial � September 2004

General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs Post) is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Timed Models: From Theory to Implementation � p. 49

QEST'04 � Tutorial � September 2004

General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z A Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs Post) is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Timed Models: From Theory to Implementation � p. 49 QEST'04 � Tutorial � September 2004

General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z A Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs B Post)

�

is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Timed Models: From Theory to Implementation � p. 49

QEST'04 � Tutorial � September 2004

General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z A Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs B Post)

�

is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

Timed Models: From Theory to Implementation � p. 49 QEST'04 � Tutorial � September 2004

Why that?

Assume there is a �nice� operator Abs.

The set fM DBM representing a zone Abs(Z)g is �nite.

Ü k the max. constant de�ning one of the previous DBMs

We get that, for every zone Z,

Z C Extrak(Z) C Abs(Z)

Timed Models: From Theory to Implementation � p. 50

QEST'04 � Tutorial � September 2004

Problem!

Open questions: - which conditions can be made weaker?
- �nd a clever termination criterium?
- use an other data structure than zones/DBMs?

Timed Models: From Theory to Implementation � p. 51 QEST'04 � Tutorial � September 2004

What can we cling to?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards x c and x � y c

Proposition: the classical algorithm is correct for timed automata that use less
than 3 clocks.

(the constant used is bigger than the maximal constant...)

Timed Models: From Theory to Implementation � p. 52

QEST'04 � Tutorial � September 2004

What can we cling to?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards x � c and x � y � c
Proposition: the classical algorithm is correct for timed automata that use less
than 3 clocks.

(the constant used is bigger than the maximal constant...)

Timed Models: From Theory to Implementation � p. 52 QEST'04 � Tutorial � September 2004

Conclusion & Further Work

4 Decidability is quite well understood.

4 Needs to understand better the geometry of the reachable state space.

4 data structures for both dense and discrete parts

To be continued...

4 Some other current challenges:� controller synthesis� implementability issues (program synthesis)

Timed Models: From Theory to Implementation � p. 53

QEST'04 � Tutorial � September 2004

Bibliography

[ACD+92] Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. Minimization of Timed Transition
Systems. CONCUR'92 (LNCS 630).

[AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP'90 (LNCS 443).

[AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.

[AL02] Aceto, Laroussinie. Is your Model-Checker on Time? On the Complexity of
Model-Checking for Timed Modal Logics. JLAP 52-53, 2002. 2002.

[BD00] Bérard, Dufourd. Timed Automata and Additive Clock Constraints. IPL 75(1�2),
2000.

[BDFP00a] Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV'00 (LNCS
1855).

[BDFP00b] Bouyer, Dufourd, Fleury, Petit. Expressiveness of Updatable Timed Automata.
MFCS'00 (LNCS 1893).

[BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of Silent
Transitions in Timed Automata. Fundamenta Informaticae 36(2�3), 1998.

[BF99] Bérard, Fribourg. Automatic Veri�cation of a Parametric Real-Time Program: the
ABR Conformance Protocol. CAV'99 (LNCS 1633).

[Bouyer03] Bouyer. Untameable Timed Automata! STACS'03 (LNCS 2607).

Timed Models: From Theory to Implementation � p. 54 QEST'04 � Tutorial � September 2004

Bibliography (cont.)

[Bouyer04] Bouyer. Forward analysis of updatable timed automata. Formal Methods in System
Design 24(3),2004.

[Dill89] Dill. Timing Assumptions and Veri�cation of Finite-State Concurrent Systems. Aut.
Verif. Methods for Fin. State Sys. (LNCS 1989).

[DT98] Daws, Tripakis. Model-Checking of Real-Time Reachability Properties using
Abstractions. TACAS'98 (LNCS 1384).

[DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed Automata.
RTSS'96.

[LPY97] Larsen, Pettersson, Yi. UPPAAL in a Nutshell. Software Tools for Technology Transfer
1(1�2), 1997.

[Minsky67] Minsky. Computation: Finite and In�nite Machines. 1967.

[TY01] Tripakis, Yovine. Analysis of Timed Systems using Time-Abstracting Bisimulations.
FMSD 18(1), 2001.

Hytech: http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/

Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/

Uppaal: http://www.uppaal.com/

Timed Models: From Theory to Implementation � p. 55

http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/
http://www-verimag.imag.fr/TEMPORISE/kronos/
http://www.uppaal.com/

	Model-checking
	Model-checking

	Time!
	A Case for Dense-Time
	Roadmap
	Timed automata
	Timed automata (example)
	Timed automata (example)
	Timed automata (example)
	Timed automata (example)

	TA Semantics
	Verification
	Verification
	Verification
	Verification
	Verification

	The region abstraction
	The region abstraction
	The region abstraction
	The region abstraction
	The region abstraction
	The region abstraction
	The region abstraction

	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation

	The region automaton
	An example 	extcolor {Maroon}{{
ormalsize [AD 90's]}}
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness

	P{
ormalsize SPACE}-Hardness
	P{
ormalsize SPACE}-Hardness (cont.)
	A Model Not Far From Undecidability
	A Model Not Far From Undecidability
	A Model Not Far From Undecidability

	Partial conclusion
	Adding diagonal constraints
	Adding diagonal constraints (cont.)
	Adding diagonal constraints (cont.)

	Adding silent actions
	Adding constraints of the form $x+y sim c$
	The two-counter machine
	Undecidability proof
	Undecidability proof (cont.)
	Adding constraints of the form $x+y sim c$
	Adding constraints of the form $x+y sim c$

	Adding new operations on clocks
	Adding new operations on clocks
	Adding new operations on clocks

	Decidability
	Decidability (cont.)
	Decidability (cont.)
	What's wrong when undecidable?
	What's wrong when undecidable?
	What's wrong when undecidable?
	What's wrong when undecidable?
	What's wrong when undecidable?
	What's wrong when undecidable?
	What's wrong when undecidable?

	Decidability (cont.)
	{large Notice}
	{large Notice}
	{large Notice}

	{large Reachability analysis}
	{large Reachability analysis}
	{large Reachability analysis}
	{large Reachability analysis}

	Note on the backward analysis
	Note on the backward analysis
	Note on the backward analysis
	Note on the backward analysis
	Note on the backward analysis
	Note on the backward analysis

	Note on the backward analysis (cont.)
	Note on the backward analysis (cont.)
	Note on the backward analysis (cont.)

	Forward analysis of TA
	Forward analysis of TA
	Forward analysis of TA
	Forward analysis of TA
	Forward analysis of TA
	Forward analysis of TA

	Non termination of the forward analysis
	{``Solutions'' to this problem}
	{``Solutions'' to this problem}

	{``Solutions'' to this problem (cont.)}
	{``Solutions'' to this problem (cont.)}

	The DBM data structure
	The DBM data structure
	The DBM data structure

	The extrapolation operator
	The extrapolation operator
	The extrapolation operator

	Challenge
	Challenge

	A problematic automaton
	A problematic automaton
	A problematic automaton

	The problematic zone
	The problematic zone

	General abstractions
	General abstractions
	General abstractions
	General abstractions
	General abstractions
	General abstractions

	Why that?
	Problem!
	What can we cling to?
	What can we cling to?

	Conclusion & Further Work
	{large Bibliography}
	{large Bibliography (cont.)}

