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Time!

Context: veri�cation of embedded critical systems

Time

4 naturally appears in real systems
4 appears in properties (for ex. bounded response time)

Ü Need of models and speci�cation languages integrating timing aspects
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A Case for Dense-Time

Time domain: discrete (e.g. N) or dense (e.g. Q+)

4 A compositionality problem with discrete time
4 Dense-time is a more general model than discrete time
4

x = 1; a; x := 0 b; y := 0
x = 1; a; x := 0

y < 1; b; y := 0

� Dense-time: Ldense = f((ab)!; �) j �i; �2i�1 = i and �2i � �2i�1 > �2i+2 � �2i+1g� Discrete-time: Ldiscrete =

�
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Roadmap

4 Timed automata, decidability issues

4 Some extensions of the model

4 Implementation of timed automata
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Timed automata, decidability issues
4 presentation of the model
4 decidability of the model
4 the region automaton construction
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Timed automata

4 A �nite control structure + variables (clocks)

4 A transition is of the form:
g; a; C := 0

Enabling condition Reset to zero

4 An enabling condition (or guard) is:

g ::= x � c j x � y � c j g � g
where � � f<; �; =; �; >g
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Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0
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Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0 �(4:1) �

0 a

�
1 �(1:4) �

1 b

�

2

x 0 4:1 4:1 5:5 0
y 0 4:1 0 1:4 1:4
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Timed automata (example)

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0 �(4:1) �

0 a

�

1 �(1:4) �

1 b

�

2

x 0 4:1 4:1 5:5 0
y 0 4:1 0 1:4 1:4

(clock) valuation

Ü timed word (a;4:1)(b;5:5)
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TA Semantics

4

	

= (�; L;X; ) is a TA

4 Con�gurations: (

�

; v) 
 L � TX where T is the time domain

4 Timed Transition System:

� action transition: (

�

; v) a (

� �

; v

�

) if �� g;a;r� � 
 	

s.t. v j= g
v

�

= v[r 
 0]

� delay transition: (q; v) �(d) (q; v + d) if d 
 T
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Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

4 reachability properties (�nal states)

4 basic liveness properties (Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]
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Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

Problem: the set of con�gurations is in�nite
Ü classical methods can not be applied

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]
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Ü classical methods can not be applied

Positive key point: variables (clocks) have the same speed
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It is PSPACE-complete. [Alur & Dill 1990's]
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Veri�cation

Emptiness problem: is the language accepted by a timed automaton empty?

Problem: the set of con�gurations is in�nite
Ü classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990's]

Method: construct a �nite abstraction
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The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing
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The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Ü a bisimulation property
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The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

region de�ned by
Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Ü a bisimulation property
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The region abstraction

0 1 2 3 x

1

2

y
Equivalence of �nite index

region de�ned by
Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

successor regions

4 �compatibility� between regions and constraints

4 �compatibility� between regions and time elapsing

Ü a bisimulation property
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Time-Abstract Bisimulation

� a

d > 0
�(d)
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Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)
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Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :
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Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :� � �

(� 0; R0) a1 (� 1; R1) a2 (� 2; R2) a3 : : :

with vi

 Ri for all i.
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Time-Abstract Bisimulation
�

�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :� � �

(� 0; R0) a1 (� 1; R1) a2 (� 2; R2) a3 : : :

with vi


 Ri for all i.
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Time-Abstract Bisimulation

�
�

a

a

�d > 0

�d �

> 0

�(d)

�(d

�

)

(� 0; v0) a1;t1 (� 1; v1) a2;t2 (� 2; v2) a3;t3 : : :� � �

(� 0; R0) a1 (� 1; R1) a2 (� 2; R2) a3 : : :

with vi


 Ri for all i.

Remark: We can not check real-time properties with a time-abstract bisimulation.
We need to add clocks for the formula we want to check.
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The region automaton

timed automaton

�

region abstraction

� g;a;C:=0 � � is transformed into:

( �; R) a ( � �; R �

) if there exists R

� �� Succ
�

t (R) s.t.

4 R

� �� g

4 [C � 0]R
� � � R

�

Ü time-abstract bisimulation

�

(reg. aut.) = UNTIME(

�

(timed aut.))

where UNTIME((a1; t1)(a2; t2) : : : ) = a1a2 : : :
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An example [AD 90's]

0 1 x

1

y
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PSPACE-Easyness

¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region
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PSPACE-Easyness

4 ¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space
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� an interval for each clock
� an interval for each pair of clocks
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4 One con�guration: a discrete location + a region

� a discrete location: log-space� a region:
� an interval for each clock
� an interval for each pair of clocks

Ü needs polynomial space

4 By guessing a path: needs only to store two con�gurations
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PSPACE-Easyness

¡ The size of the region graph is in �(jXj!:2jXj) !

4 One con�guration: a discrete location + a region

� a discrete location: log-space� a region:
� an interval for each clock
� an interval for each pair of clocks

Ü needs polynomial space

4 By guessing a path: needs only to store two con�gurations

Ü in NPSPACE, thus in PSPACE
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PSPACE-Hardness

�

LBTM
w0

� fa; bg � } � A �

;w0 s.t.

�

accepts w0 iff the �nal state of A �
;w0 is reachable

Cjw0

fxj; yjg

Cj contains a �a� iff xj = yj
Cj contains a �b� iff xj < yj

(these conditions are invariant by time elapsing)

Ü proof taken in [Aceto & Laroussinie 2002]
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PSPACE-Hardness (cont.)

If q �;�

�

;� q

�

is a transition of

�

, then for each position i of the tape, we have a
transition

(q; i) g;r:=0 (q

�

; i

�

)

where:

4 g is xi = yi (resp. xi < yi) if � = a (resp. � = b)

4 r = fxi; yig (resp. r = fxig) if � = a (resp. � = b)

4 i

�

= i + 1 (resp. i

�

= i � 1) if � is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1 and clock t is reset.

Initialization: init t=1;r0:=0 (q0; 1) where r0 = fxi j w0[i] = bg � ftg
Termination: (qf; i) end
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A Model Not Far From Undecidability

4 Universality is undecidable [Alur & Dill 90's]

4 Inclusion is undecidable [Alur & Dill 90's]

4 Determinizability is undecidable [Tripakis 2003]

4 Complementability is undecidable [Tripakis 2003]

4 ...

Timed Models: From Theory to Implementation � p. 18
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A Model Not Far From Undecidability

4 Universality is undecidable [Alur & Dill 90's]

4 Inclusion is undecidable [Alur & Dill 90's]

4 Determinizability is undecidable [Tripakis 2003]

4 Complementability is undecidable [Tripakis 2003]

4 ...

An example of non-determinizable TA:
a

a; x := 0

a

x = 1; a

a
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A Model Not Far From Undecidability

4 Universality is undecidable [Alur & Dill 90's]

4 Inclusion is undecidable [Alur & Dill 90's]

4 Determinizability is undecidable [Tripakis 2003]

4 Complementability is undecidable [Tripakis 2003]

4 ...

An example of non-complementable TA:
a; b

a; x := 0

x � 1; a; b
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Partial conclusion

Ü a timed model interesting for veri�cation purposes

Numerous works have been (and are) devoted to:

4 the �theoretical� comprehension of timed automata

4 extensions of the model (to ease the modelling)

� expressiveness

� analyzability

4 algorithmic problems and implementation
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Some extensions of the model
4 adding constraints of the form x � y  c
4 adding silent actions

4 adding constraints of the form x + y  c
4 adding new operations on clocks
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Adding diagonal constraints

x � y � c and x � c

4 Decidability: yes, using the region abstraction

0 1 2 x

1

y

4 Expressiveness: no additional expressive power
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Adding diagonal constraints (cont.)

c is positive

x � y � c

x := 0
y := 0

copy where x � y � c

x := 0
y := 0
x � c

x > c
y := 0

x := 0

y := 0

copy where x � y > c
Ü proof in [Bérard,Diekert,Gastin,Petit 1998]
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Adding diagonal constraints (cont.)

Open question: is this construction �optimal�?
In the sense that timed automata with diagonal constraints
are exponentially more concise than diagonal-free timed automata.
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Adding silent actions

g; "; C := 0
[Bérard,Diekert,Gastin,Petit 1998]

4 Decidability: yes (actions has no in�uence on the previous construction)

4 Expressiveness: strictly more expressive!

x = 1
a

x := 0 0 < x < 1; b

x = 1; "; x := 0

a

0 1

a b

2

b

3 4

a
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Adding constraints of the form x + y ! c

x + y � c and x � c [Bérard,Dufourd 2000]

4 Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

4 Expressiveness: more expressive! (even using two clocks)

f(an; t1 : : : tn) j n � 1 and ti = 1 � 1
2i g

x + y = 1; a; x := 0
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The two-counter machine

De�nition. A two-counter machine is a �nite set of instructions over two
counters (x and y):

4 Incrementation:
(p): x := x + 1; goto (q)

4 Decrementation:
(p): if x > 0 then x := x � 1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.

Timed Models: From Theory to Implementation � p. 25
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Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd ddd d dd d dd

c is unchanged c is incremented

d is decremented

Ü simulation of � decrement of d� increment of c

We will use 4 clocks: � u, �tic� clock (each time unit)� x0, x1, x2: reference clocks for the two counters

�xi reference for c� " �the last time xi has been reset is
the last time action c has been performed�

[Bérard,Dufourd 2000]
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Undecidability proof (cont.)
4 Increment of counter c:

u = 1; #; u := 0
x2 := 0

x0 � 2; u + x2 = 1; c; x2 := 0

u + x2 = 1
x0 > 2; c; x2 := 0

ref for c is x0 ref for c is x2

4 Decrement of counter c:

u = 1; #; u := 0
x2 := 0

x0 < 2; u + x2 = 1; c; x2 := 0

u + x2 = 1
x0 = 2; c; x2 := 0

u = 1; x0 = 2; #; u := 0; x2 := 0

Timed Models: From Theory to Implementation � p. 27
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Adding constraints of the form x + y ! c

4 Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

4 Three clocks: open question

4 Four clocks (or more): undecidable!
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4 Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

4 Three clocks: open question

4 Four clocks (or more): undecidable!
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Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

4 The general model is undecidable.
(simulation of a two-counter machine)

4 Only decrementation also leads to undecidability
Incrementation of counter x

z = 1; z := 0 z = 0; y := y � 1z = 0

Decrementation of counter x

x � 1 z = 0; x := x � 1z = 0

x = 0
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Incrementation of counter x
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Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

4 The general model is undecidable.
(simulation of a two-counter machine)

4 Only decrementation also leads to undecidability

� Incrementation of counter x

z = 1; z := 0 z = 0; y := y � 1z = 0

� Decrementation of counter x

x � 1 z = 0; x := x � 1z = 0

x = 0
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Decidability

y := 0 y := 1 x � y < 1

1

1

0

image by y := 1

Ü the bisimulation property is not met

The classical region automaton construction is not correct.
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Decidability (cont.)

$ % Diophantine linear inequations system

% is there a solution?

% if yes, belongs to a decidable class

Examples:
4 constraint x � c c � maxx
4 constraint x � y � c c � maxx;y

4 update x : � y + c maxx � maxy +c
and for each clock z, maxx;z � maxy;z + c, maxz;x � maxz;y � c

4 update x :< c c � maxx
and for each clock z, maxz � c + maxz;x

The constants (maxx) and (maxx;y) de�ne a set of regions.
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Decidability (cont.)

y := 0 y := 1 x � y < 1

&(')'*'*'*')'*'*'*')+
'*')'*'*'*')'*'*'),

maxy � 0
maxx � 0 + maxx;y

maxy � 1
maxx � 1 + maxx;y

maxx;y � 1

= -

&('*')'*'*'*')+
'*')'*'*'*'),

maxx = 2
maxy = 1
maxx;y = 1
maxy;x = �1

The bisimulation property is met.
1 2

1

0 x

y
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What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1
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What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

��

Timed Models: From Theory to Implementation � p. 33

QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

��

Timed Models: From Theory to Implementation � p. 33 QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

�

�

Timed Models: From Theory to Implementation � p. 33



QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

�

�

Timed Models: From Theory to Implementation � p. 33 QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

Timed Models: From Theory to Implementation � p. 33

QEST'04 � Tutorial � September 2004

What's wrong when undecidable?

Decrementation x := x � 1

maxx � maxx � 1

etc...
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Decidability (cont.)

Diagonal-free constraints General constraints

x := c, x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x � 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x : � y + c

y + c <: x :< y + d
y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]
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Implementation of Timed Automata

4 analysis algorithms
4 the DBM data structure
4 a bug in the forward analysis
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Notice

The region automaton is not used for implementation:

4 suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

4 no really adapted data structure

Algorithms for �minimizing� the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-�y technics are preferred.
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Reachability analysis

4 forward analysis algorithm:
compute the successors of initial con�gurations

F

I
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Note on the backward analysis

� � �g; a; C := 0

[C 
 0]�1(Z . (C = 0)) . g Z

Z [C 0]�1(Z (C = 0)) [C 0]�1(Z (C = 0)) g

The exact backward computation terminates and is correct!
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Note on the backward analysis (cont.)

If

	

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k + :m
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Note on the backward analysis (cont.)

If

	

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

Let R be a region. Assume:

4 v � /�
R (for ex. v + t � R)

4 v

�1 reg. v

There exists t

�

s.t. v

�

+ t

�1 reg. v + t, which implies that v

�

+ t

� � R and thus v

� � /�
R .

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k + :m
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Note on the backward analysis (cont.)

If

	

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k +

�

:m
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Forward analysis of TA

� � �g; a; C := 0

Z [C 
 0](
� 2
Z . g)zones

A zone is a set of valuations de�ned by a clock constraint

3 ::= x � c j x � y � c j 3 � 3

Z �
Z

�
Z g [y 0](

�
Z g)

Ü a termination problem
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Non termination of the forward analysis

y := 0,
x := 0

x � 1 � y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Ü an in�nite number of steps...
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�Solutions� to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

4 inclusion checking: if Z� Z

�

and Z

�

still handled, then we don't need
to handle Z

Ü correct w.r.t. reachability

4 activity: eliminate redundant clocks [Daws,Yovine 1996]

Ü correct w.r.t. reachability

q g;a;C:=0�������������� q = Act(q) = clocks(g) (Act(q ) n C)

: : :
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(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

4 inclusion checking: if Z� Z

�

and Z

�

still handled, then we don't need
to handle Z

Ü correct w.r.t. reachability

4 activity: eliminate redundant clocks [Daws,Yovine 1996]

Ü correct w.r.t. reachability

q g;a;C:=0�������������� 4 q �
= - Act(q) = clocks(g) 5 (Act(q

�

) n C)

: : :
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�Solutions� to this problem (cont.)

4 convex-hull approximation: if Z and Z

�

are computed then we
overapproximate using �Z 6 Z �

�.

Ü �semi-correct� w.r.t. reachability

4 extrapolation, a widening operator on zones
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3) � (x2 � 5) � (x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1
+1 +1 4
5 +1 +1

4 Existence of a normal form

3 4 9

5

2

0 -3 0
9 0 4
5 2 0

4 All previous operations on zones can be computed using DBMs
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The extrapolation operator

Fix an integer k (� #� represents an integer between �k and +k)

7 89 :;> k 7

7 7 789 : ;< �k 7 7

<

7 => ?@+1 7

7 7 789 :;�k 7 7

4 �intuitively�, erase non-relevant constraints

2

2

Ü ensures termination

Timed Models: From Theory to Implementation � p. 45
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Challenge

Propose a good constant for the extrapolation:
4 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

4 Several correctness proofs can be found
4 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
4 Successfully used on real-life examples
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Challenge

Propose a good constant for the extrapolation:
4 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

4 Several correctness proofs can be found
4 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
4 Successfully used on real-life examples

However...
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A problematic automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0
x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop
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x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0
v(x2) = d
v(x3) = 2� + 5
v(x4) = 2� + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

Timed Models: From Theory to Implementation � p. 47

QEST'04 � Tutorial � September 2004

A problematic automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0
x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0
v(x2) = d
v(x3) = 2� + 5
v(x4) = 2� + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

Timed Models: From Theory to Implementation � p. 47 QEST'04 � Tutorial � September 2004

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.
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The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.

If � is suf�ciently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply
x1 � x2 = x3 � x4.
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General abstractions

Criteria for a good abstraction operator Abs:

4 easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

4 �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

4 completeness of the abstraction [Completeness]
Z Abs(Z)

4 soundness of the abstraction [Soundness]
the computation of (Abs Post) is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!
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Why that?

Assume there is a �nice� operator Abs.

The set fM DBM representing a zone Abs(Z)g is �nite.

Ü k the max. constant de�ning one of the previous DBMs

We get that, for every zone Z,

Z C Extrak(Z) C Abs(Z)
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Problem!

Open questions: - which conditions can be made weaker?
- �nd a clever termination criterium?
- use an other data structure than zones/DBMs?
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What can we cling to?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards x c and x � y c

Proposition: the classical algorithm is correct for timed automata that use less
than 3 clocks.

(the constant used is bigger than the maximal constant...)
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Conclusion & Further Work

4 Decidability is quite well understood.

4 Needs to understand better the geometry of the reachable state space.

4 data structures for both dense and discrete parts

To be continued...

4 Some other current challenges:� controller synthesis� implementability issues (program synthesis)
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