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Purpose of this work

Study stochastic real-time systems, and more generally stochastic
processes

... with a model-checking perspective

We want to design algorithms for verifying properties of
(complex) stochastic real-time systems!
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Models with time and probabilities

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS’99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR’00).
[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

[BKKR11] Brázdil, Krčal, Křet́ınský, Řehák. Fixed-delay events in generalized semi-Markov processes (CONCUR’11).
[DK05] D’Argenio, Katoen. Stochastic timed automata, Part I and Part II (Information and Computation).
[BDHK06] Bohnenkamp, D’Argenio, Hermanns, Katoen. MODEST: A compositional modeling formalism for hard and softly timed systems (IEEE
Trans. Software Engineering).

Models based on timed automata

Probabilistic timed automata [KNSS99]
; only discrete probabilities over edges

Continuous probabilistic timed automata [KNSS00]
; resets of clocks are randomized, but only few results

Stochastic timed automata [BBB+14]

Other related models

Continuous-time Markov chains (CTMCs)

Generalized semi-Markov processes (GSMPs) [BKKR11]

Process algebras (like Modest) [DK05,BDHK06]
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Stochastic timed automata (1)
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Stochastic timed automata (2)

What kind of questions can we ask?

Qualitative analysis: Does the STA almost-surely satisfy some
property?

Quantitative analysis: What is the probability for an STA to satisfy
some property?

5/17



Stochastic timed automata (2)

What kind of questions can we ask?

Qualitative analysis: Does the STA almost-surely satisfy some
property?

Quantitative analysis: What is the probability for an STA to satisfy
some property?

5/17



Stochastic timed automata (2)

What kind of questions can we ask?

Qualitative analysis: Does the STA almost-surely satisfy some
property?

Quantitative analysis: What is the probability for an STA to satisfy
some property?

5/17



Stochastic timed automata (3)

[BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (FSTTCS’07).

[BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (LICS’08).
[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST’08).
[BBJM12] Bouyer, Brihaye, Jurdźınski, Menet. Almost-sure model-checking of reactive timed automata (QEST’12).
[BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).
[BBBC16] Bertrand, Bouyer, Brihaye, Carlier. Analysing decisive stochastic processes (ICALP’16).
[BBBC17] Bertrand, Bouyer, Brihaye, Carlier. When are stochastic transition systems tameable? (submitted to JLAMP).

Historical overview

Almost-sure analysis of safety properties [BBBBG07]

Almost-sure analysis of ω-regular properties in one-clock timed
automata [BBBBG08]

Approximate analysis of ω-regular properties in (some) one-clock
timed automata [BBBM08]

Almost-sure analysis of ω-regular properties in reactive timed
automata [BBJM12]

Good properties of STA identified as fairness in the region
abstraction [BBB+14]

Good properties of STA identified as decisiveness properties
[BBBC16]

Abstract framework using attractors [BBBC17]
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Decisive Markov chains [ABM07]

[ABM07] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science), 2007.

Denumerable Markov chain M
B set of states

B̃ = {s state | s |= AG ¬B}
M decisive w.r.t. B if for every s, PM(s |= F B ∨ F B̃) = 1

Decisiveness ensured by the existence of a finite attractor

Finite attractor = finite set A such that for every state s, P(s |= F A) = 1
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Example

Approximation scheme for reachability properties

For every n ∈ N: ®
pYes
n = PM(F≤n B)

pNo
n = PM(¬B U≤n B̃)

Result

Assuming M is decisive w.r.t. B, the two sequences (pYes
n )n and

(1− pNo
n )n are adjacent and converge to PM(F B).
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How to extend this idea to a continuous state-space?
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More abstract model

Stochastic transition system T = (S ,Σ, κ)

(S ,Σ) a measurable space (more or less)

κ : S × Σ→ [0, 1] is the Markov kernel of T
for every s ∈ S , κ(s, ·) is a probability measure
for every A ∈ Σ, κ(·,A) is a measurable function

Examples

discrete Markov chains

continuous-time Markov chains

generalized semi-Markov processes

stochastic timed automata

...
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How to extend this idea to a continuous state-space?

Via an abstraction!

α

Notions of soundness and completeness can be formally defined

Sound and complete abstractions allow to transfer properties and
algorithms between the abstract and the concrete model.
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Main property α

Strong fairness result (†)
Assume that T1

α−→ T2, and that T2 is discrete.

Assume that A2 is a finite attractor of T2 such that α−1(A2) is an
attractor for T1.
Assume furthermore that there exists ε > 0 and k ∈ N such that for
every s2 ∈ A2, for every B2 ∈ Σ2, writing B1 = α−1(B2), for every
s1 ∈ α−1(s2):

either PT1 (s1 |= F B1) = 0

or PT1 (s1 |= F≤k B1) ≥ ε
Then this is really great!
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Why is that really great?

Hypothesis: T2 finite
or T2 denumerable satisfying some decisiveness properties

Nice properties which are satisfied

If (†) holds for T1 and T2:

T1 is decisive w.r.t. α-closed sets, and T2 is a sound α-abstraction!

One can decide qualitative (repeated) reachability properties in T1

One can approximate the probability of (repeated) reachability
properties in T1

If (†) holds for T1 nM and T2 nM (M: det. Muller automaton):

One can decide qualitative satisfaction of property M in T1

One can approximate the probability of satisfying property M in T1

... under effectiveness properties...
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Illustration α

T2 finite:

PT1nM(Inf ∈ F) =
∑

C F-good BSCC

of T2nM

PT1nM(F α−1(C ))

Results

PT1nM(Inf ∈ F) = 1 iff PT2nM(Inf ∈ F) = 1

Approx. algorithm for reachability properties can be applied to

T1 nM and
⋃

C F-good BSCC

of T2nM

α−1(C )
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Applications (1)

Stochastic timed automata (STA)

Which abstraction? The region automaton! (almost)

Single-clock STA satisfy (†) for the following attractor:

{(`, 0)} ∪ {(`, r) | ∀(`, r)→∗ (`′, r ′), r ′ = r}

Reactive STA satisfy (†) for the following attractor:

{(`, r) | ∀x , x = 0 or x > M in r}

Results

We recover all decidability/approximability results which were known
before...

... and even more!
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Applications (2)

[BKKR11] Brázdil, Krčal, Křet́ınský, Řehák. Fixed-delay events in generalized semi-Markov processes (CONCUR’11).

Generalized semi-Markov processes (GSMPs)

Which abstraction? The region automaton! (almost)

Single-ticking GSMPs [BKKR11] satisfy (†) for the following
attractor:

{(`, v) | v is ε-separated}

(ε has to be small)

Results

We find decidability/approximability results
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Conclusion
A generic approach to the analysis of continuous stochastic systems

Algorithms for qualitative analysis
Approximation schemes for quantitative analysis

Has been successfully applied to classes of stochastic real-time
systems

Abstraction = the one used for the underlying non-stochastic
real-time systems

Further work
Application to more classes of systems

Try to fit existing approximation results in our context
Further examples: timed lossy channel systems

Convergence speed of the approximation schemes

Extend to systems with non-determinism (and more...)

Compositional approach

17/17



Conclusion
A generic approach to the analysis of continuous stochastic systems

Algorithms for qualitative analysis
Approximation schemes for quantitative analysis

Has been successfully applied to classes of stochastic real-time
systems

Abstraction = the one used for the underlying non-stochastic
real-time systems

Further work
Application to more classes of systems

Try to fit existing approximation results in our context
Further examples: timed lossy channel systems

Convergence speed of the approximation schemes

Extend to systems with non-determinism (and more...)

Compositional approach

17/17


