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» Timed automata, an idealized mathematical model for real-time
systems

> assumes infinite precision of clocks
> assumes instantaneous actions
> etc...

=» notion of strong robustness defined in [DDRO04]

» In a model, only few traces may violate the correctness property:
they may hence not be relevant...

=» topological notion of tube acceptance in [GHJ97]

=» notion of fair correctness in [VV06] based on probabilities
(for untimed systems) + topological characterization

Aim: Use probabilities to “relax” the semantics of timed automata J
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Initial example

Intuition: from the initial state,

this automaton almost-surely satisfies “G @"
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The limits of intuition...

Does it almost-surely satisfy “F @7
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Our proposition

€n

m(s — ... =5 ): symbolic path starting in s and firing edges ey, ..., €,

S | P(n(se = ... )
Frle =) =5 [e,(s,el) Hi(s o) te i e =

t,er
where s — s;

> 1s: “reasonable” probability measure over all possible delays /(s)
> dus(t): probability of waiting t t.u.

> #{l(s,e) | t € I(s,e)}: number of transitions that can be fired after
having delayed t t.u. from s

> P <7T(St 20 )) probability of firing e, ..., e, after s;

> %: normalization factor
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Properties of P

Lemma
If s is a state, then P (UneN Ue,....e, T(5 a0 )) =1l J
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Properties of P

Lemma
If s is a state, then P (UneN Ue,....e, T(5 a0 )) =1l J
Lemma

If s and s’ are region-equivalent, then

P(r(s ... 2))>0 & P(a(s ... %)) >0.
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Qualitative probabilistic model-checking

If ¢ is an LTL formula, then we define:

{ S0 Ry @
50|Ri3<P

(ol
D
—h

P{o € Runs(so) | 0 F ¢} = 1,
P{o € Runs(so) | o = ¢} > 0.

i

1%
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Qualitative probabilistic model-checking
If ¢ is an LTL formula, then we define:

sskrae & P{oecRuns(s) | ok ¢} >0

h

{ sohve & PloeRuns(s) oo} =1,

This definition extends naturally to CTL* specifications...

We wish:

1. to be convinced this definition is not all nonsense,
— topological characterization

2. to decide qualitative model-checking.
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> we need a property toto such that if A is toto, then A€ is not toto
(because P({0 € Runs(sp) | 0 = »}) =1 — P({o € Runs(so) | o I~ ©}))

» that cannot be density [VVO06]
ex: Q is dense in R, and R \ Q is also dense in R

> that can be largeness and meagerness!

> a set B is nowhere dense if B = 0,
> a set B is meager if it is a countable union of nowhere dense sets,
> a set B is large if its complement is meager.

ex: Q is meager and R~ Q is large in R

These notions are abstract but enjoy a very nice characterization
using Banach-Mazur games!
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Banach-Mazur games

(A, T) topological space, BB a family of subsets of A such that:
» forall Be B, B+#0,
» if O is a non-empty open set, there exists B € Bs.t. BC O.

We fix C C A. The game is then as follows:
» Player 1 picks some B; € B,
» Player 2 picks some B, € BB such that B; D By,
» Player 1 picks some Bs € B such that B; 2 B, D Bs,
» and so on... a sequence By D B, O B3 O B, D --- is constructed

Player 1 wins the game whenever ()2, B; N C # (). Otherwise Player 2
wins the game.

» Banach-Mazur games are not determined.

» [Oxtoby57| Player 2 has a winning strategy iff C is meager.
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Let's play Banach-Mazur games!

» Classical topology on R,
B = {all non-empty intervals with rational bounds}.
Take C = (0,1).
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is called a Baire space.

ex: R is a Baire space, Q is not a Baire space.
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Topology over timed automata

>

Notion of dimension (on blackboard).

» This notion is region-invariant.

We define a topology on a timed automaton, whose basic open sets
are symbolic paths 7 such that dim(7) is defined and the set of all
paths.

NB: this topological space is a Baire space.

e
Xm0 L
x<1
@

only mo, m1 and 74 have a dimension, they are thus open sets,
o U s is a closed set,

w2 is nowhere dense, and so is 73,

o U 3 is meager, and mo U 71 U 74 is large.

ex:

vvyVvVvy
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Probabilistic semantics vs topology
» If 7 is a symbolic path in R(A), then

PR(A)(W) >0& dimR(A)(ﬂ') defined

> If mis a symbolic path in A, Pa(m) = > ¢, (x) Preay(<)

L
a; x<1
(t)——(==1
:
a; x=1

x<
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Probabilistic semantics vs topology (2)

Theorem

Let A be a timed automaton, sy a state of A, and ¢ an LTL formula.
Then,

A, s M ()

o
]
=

w.r.t. P, almost all paths from sy in A satisfy ¢
the paths of R(.A) from sy not satisfying ¢ have an
undefined dimension

the set of paths of R(A) from sy satisfying ¢ is
(topologically) large

T o

i3

(simple application of Banach-Mazur games)
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From an algorithmic point-of-view

Over finite timed words, the almost-sure () and the positive (f=3) LTL
model-checking problems over non-blocking timed automata are PSPACE-
Complete.
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Some remarks

> the probabilistic semantics can be defined for a larger class of

systems, for instance hybrid systems with a finite bisimulation
quotient
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> real-time probabilistic systems [ACD91,ACD92]
> dense-time Markov chains [BHHKO3]

NB: our model is more general than dense-time Markov chains, and by
slightly extending our model, our model becomes more general than
probabilistic timed automata

» Labelled Markov processes over a continuum [DGJP03,04]

» Strong relation with robustness

> robust timed automata [GHJ97,HRO00]
> robust model-checking [Puri98,DDR04,DDMR04,ALMO05,BMR06]
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Conclusions

Conclusion

> a probabilistic semantics for timed automata which removes
“unlikely” events,

» qualitative model-checking has a topological interpretation,
> decidability of qualitative LTL model-checking.
Further work
» extend to infinite paths,
> quantitative analysis,
> timed objectives,
> ...
Some possible improvements?
handle accepting states,
the normalization factor % is not completely satisfactory,

discount time, not the number of transitions,

vV v .vvY
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Extension to infinite timed words

» definition: straightforward extension to cylinders

» non-trivial to decide...

For one-clock timed automata,
» we can decide qualitative LTL model-checking

» we have properties like
P(Zeno behaviours) =0

if the automaton is not “degenerated”
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