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Motivation(s)

I Timed automata, an idealized mathematical model for real-time
systems

I assumes infinite precision of clocks
I assumes instantaneous actions
I etc...

Ü notion of strong robustness defined in [DDR04]

I In a model, only few traces may violate the correctness property:
they may hence not be relevant...

Ü topological notion of tube acceptance in [GHJ97]

Ü notion of fair correctness in [VV06] based on probabilities
(for untimed systems) + topological characterization

Aim: Use probabilities to “relax” the semantics of timed automata
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Initial example

x ≤ 1

x ≤ 1
a ; x ≤ 1

a ; x ≤ 1

a ; x = 1

Intuition: from the initial state,

this automaton almost-surely satisfies “G•◦”
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The limits of intuition...

x ≤ 1

x ≤ 1
a ; x ≤ 1

a ; x = 0

a ; x = 1

Does it almost-surely satisfy “F•◦”?
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Our proposition

π(s
e1−→ . . .

en−→ ): symbolic path starting in s and firing edges e1, . . . , en

P
�
π(s

e1−→ . . .
en−→ )

�
=

1

2

Z
t∈I (s,e1)

P
�
π(st

e2−→ . . .
en−→ )

�
#{I (s, e) | t ∈ I (s, e)}

dµs(t)

where s
t,e1−−→ st

I µs : “reasonable” probability measure over all possible delays I (s)
I dµs(t): probability of waiting t t.u.

I #{I (s, e) | t ∈ I (s, e)}: number of transitions that can be fired after
having delayed t t.u. from s

I P
�
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en−→ )

�
: probability of firing e2, . . . , en after st
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2 : normalization factor
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Back to the first example

x ≤ 1

x ≤ 1
e1 ; x ≤ 1

e2 ; x ≤ 1

e3 ; x = 1

The probability of the symbolic path π(s0
e1−→ e2−→ ) is 1

8 , hence > 0!

The probability of the symbolic path π(s0
e1−→ e3−→ ) is 0!

Moreover, P
�
G•◦ | accepting

�
= 1.
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Back to the second example

x ≤ 1

x ≤ 1
e1 ; x ≤ 1

e2 ; x = 0

e3 ; x = 1

The probability of the symbolic path π(s0
e1−→ e2−→ ) is 0!

The probability of the symbolic path π(s0
e1−→ e3−→ ) is 1

8 , hence > 0!

Moreover, P
�
F•◦ | accepting

�
= 1.
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Properties of P

Lemma

If s is a state, then P
�S

n∈N
S

e1,...,en
π(s

e1−→ . . .
en−→ )

�
= 1.

Lemma

If s and s ′ are region-equivalent, then

P
�
π(s

e1−→ . . .
en−→ )

�
> 0 ⇔ P

�
π(s ′

e1−→ . . .
en−→ )

�
> 0.
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Qualitative probabilistic model-checking

If ϕ is an LTL formula, then we define:(
s0 |≈∀ ϕ

def⇔ P{% ∈ Runs(s0) | % |= ϕ} = 1,

s0 |≈∃ ϕ
def⇔ P{% ∈ Runs(s0) | % |= ϕ} > 0.

This definition extends naturally to CTL? specifications...

We wish:

1. to be convinced this definition is not all nonsense,

→ topological characterization

2. to decide qualitative model-checking.
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Some topology

Which notion of topology is suitable?

I we need a property toto such that if A is toto, then Ac is not toto
(because P({% ∈ Runs(s0) | % |= ϕ}) = 1 − P({% ∈ Runs(s0) | % 6|= ϕ}))

I that cannot be density [VV06]
ex: Q is dense in R, and R r Q is also dense in R

I that can be largeness and meagerness!

I a set B is nowhere dense if B̊ = ∅,
I a set B is meager if it is a countable union of nowhere dense sets,
I a set B is large if its complement is meager.

ex: Q is meager and R r Q is large in R

These notions are abstract but enjoy a very nice characterization
using Banach-Mazur games!
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Banach-Mazur games

(A, T ) topological space, B a family of subsets of A such that:

I for all B ∈ B, B̊ 6= ∅,
I if O is a non-empty open set, there exists B ∈ B s.t. B ⊆ O.

We fix C ⊆ A. The game is then as follows:

I Player 1 picks some B1 ∈ B,

I Player 2 picks some B2 ∈ B such that B1 ⊇ B2,

I Player 1 picks some B3 ∈ B such that B1 ⊇ B2 ⊇ B3,

I and so on... a sequence B1 ⊇ B2 ⊇ B3 ⊇ B4 ⊇ · · · is constructed

Player 1 wins the game whenever
T∞

i=1 Bi ∩ C 6= ∅. Otherwise Player 2
wins the game.

Theorems

I Banach-Mazur games are not determined.

I [Oxtoby57] Player 2 has a winning strategy iff C is meager.
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Let’s play Banach-Mazur games!

I Classical topology on R,
B = {all non-empty intervals with rational bounds}.
Take C = (0, 1).

Then Player 1 has a winning strategy! Hence, C is not meager.

I Topological space (R, T ) with
basis(T ) = {∅} ∪ {(i , i + 2−n) | i ∈ Z, n ∈ N} ∪ {R},

B = basis(T ) \ {∅}.
Take C = (0, 1).

Then Player 2 has a winning strategy! Hence, C is meager.
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Some remarks

I There is no relation between open and meager sets.

I A topological space where every non-empty open set is not meager
is called a Baire space.

ex: R is a Baire space, Q is not a Baire space.
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Topology over timed automata

I Notion of dimension (on blackboard).

I This notion is region-invariant.

I We define a topology on a timed automaton, whose basic open sets
are symbolic paths π such that dim(π) is defined and the set of all
paths.

I NB: this topological space is a Baire space.

I ex:

`0

x≤1

`1

`2

`3

`4

a ; x=1

x :=0

a ; x=0

a ; x=1

a ; x>1

I only π0, π1 and π4 have a dimension, they are thus open sets,
I π2 ∪ π3 is a closed set,
I π2 is nowhere dense, and so is π3,
I π2 ∪ π3 is meager, and π0 ∪ π1 ∪ π4 is large.
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Probabilistic semantics vs topology
I If π is a symbolic path in R(A), then

PR(A)(π) > 0 ⇔ dimR(A)(π) defined

I If π is a symbolic path in A, PA(π) =
P

ς∈ι(π) PR(A)(ς)

`0

x≤1

`1 x≤1

`2

`3

a ; x≤1

a ; x=0

a ; x=1

`0,x=0

`1,x=0

`1,0<x<1

`1,x=1

`2,x=0

`3,x=1

a ; 0<x<1

a ; x=1

a ; x=1

a ; x=0

a ; x=0

a ; x=1
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Probabilistic semantics vs topology (2)

Theorem

Let A be a timed automaton, s0 a state of A, and ϕ an LTL formula.
Then,

A, s0 |≈∀ ϕ
def⇔ w.r.t. P, almost all paths from s0 in A satisfy ϕ
⇔ the paths of R(A) from s0 not satisfying ϕ have an

undefined dimension
⇔ the set of paths of R(A) from s0 satisfying ϕ is

(topologically) large

(simple application of Banach-Mazur games)
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From an algorithmic point-of-view

Theorem

Over finite timed words, the almost-sure (|≈∀) and the positive (|≈∃) LTL
model-checking problems over non-blocking timed automata are PSPACE-
Complete.
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Some remarks

I the probabilistic semantics can be defined for a larger class of
systems, for instance hybrid systems with a finite bisimulation
quotient
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Related works

I Other “probabilistic and timed” (automata-)based models

I probabilistic timed automata à la PRISM [KNSS02]
I real-time probabilistic systems [ACD91,ACD92]
I dense-time Markov chains [BHHK03]

NB: our model is more general than dense-time Markov chains, and by

slightly extending our model, our model becomes more general than

probabilistic timed automata

I Labelled Markov processes over a continuum [DGJP03,04]

I Strong relation with robustness
I robust timed automata [GHJ97,HR00]
I robust model-checking [Puri98,DDR04,DDMR04,ALM05,BMR06]
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I real-time probabilistic systems [ACD91,ACD92]
I dense-time Markov chains [BHHK03]

NB: our model is more general than dense-time Markov chains, and by

slightly extending our model, our model becomes more general than

probabilistic timed automata

I Labelled Markov processes over a continuum [DGJP03,04]

I Strong relation with robustness

I robust timed automata [GHJ97,HR00]
I robust model-checking [Puri98,DDR04,DDMR04,ALM05,BMR06]

19/21



Related works

I Other “probabilistic and timed” (automata-)based models
I probabilistic timed automata à la PRISM [KNSS02]
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Conclusions
Conclusion

I a probabilistic semantics for timed automata which removes
“unlikely” events,

I qualitative model-checking has a topological interpretation,

I decidability of qualitative LTL model-checking.

Further work

I extend to infinite paths,

I quantitative analysis,

I timed objectives,

I . . .

Some possible improvements?

I handle accepting states,

I the normalization factor 1
2 is not completely satisfactory,

I discount time, not the number of transitions,

I . . .

20/21



Conclusions
Conclusion

I a probabilistic semantics for timed automata which removes
“unlikely” events,

I qualitative model-checking has a topological interpretation,

I decidability of qualitative LTL model-checking.

Further work

I extend to infinite paths,

I quantitative analysis,

I timed objectives,

I . . .

Some possible improvements?

I handle accepting states,

I the normalization factor 1
2 is not completely satisfactory,

I discount time, not the number of transitions,

I . . .

20/21



Conclusions
Conclusion

I a probabilistic semantics for timed automata which removes
“unlikely” events,

I qualitative model-checking has a topological interpretation,

I decidability of qualitative LTL model-checking.

Further work

I extend to infinite paths,

I quantitative analysis,

I timed objectives,

I . . .

Some possible improvements?

I handle accepting states,

I the normalization factor 1
2 is not completely satisfactory,

I discount time, not the number of transitions,

I . . .

20/21



Extension to infinite timed words

I definition: straightforward extension to cylinders

I non-trivial to decide...

For one-clock timed automata,

I we can decide qualitative LTL model-checking

I we have properties like

P(Zeno behaviours) = 0

if the automaton is not “degenerated”
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