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@ Study stochastic real-time systems, and more generally stochastic
processes

@ ... with a model-checking perspective

We want to design algorithms for verifying properties of
(complex) stochastic real-time systems! J
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Models with time and probabilities

Models based on timed automata

@ Probabilistic timed automata [KNSS99]
~ only discrete probabilities over edges
o Continuous probabilistic timed automata [KNSSO0Q]
~ resets of clocks are randomized, but only few results

@ Stochastic timed automata [BBB-+14]

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99).
[KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR'00).
[BBB-+14] Bertrand, Bouyer, Brihaye, Menet, Baier, GroBer, Jurdzifiski. Stochastic timed automata (Logical Methods in Computer Science).
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repair
2<yAX<56
y:=0

From state s = (¢, v):
@ randomly choose a delay s'—s
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Stochastic timed automata (2)

What kind of questions can we ask?

e Qualitative analysis: Does the STA almost-surely satisfy some
property?

o Quantitative analysis: What is the probability for an STA to satisfy
some property?
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Stochastic timed automata (3)

Historical overview
o Almost-sure analysis of safety properties [BBBBGO07]

[BBBBGO7] Baier, Bertrand, Bouyer, Brihaye, GréBer. Probabilistic and topological semantics for timed automata (FSTTCS'07).
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@ Good properties of STA identified as fairness in the region
abstraction [BBB-+14]
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@ Abstract framework using attractors [BBBC17]
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Decisive Markov chains [ABMO07]

Denumerable Markov chain M
@ B set of states
o B={sstate | s =AG-B}
o M decisive w.rt. B if for every s, P;y(s = FBVFB) =1

[ABMO7] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science), 2007.
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Decisive Markov chains [ABMO07]

Denumerable Markov chain M
@ B set of states
o B={sstate | s =AG-B}
o M decisive w.rt. B if for every s, P;y(s = FBVFB) =1

@ Finite Markov chains are decisive
@ Diverging random walks are not decisive w.r.t. finite sets of positions

@ Markov chains generated by stochastic lossy channel systems are
decisive w.r.t. every set of configurations

[ABMO7] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science), 2007.
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What are they good for?
Provided they satisfy nice effectiveness properties:

@ one can decide almost-sure satisfaction of (repeated) reachability
properties

@ one can design approximation schemes for (repeated) reachability
properties

[ABMO7] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science), 2007.
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Decisive Markov chains [ABMO07]

Denumerable Markov chain M
@ B set of states
o B={sstate | s =AG-B}
o M decisive w.rt. B if for every s, P;y(s = FBVFB) =1

Decisiveness ensured by the existence of a finite attractor )

@ Finite attractor = finite set A such that for every state s, P(s E FA) =1

[ABMO7] Abdulla, Ben Henda, Mayr. Decisive Markov chains (Logical Methods in Computer Science), 2007.
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8/17



Example /I//E\\I\.
N

Approximation scheme for reachability properties
For every n € N:

Py Prm(F<nB)
p,’)lo = ]PM(—\B US" B)

Result

Assuming M is decisive w.r.t. B, the two sequences (pY**), and

n

(1 — pN°),, are adjacent and converge to Pp(F B).
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More abstract model

Stochastic transition system 7 = (S, %, k)

@ (5,X) a measurable space
@ k:S XX —|[0,1] is the Markov kernel of T

o for every s € S, k(s, ) is a probability measure
o for every A € X, (-, A) is a measurable function
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@ (5,X) a measurable space
@ k:S XX —|[0,1] is the Markov kernel of T

o for every s € S, k(s, ) is a probability measure
o for every A € X, (-, A) is a measurable function

Examples
discrete Markov chains
continuous-time Markov chains

o
°
o generalized semi-Markov processes
@ stochastic timed automata

o
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How to extend this idea to a continuous state-space?

Via an abstraction!

«
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@ Notions of soundness and completeness can be formally defined

@ Sound and complete abstractions allow to transfer properties and
algorithms between the abstract and the concrete model.
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Strong fairness result (1)
Assume that 73 = 73, and that 75 is discrete.
Assume that A; is a finite attractor of 7T, such that a~1(Ay) is an
attractor for 7.
Assume furthermore that there exists € > 0 and k € N such that for
every s, € A, for every B, € Y5, writing By = a‘l(Bg), for every
s1 € a (s):

o either Pr;(ss EF B1) =0

o or Pri(s1 EF<kB1) > ¢
Then this is really great!
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Why is that really great?

Nice properties which are satisfied
If (1) holds for 71 and T5:
@ 71 is decisive w.r.t. a-closed sets, and 75 is a sound «-abstraction!
@ One can decide qualitative (repeated) reachability properties in 71
@ One can approximate the probability of (repeated) reachability
properties in Ty
If (1) holds for 71 x M and T, X M (M: det. Muller automaton):

@ One can decide qualitative satisfaction of property M in 71

@ One can approximate the probability of satisfying property M in Ty
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T> finite:
Prwm(Inf € F) = > P7 e m(F a™2(C))
C F-good BSCC
of Tax M
Results

o Prum(Infe F)=1iff Prum(Infe F)=1
@ Approx. algorithm for reachability properties can be applied to
T1 x M and U a1(C)

C F-good BSCC
of Tax M
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@ Reactive STA satisfy (1) for the following attractor:

{(,r) |Vx, x=00r x> Min r}

Results

o We recover all decidability /approximability results which were known
before...

@ ... and even more!
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Applications (2)

Generalized semi-Markov processes (GSMPs)

@ Which abstraction? The region automaton!
o Single-ticking GSMPs [BKKR11] satisfy (1) for the following
attractor:
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[BKKR11] Brézdil, Kréal, Kretinsky, Rehdk. Fixed-delay events in generalized semi-Markov processes (CONCUR'11).
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Conclusion

@ A generic approach to the analysis of continuous stochastic systems
o Algorithms for qualitative analysis
o Approximation schemes for quantitative analysis

@ Has been successfully applied to classes of stochastic real-time
systems
o Abstraction = the one used for the underlying non-stochastic
real-time systems

Further work

@ Application to more classes of systems

e Try to fit existing approximation results in our context
o Further examples: timed lossy channel systems

@ Convergence speed of the approximation schemes

o Extend to systems with non-determinism (and more...)

o Compositional approach
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