#### A Probabilistic Semantics for Timed Automata

Christel Baier<sup>1</sup>, Nathalie Bertrand<sup>1</sup>, Patricia Bouyer<sup>2,3</sup> Thomas Brihaye<sup>3</sup>, Marcus Größer<sup>1</sup>

<sup>1</sup>Technische Universität Dresden – Germany

<sup>2</sup>Oxford University Computing Laboratory – UK

<sup>3</sup>LSV – CNRS & ENS Cachan – France

 Timed automata, an idealized mathematical model for real-time systems

 Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

 Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

 Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

In a model, only few traces may violate the correctness property: they may hence not be relevant...

 Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

In a model, only few traces may violate the correctness property: they may hence not be relevant...

→ topological notion of tube acceptance in [GHJ97]

 Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

In a model, only few traces may violate the correctness property: they may hence not be relevant...

→ topological notion of tube acceptance in [GHJ97]

→ notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

 Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

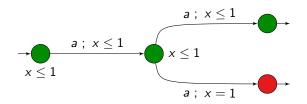
In a model, only few traces may violate the correctness property: they may hence not be relevant...

→ topological notion of tube acceptance in [GHJ97]

→ notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

Aim: Use probabilities to "relax" the semantics of timed automata

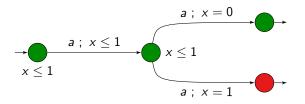
# Initial example



Intuition: from the initial state,

this automaton *almost-surely* satisfies "G ●"

#### The limits of intuition...



Does it *almost-surely* satisfy "**F** ●"?

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path starting in *s* and firing edges  $e_1, \dots, e_n$ 

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n}): \text{ symbolic path starting in } s \text{ and firing edges } e_1, \dots, e_n$   $\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) = \frac{1}{2} \int_{t \in I(s,e_1)} \frac{\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)}{\#\{I(s,e) \mid t \in I(s,e)\}} d\mu_s(t)$ 

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n}): \text{ symbolic path starting in } s \text{ and firing edges } e_1, \dots, e_n$   $\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) = \frac{1}{2} \int_{t \in I(s,e_1)} \frac{\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)}{\#\{I(s,e) \mid t \in I(s,e)\}} d\mu_s(t)$ where  $s \xrightarrow{t,e_1} s_t$   $\mu_s: \text{ "reasonable" probability measure over all possible delays } I(s)$ 

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path starting in s and firing edges  $e_1, \dots, e_n$ 

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) = \frac{1}{2} \int_{t \in I(s,e_1)} \frac{\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)}{\#\{I(s,e) \mid t \in I(s,e)\}} d\mu_s(t)$$

- >  $\mu_s$ : "reasonable" probability measure over all possible delays I(s)
  - $d\mu_s(t)$ : probability of waiting t t.u.

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path starting in s and firing edges  $e_1, \dots, e_n$ 

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) = \frac{1}{2} \int_{t \in I(s,e_1)} \frac{\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)}{\#\{I(s,e) \mid t \in I(s,e)\}} d\mu_s(t)$$

- >  $\mu_s$ : "reasonable" probability measure over all possible delays I(s)
  - $d\mu_s(t)$ : probability of waiting t t.u.
- #{I(s, e) | t ∈ I(s, e)}: number of transitions that can be fired after having delayed t t.u. from s

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path starting in s and firing edges  $e_1, \dots, e_n$ 

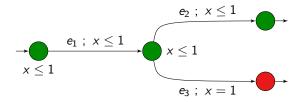
$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) = \frac{1}{2} \int_{t \in I(s,e_1)} \frac{\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)}{\#\{I(s,e) \mid t \in I(s,e)\}} d\mu_s(t)$$

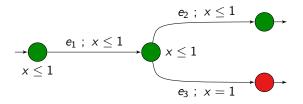
- ▶  $\mu_s$ : "reasonable" probability measure over all possible delays I(s)
  - $d\mu_s(t)$ : probability of waiting t t.u.
- #{I(s, e) | t ∈ I(s, e)}: number of transitions that can be fired after having delayed t t.u. from s
- ▶  $\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)$ : probability of firing  $e_2, \dots, e_n$  after  $s_t$

 $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$ : symbolic path starting in s and firing edges  $e_1, \dots, e_n$ 

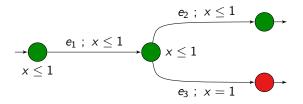
$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) = \frac{1}{2} \int_{t \in I(s,e_1)} \frac{\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)}{\#\{I(s,e) \mid t \in I(s,e)\}} d\mu_s(t)$$

- >  $\mu_s$ : "reasonable" probability measure over all possible delays I(s)
  - $d\mu_s(t)$ : probability of waiting t t.u.
- #{I(s, e) | t ∈ I(s, e)}: number of transitions that can be fired after having delayed t t.u. from s
- ▶  $\mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \dots \xrightarrow{e_n})\right)$ : probability of firing  $e_2, \dots, e_n$  after  $s_t$
- $\frac{1}{2}$ : normalization factor

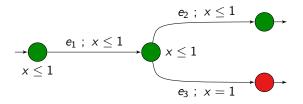




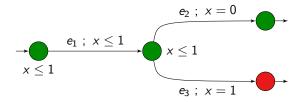
The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$  is  $\frac{1}{8}$ , hence > 0!

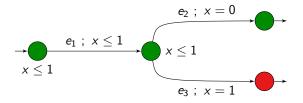


The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_2)$  is  $\frac{1}{8}$ , hence > 0! The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_3)$  is 0!

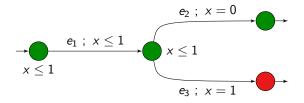


The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_2)$  ) is  $\frac{1}{8}$ , hence > 0! The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_3)$  ) is 0! Moreover,  $\mathbb{P}(\mathbf{G} \bullet | \operatorname{accepting}) = 1$ .

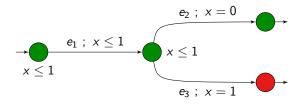




The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_2)$  is 0!



The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$  is 0! The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})$  is  $\frac{1}{8}$ , hence > 0!



The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_2)$  is 0! The probability of the symbolic path  $\pi(s_0 \xrightarrow{e_1} e_3)$  is  $\frac{1}{8}$ , hence > 0! Moreover,  $\mathbb{P}(\mathbf{F} \bullet | \text{accepting}) = 1$ .

# Properties of $\mathbb P$

#### Lemma

If s is a state, then 
$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}\bigcup_{e_1,\ldots,e_n}\pi(s\stackrel{e_1}{\longrightarrow}\ldots\stackrel{e_n}{\longrightarrow})\right)=1.$$

# Properties of $\mathbb{P}$

#### Lemma

If s is a state, then 
$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}\bigcup_{e_1,\ldots,e_n}\pi(s\stackrel{e_1}{\longrightarrow}\ldots\stackrel{e_n}{\longrightarrow})\right)=1.$$

#### Lemma

If s and s' are region-equivalent, then

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) > 0 \quad \Leftrightarrow \quad \mathbb{P}\left(\pi(s' \xrightarrow{e_1} \dots \xrightarrow{e_n})\right) > 0.$$

If  $\varphi$  is an LTL formula, then we define:

$$\begin{cases} s_0 \models_\forall \varphi & \stackrel{\text{def}}{\Leftrightarrow} \quad \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} = 1, \\ s_0 \models_\exists \varphi & \stackrel{\text{def}}{\Leftrightarrow} \quad \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} > 0. \end{cases}$$

If  $\varphi$  is an LTL formula, then we define:

$$\begin{cases} s_0 \models_\forall \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} = 1, \\ s_0 \models_\exists \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} > 0. \end{cases}$$

This definition extends naturally to CTL\* specifications...

If  $\varphi$  is an LTL formula, then we define:

$$\begin{cases} s_0 \models_\forall \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} = 1, \\ s_0 \models_\exists \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} > 0. \end{cases}$$

This definition extends naturally to CTL\* specifications...

We wish:

1. to be convinced this definition is not all nonsense,

If  $\varphi$  is an LTL formula, then we define:

$$\begin{cases} s_0 \vDash_\forall \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} = 1, \\ s_0 \succcurlyeq_\exists \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} > 0. \end{cases}$$

This definition extends naturally to CTL\* specifications...

We wish:

1. to be convinced this definition is not all nonsense,

 $\rightarrow$  topological characterization

If  $\varphi$  is an LTL formula, then we define:

$$\begin{cases} s_0 \models_\forall \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} = 1, \\ s_0 \models_\exists \varphi \iff \mathbb{P}\{\varrho \in \mathsf{Runs}(s_0) \mid \varrho \models \varphi\} > 0. \end{cases}$$

This definition extends naturally to CTL\* specifications...

We wish:

1. to be convinced this definition is not all nonsense,

 $\rightarrow$  topological characterization

2. to decide qualitative model-checking.

Which notion of topology is suitable?

Which notion of topology is suitable?

▶ we need a property *toto* such that if A is *toto*, then  $A^c$  is not *toto* (because  $\mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \models \varphi\}) = 1 - \mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \not\models \varphi\}))$ 

Which notion of topology is suitable?

▶ we need a property *toto* such that if A is *toto*, then  $A^c$  is not *toto* (because  $\mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \models \varphi\}) = 1 - \mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \not\models \varphi\}))$ 

that cannot be density

[VV06]

Which notion of topology is suitable?

- ▶ we need a property *toto* such that if A is *toto*, then  $A^c$  is not *toto* (because  $\mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \models \varphi\}) = 1 \mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \not\models \varphi\}))$
- ▶ that cannot be density
   ex: Q is dense in R, and R \ Q is also dense in R

[VV06]

Which notion of topology is suitable?

- we need a property toto such that if A is toto, then A<sup>c</sup> is not toto (because P({ρ ∈ Runs(s₀) | ρ ⊨ φ}) = 1 − P({ρ ∈ Runs(s₀) | ρ ⊭ φ}))
- ▶ that cannot be density
   ex: Q is dense in R, and R < Q is also dense in R</li>
- that can be largeness and meagerness!

[VV06]

Which notion of topology is suitable?

- ▶ we need a property *toto* such that if A is *toto*, then  $A^c$  is not *toto* (because  $\mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \models \varphi\}) = 1 \mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \not\models \varphi\}))$
- ▶ that cannot be density
   ex: Q is dense in R, and R \ Q is also dense in R
- that can be largeness and meagerness!
  - a set *B* is nowhere dense if  $\overset{\circ}{\overline{B}} = \emptyset$ ,
  - ▶ a set *B* is meager if it is a countable union of nowhere dense sets,
  - ▶ a set *B* is large if its complement is meager.

VV06

Which notion of topology is suitable?

- ▶ we need a property *toto* such that if A is *toto*, then  $A^c$  is not *toto* (because  $\mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \models \varphi\}) = 1 \mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \not\models \varphi\}))$
- ▶ that cannot be density
   ex: Q is dense in R, and R < Q is also dense in R</li>
- that can be largeness and meagerness!
  - a set *B* is nowhere dense if  $\overline{B} = \emptyset$ ,
  - ▶ a set *B* is meager if it is a countable union of nowhere dense sets,
  - a set B is large if its complement is meager.

ex:  $\mathbb Q$  is meager and  $\mathbb R\smallsetminus \mathbb Q$  is large in  $\mathbb R$ 

VV06

Which notion of topology is suitable?

- ▶ we need a property *toto* such that if A is *toto*, then  $A^c$  is not *toto* (because  $\mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \models \varphi\}) = 1 \mathbb{P}(\{\varrho \in \operatorname{Runs}(s_0) \mid \varrho \not\models \varphi\}))$
- ▶ that cannot be density
   ex: Q is dense in R, and R \ Q is also dense in R
- that can be largeness and meagerness!
  - a set *B* is nowhere dense if  $\overline{B} = \emptyset$ ,
  - $\blacktriangleright$  a set *B* is meager if it is a countable union of nowhere dense sets,
  - ▶ a set *B* is large if its complement is meager.

**ex:**  $\mathbb{Q}$  is meager and  $\mathbb{R} \smallsetminus \mathbb{Q}$  is large in  $\mathbb{R}$ 

These notions are abstract but enjoy a very nice characterization using Banach-Mazur games!

VV06

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,

▶ if *O* is a non-empty open set, there exists  $B \in B$  s.t.  $B \subseteq O$ .

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

- ▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,
- if *O* is a non-empty open set, there exists  $B \in \mathcal{B}$  s.t.  $B \subseteq O$ .

We fix  $C \subseteq A$ . The game is then as follows:

• Player 1 picks some  $B_1 \in \mathcal{B}$ ,

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

- ▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,
- if *O* is a non-empty open set, there exists  $B \in \mathcal{B}$  s.t.  $B \subseteq O$ .

We fix  $C \subseteq A$ . The game is then as follows:

- Player 1 picks some  $B_1 \in \mathcal{B}$ ,
- ▶ Player 2 picks some  $B_2 \in B$  such that  $B_1 \supseteq B_2$ ,

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

- ▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,
- if O is a non-empty open set, there exists  $B \in \mathcal{B}$  s.t.  $B \subseteq O$ .

We fix  $C \subseteq A$ . The game is then as follows:

- Player 1 picks some  $B_1 \in \mathcal{B}$ ,
- ▶ Player 2 picks some  $B_2 \in B$  such that  $B_1 \supseteq B_2$ ,
- ▶ Player 1 picks some  $B_3 \in \mathcal{B}$  such that  $B_1 \supseteq B_2 \supseteq B_3$ ,

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

- ▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,
- if O is a non-empty open set, there exists  $B \in \mathcal{B}$  s.t.  $B \subseteq O$ .

We fix  $C \subseteq A$ . The game is then as follows:

- Player 1 picks some  $B_1 \in \mathcal{B}$ ,
- ▶ Player 2 picks some  $B_2 \in B$  such that  $B_1 \supseteq B_2$ ,
- ▶ Player 1 picks some  $B_3 \in \mathcal{B}$  such that  $B_1 \supseteq B_2 \supseteq B_3$ ,
- ▶ and so on... a sequence  $B_1 \supseteq B_2 \supseteq B_3 \supseteq B_4 \supseteq \cdots$  is constructed

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

- ▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,
- ▶ if *O* is a non-empty open set, there exists  $B \in B$  s.t.  $B \subseteq O$ .

We fix  $C \subseteq A$ . The game is then as follows:

- Player 1 picks some  $B_1 \in \mathcal{B}$ ,
- ▶ Player 2 picks some  $B_2 \in B$  such that  $B_1 \supseteq B_2$ ,
- ▶ Player 1 picks some  $B_3 \in \mathcal{B}$  such that  $B_1 \supseteq B_2 \supseteq B_3$ ,
- ▶ and so on... a sequence  $B_1 \supseteq B_2 \supseteq B_3 \supseteq B_4 \supseteq \cdots$  is constructed

Player 1 wins the game whenever  $\bigcap_{i=1}^{\infty} B_i \cap C \neq \emptyset$ . Otherwise Player 2 wins the game.

 $(A, \mathcal{T})$  topological space,  $\mathcal{B}$  a family of subsets of A such that:

- ▶ for all  $B \in \mathcal{B}$ ,  $\mathring{B} \neq \emptyset$ ,
- ▶ if *O* is a non-empty open set, there exists  $B \in B$  s.t.  $B \subseteq O$ .

We fix  $C \subseteq A$ . The game is then as follows:

- Player 1 picks some  $B_1 \in \mathcal{B}$ ,
- ▶ Player 2 picks some  $B_2 \in B$  such that  $B_1 \supseteq B_2$ ,
- ▶ Player 1 picks some  $B_3 \in \mathcal{B}$  such that  $B_1 \supseteq B_2 \supseteq B_3$ ,
- ▶ and so on... a sequence  $B_1 \supseteq B_2 \supseteq B_3 \supseteq B_4 \supseteq \cdots$  is constructed

Player 1 wins the game whenever  $\bigcap_{i=1}^{\infty} B_i \cap C \neq \emptyset$ . Otherwise Player 2 wins the game.

#### Theorems

- Banach-Mazur games are not determined.
- ▶ [Oxtoby57] Player 2 has a winning strategy iff *C* is meager.

• Classical topology on  $\mathbb{R}$ ,  $\mathcal{B} = \{ all non-empty intervals with rational bounds \}$ . Take C = (0, 1).

• Classical topology on  $\mathbb{R}$ ,  $\mathcal{B} = \{ all non-empty intervals with rational bounds \}$ . Take  $\mathcal{C} = (0, 1)$ .

Then Player 1 has a winning strategy! Hence, C is not meager.

• Classical topology on  $\mathbb{R}$ ,  $\mathcal{B} = \{ all non-empty intervals with rational bounds \}$ . Take  $\mathcal{C} = (0, 1)$ .

Then Player 1 has a winning strategy! Hence, C is not meager.

▶ Topological space 
$$(\mathbb{R}, \mathcal{T})$$
 with  
 $basis(\mathcal{T}) = \{\emptyset\} \cup \{(i, i + 2^{-n}) \mid i \in \mathbb{Z}, n \in \mathbb{N}\} \cup \{\mathbb{R}\},\$   
 $\mathcal{B} = basis(\mathcal{T}) \setminus \{\emptyset\}.$   
Take  $\mathcal{C} = (0, 1).$ 

• Classical topology on  $\mathbb{R}$ ,  $\mathcal{B} = \{ all non-empty intervals with rational bounds \}$ . Take  $\mathcal{C} = (0, 1)$ .

Then Player 1 has a winning strategy! Hence, C is not meager.

▶ Topological space 
$$(\mathbb{R}, \mathcal{T})$$
 with  
 $basis(\mathcal{T}) = \{\emptyset\} \cup \{(i, i + 2^{-n}) \mid i \in \mathbb{Z}, n \in \mathbb{N}\} \cup \{\mathbb{R}\},\$   
 $\mathcal{B} = basis(\mathcal{T}) \setminus \{\emptyset\}.$   
Take  $\mathcal{C} = (0, 1).$ 

Then Player 2 has a winning strategy! Hence, C is meager.



▶ There is no relation between open and meager sets.



- ▶ There is no relation between open and meager sets.
- A topological space where every non-empty open set is not meager is called a Baire space.

#### Some remarks

- ▶ There is no relation between open and meager sets.
- A topological space where every non-empty open set is not meager is called a Baire space.

**ex:**  $\mathbb{R}$  is a Baire space,  $\mathbb{Q}$  is not a Baire space.

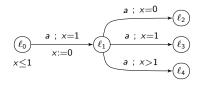
▶ Notion of dimension (on blackboard).

- ▶ Notion of dimension (on blackboard).
- ► This notion is region-invariant.

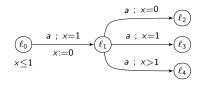
- Notion of dimension (on blackboard).
- This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.

- Notion of dimension (on blackboard).
- ► This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.
- ▶ NB: this topological space is a Baire space.

- Notion of dimension (on blackboard).
- This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.
- ▶ NB: this topological space is a Baire space.
- ex:

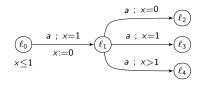


- Notion of dimension (on blackboard).
- This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.
- ▶ NB: this topological space is a Baire space.
- ex:



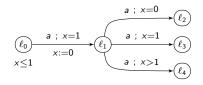
• only  $\pi_0$ ,  $\pi_1$  and  $\pi_4$  have a dimension, they are thus open sets,

- Notion of dimension (on blackboard).
- This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.
- ▶ NB: this topological space is a Baire space.
- ex:



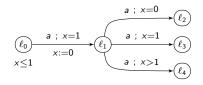
- ▶ only  $\pi_0$ ,  $\pi_1$  and  $\pi_4$  have a dimension, they are thus open sets,
- $\pi_2 \cup \pi_3$  is a closed set,

- Notion of dimension (on blackboard).
- This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.
- ▶ NB: this topological space is a Baire space.
- ex:



- only  $\pi_0$ ,  $\pi_1$  and  $\pi_4$  have a dimension, they are thus open sets,
- $\pi_2 \cup \pi_3$  is a closed set,
- $\pi_2$  is nowhere dense, and so is  $\pi_3$ ,

- Notion of dimension (on blackboard).
- This notion is region-invariant.
- We define a topology on a timed automaton, whose basic open sets are symbolic paths π such that dim(π) is defined and the set of all paths.
- ▶ NB: this topological space is a Baire space.
- ex:



- only  $\pi_0$ ,  $\pi_1$  and  $\pi_4$  have a dimension, they are thus open sets,
- $\pi_2 \cup \pi_3$  is a closed set,
- $\pi_2$  is nowhere dense, and so is  $\pi_3$ ,
- $\pi_2 \cup \pi_3$  is meager, and  $\pi_0 \cup \pi_1 \cup \pi_4$  is large.

## Probabilistic semantics vs topology

• If  $\pi$  is a symbolic path in  $R(\mathcal{A})$ , then

 $\mathbb{P}_{R(\mathcal{A})}(\pi) > 0 \Leftrightarrow \dim_{R(\mathcal{A})}(\pi)$  defined

## Probabilistic semantics vs topology

• If  $\pi$  is a symbolic path in  $R(\mathcal{A})$ , then

 $\mathbb{P}_{R(\mathcal{A})}(\pi) > 0 \Leftrightarrow \dim_{R(\mathcal{A})}(\pi)$  defined

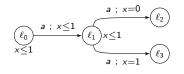
• If  $\pi$  is a symbolic path in  $\mathcal{A}$ ,  $\mathbb{P}_{\mathcal{A}}(\pi) = \sum_{\varsigma \in \iota(\pi)} \mathbb{P}_{\mathcal{R}(\mathcal{A})}(\varsigma)$ 

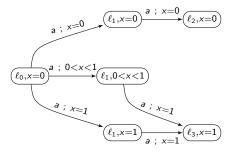
#### Probabilistic semantics vs topology

• If  $\pi$  is a symbolic path in  $R(\mathcal{A})$ , then

 $\mathbb{P}_{R(\mathcal{A})}(\pi) > 0 \Leftrightarrow \dim_{R(\mathcal{A})}(\pi)$  defined

• If  $\pi$  is a symbolic path in  $\mathcal{A}$ ,  $\mathbb{P}_{\mathcal{A}}(\pi) = \sum_{\varsigma \in \iota(\pi)} \mathbb{P}_{\mathcal{R}(\mathcal{A})}(\varsigma)$ 





# Probabilistic semantics vs topology (2)

#### Theorem

Let  ${\mathcal A}$  be a timed automaton,  ${\it s}_0$  a state of  ${\mathcal A},$  and  $\varphi$  an LTL formula. Then,

 $\begin{array}{lll} \mathcal{A}, s_0 \coloneqq_{\forall} \varphi & \stackrel{\mathrm{def}}{\Leftrightarrow} & \mathrm{w.r.t.} \ \mathbb{P}, \ \mathrm{almost} \ \mathrm{all} \ \mathrm{paths} \ \mathrm{from} \ s_0 \ \mathrm{in} \ \mathcal{A} \ \mathrm{satisfy} \ \varphi \\ \Leftrightarrow & \mathrm{the} \ \mathrm{paths} \ \mathrm{of} \ R(\mathcal{A}) \ \mathrm{from} \ s_0 \ \mathrm{not} \ \mathrm{satisfying} \ \varphi \ \mathrm{have} \ \mathrm{an} \\ & \mathrm{undefined} \ \mathrm{dimension} \\ \Leftrightarrow & \mathrm{the} \ \mathrm{set} \ \mathrm{of} \ \mathrm{paths} \ \mathrm{of} \ R(\mathcal{A}) \ \mathrm{from} \ s_0 \ \mathrm{satisfying} \ \varphi \ \mathrm{is} \\ & (\mathrm{topologically}) \ \mathrm{large} \end{array}$ 

(simple application of Banach-Mazur games)

# From an algorithmic point-of-view

#### Theorem

Over finite timed words, the almost-sure ( $\models_\forall$ ) and the positive ( $\models_\exists$ ) LTL model-checking problems over non-blocking timed automata are PSPACE-Complete.

#### Some remarks

 the probabilistic semantics can be defined for a larger class of systems, for instance hybrid systems with a finite bisimulation quotient

▶ Other "probabilistic and timed" (automata-)based models

- ▶ Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM [KNSS02]

- Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM
  - real-time probabilistic systems

[KNSS02] [ACD91,ACD92]

- Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM
  - real-time probabilistic systems
  - dense-time Markov chains

[KNSS02] [ACD91,ACD92] [BHHK03]

- Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM
  - real-time probabilistic systems
  - dense-time Markov chains

[KNSS02] [ACD91,ACD92] [BHHK03]

NB: our model is more general than dense-time Markov chains, and by slightly extending our model, our model becomes more general than probabilistic timed automata

Other "probabilistic and timed" (automata-)based models

- probabilistic timed automata à la PRISM
- real-time probabilistic systems
- dense-time Markov chains

NB: our model is more general than dense-time Markov chains, and by slightly extending our model, our model becomes more general than probabilistic timed automata

Labelled Markov processes over a continuum [DG.

[DGJP03,04]

[KNSS02]

[BHHK03]

[ACD91,ACD92]

- Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM
  - real-time probabilistic systems
  - dense-time Markov chains

NB: our model is more general than dense-time Markov chains, and by slightly extending our model, our model becomes more general than probabilistic timed automata

Labelled Markov processes over a continuum

[DGJP03,04]

[KNSS02]

[BHHK03]

[ACD91,ACD92]

Strong relation with robustness

- Other "probabilistic and timed" (automata-)based models
  - probabilistic timed automata à la PRISM
  - real-time probabilistic systems
  - dense-time Markov chains

NB: our model is more general than dense-time Markov chains, and by slightly extending our model, our model becomes more general than probabilistic timed automata

- Labelled Markov processes over a continuum [DGJP03,04]
- Strong relation with robustness
  - robust timed automata
     [GHJ97,HR00]
  - robust model-checking [Puri98,DDR04,DDMR04,ALM05,BMR06]

[KNSS02]

[BHHK03]

[ACD91,ACD92]

## Conclusions

#### Conclusion

- a probabilistic semantics for timed automata which removes "unlikely" events,
- qualitative model-checking has a topological interpretation,
- decidability of qualitative LTL model-checking.

## Conclusions

#### Conclusion

- a probabilistic semantics for timed automata which removes "unlikely" events,
- qualitative model-checking has a topological interpretation,
- decidability of qualitative LTL model-checking.

#### Further work

- extend to infinite paths,
- quantitative analysis,
- timed objectives,
- ▶ ...

## Conclusions

#### Conclusion

- a probabilistic semantics for timed automata which removes "unlikely" events,
- qualitative model-checking has a topological interpretation,
- decidability of qualitative LTL model-checking.

#### Further work

- extend to infinite paths,
- quantitative analysis,
- timed objectives,
- ▶ ...

#### Some possible improvements?

- handle accepting states,
- the normalization factor  $\frac{1}{2}$  is not completely satisfactory,
- discount time, not the number of transitions,

▶ ...

# Extension to infinite timed words

definition: straightforward extension to cylinders

non-trivial to decide...

## Extension to infinite timed words

definition: straightforward extension to cylinders

non-trivial to decide...

For one-clock timed automata,

- we can decide qualitative LTL model-checking
- we have properties like

 $\mathbb{P}(\text{Zeno behaviours}) = 0$ 

if the automaton is not "degenerated"