Stochastic timed automata and beyond

Patricia Bouyer

LSV, CNRS & ENS Paris-Saclay, France

Joint work with Nathalie Bertrand, Thomas Brihaye, Pierre Carlier

Purpose of this work

- Study stochastic real-time systems, and more generally stochastic processes
- ... with a model-checking perspective

Purpose of this work

- Study stochastic real-time systems, and more generally stochastic processes
- ... with a model-checking perspective

We want to design algorithms for verifying properties of (complex) stochastic real-time systems!

Models with time and probabilities

Models based on timed automata

- Probabilistic timed automata [KNSS99]
 → only discrete probabilities over edges
- Continuous probabilistic timed automata [KNSS00]
 → resets of clocks are randomized, but only few results
- Stochastic timed automata [BBB+14]

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99). [KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR'00). [BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

Models with time and probabilities

Models based on timed automata

- Probabilistic timed automata [KNSS99]
 → only discrete probabilities over edges
- Continuous probabilistic timed automata [KNSS00]
 → resets of clocks are randomized, but only few results
- Stochastic timed automata [BBB+14]

Other related models

- Continuous-time Markov chains (CTMCs)
- Generalized semi-Markov processes (GSMPs) [BKKR11]
- Process algebras (like Modest) [DK05,BDHK06]

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99). [KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR'00). [BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science). [BKKR11] Brázdil, Krčal, Křetinský, Řehák. Fixed-delay events in generalized semi-Markov processes (CONCUR'11). [DK05] D'Argenio, Katoen. Stochastic timed automata, Part I and Part II (Information and Computation). [BDHK06] Bohnenkamp, D'Argenio, Hermanns, Katoen. MODEST: A compositional modeling formalism for hard and softly timed systems (IEEE Trans. Software Engineering).

Models with time and probabilities

Models based on timed automata

- Probabilistic timed automata [KNSS99]
 → only discrete probabilities over edges
- Continuous probabilistic timed automata [KNSS00]
 → resets of clocks are randomized, but only few results
- Stochastic timed automata [BBB+14]

Other related models

- Continuous-time Markov chains (CTMCs)
- Generalized semi-Markov processes (GSMPs) [BKKR11]
- Process algebras (like Modest) [DK05,BDHK06]

[KNSS99] Kwiatkowska, Norman, Segala, Sproston. Automatic verification of real-time systems with discrete probability distributions (ARTS'99). [KNSS00] Kwiatkowska, Norman, Segala, Sproston. Verifying quantitative properties of continuous probabilistic timed automata (CONCUR'00). [BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science). [BKKR11] Brázdil, Krčal, Křetínský, Řehák. Fixed-delay events in generalized semi-Markov processes (CONCUR'11). [DK05] D'Argenio, Katoen. Stochastic timed automata, Part I and Part II (Information and Computation). [BDHK06] Bohnenkamp, D'Argenio, Hermanns, Katoen. MODEST: A compositional modeling formalism for hard and softly timed systems (IEEE Trans. Software Engineering).

From state $s = (\ell, v)$:

From state $s = (\ell, v)$:

- randomly choose a delay
- then randomly select an edge
- then continue

What kind of questions can we ask?

What kind of questions can we ask?

• Qualitative analysis: Does the STA almost-surely satisfy some property?

What kind of questions can we ask?

- Qualitative analysis: Does the STA almost-surely satisfy some property?
- Quantitative analysis: What is the probability for an STA to satisfy some property?

Historical overview

• Almost-sure analysis of safety properties [BBBBG07]

[BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (FSTTCS'07).

Historical overview

- Almost-sure analysis of safety properties [BBBBG07]
- Almost-sure analysis of ω -regular properties in one-clock timed automata [BBBBG08]

[BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (FSTTCS'07). [BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (LICS'08).

Historical overview

- Almost-sure analysis of safety properties [BBBBG07]
- Almost-sure analysis of ω -regular properties in one-clock timed automata [BBBBG08]
- Approximate analysis of ω -regular properties in (some) one-clock timed automata [BBBM08]

[BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (*FSTTCS'07*). [BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (*LICS'08*). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (*QEST'08*).

Historical overview

- Almost-sure analysis of safety properties [BBBBG07]
- Almost-sure analysis of ω -regular properties in one-clock timed automata [BBBBG08]
- Approximate analysis of ω -regular properties in (some) one-clock timed automata [BBBM08]
- Almost-sure analysis of ω -regular properties in reactive timed automata [BBJM12]

[[]BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (*FSTTCS'07*). [BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (*LICS'08*). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (*QEST'08*). [BBJM12] Bouyer. Brihaye. Jurdzinski. Menet. Almost-sure model-checking of reactive timed automata (*DEST'12*).

Historical overview

- Almost-sure analysis of safety properties [BBBBG07]
- Almost-sure analysis of ω -regular properties in one-clock timed automata [BBBBG08]
- Approximate analysis of ω -regular properties in (some) one-clock timed automata [BBBM08]
- Almost-sure analysis of ω -regular properties in reactive timed automata [BBJM12]
- Good properties of STA identified as fairness in the region abstraction [BBB+14]

[[]BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (FSTTCS'07).

[[]BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (LICS'08).

[[]BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).

[[]BBJM12] Bouyer, Brihaye, Jurdzínski, Menet. Almost-sure model-checking of reactive timed automata (QEST'12).

[[]BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

Historical overview

- Almost-sure analysis of safety properties [BBBBG07]
- Almost-sure analysis of ω -regular properties in one-clock timed automata [BBBBG08]
- Approximate analysis of ω -regular properties in (some) one-clock timed automata [BBBM08]
- Almost-sure analysis of ω -regular properties in reactive timed automata [BBJM12]
- Good properties of STA identified as fairness in the region abstraction [BBB+14]
- Good properties of STA identified as decisiveness properties [BBBC16]

[[]BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (FSTTCS'07).

[[]BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (LICS'08).

[[]BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08). [BBJM12] Bouver, Brihaye, Jurdzínski, Menet. Almost-sure model-checking of reactive timed automata (QEST'12).

[[]BBB+14] Bertrand, Bouyer, Brihaye, Menet, Baier, Größer, Jurdziński. Stochastic timed automata (Logical Methods in Computer Science).

[[]BBBC16] Bertrand, Bouyer, Brihaye, Carlier. Analysing decisive stochastic processes (ICALP'16).

Historical overview

- Almost-sure analysis of safety properties [BBBBG07]
- Almost-sure analysis of ω -regular properties in one-clock timed automata [BBBBG08]
- Approximate analysis of ω -regular properties in (some) one-clock timed automata [BBBM08]
- Almost-sure analysis of ω -regular properties in reactive timed automata [BBJM12]
- Good properties of STA identified as fairness in the region abstraction [BBB+14]
- Good properties of STA identified as decisiveness properties [BBBC16]
- Abstract framework using attractors [BBBC17]

[BBBBG07] Baier, Bertrand, Bouyer, Brihaye, Größer. Probabilistic and topological semantics for timed automata (FSTTCS'07).
 [BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model-checking of infinite paths in one-clock timed automata (LICS'08).
 [BBBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
 [BBJM12] Bouyer, Brihaye, Jurdzinski, Menet. Almost-sure model-checking of reactive timed automata (QEST'12).
 [BBB14] Bertrand, Bouyer, Brihaye, Markey. Audent: Almost-sure model-checking of reactive timed automata (Logical Methods in Computer Science).
 [BBBC16] Bertrand, Bouyer, Brihaye, Carlier. Analysing decisive stochastic processes (ICALP'16).
 [BBBC17] BBBC17] Bertrand, Bouyer, Brihaye, Carlier. When are stochastic transition systems tameable? (submitted to JLAMP).

Denumerable Markov chain \mathcal{M}

• B set of states

•
$$\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$$

• \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} \ B \lor \mathbf{F} \ B) = 1$

Denumerable Markov chain \mathcal{M}

- B set of states
- $\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$
- \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} \ B \lor \mathbf{F} \ \widetilde{B}) = 1$

• Finite Markov chains are decisive

Denumerable Markov chain \mathcal{M}

- B set of states
- $\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$
- \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} \ B \lor \mathbf{F} \ \widetilde{B}) = 1$
- Finite Markov chains are decisive
- Diverging random walks are not decisive w.r.t. finite sets of positions

Denumerable Markov chain \mathcal{M}

- B set of states
- $\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$
- \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} \ B \lor \mathbf{F} \ \widetilde{B}) = 1$
- Finite Markov chains are decisive
- Diverging random walks are not decisive w.r.t. finite sets of positions
- Markov chains generated by stochastic lossy channel systems are decisive w.r.t. every set of configurations

Denumerable Markov chain \mathcal{M}

- B set of states
- $\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$
- \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} \ B \lor \mathbf{F} \ \widetilde{B}) = 1$

What are they good for?

Provided they satisfy nice effectiveness properties:

• one can decide almost-sure satisfaction of (repeated) reachability properties

Denumerable Markov chain \mathcal{M}

- B set of states
- $\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$
- \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} \ B \lor \mathbf{F} \ \widetilde{B}) = 1$

What are they good for?

Provided they satisfy nice effectiveness properties:

- one can decide almost-sure satisfaction of (repeated) reachability properties
- one can design approximation schemes for (repeated) reachability properties

Denumerable Markov chain \mathcal{M}

- B set of states
- $\widetilde{B} = \{s \text{ state } \mid s \models \mathbf{A} \mathbf{G} \neg B\}$
- \mathcal{M} decisive w.r.t. B if for every s, $\mathbb{P}_{\mathcal{M}}(s \models \mathbf{F} B \lor \mathbf{F} B) = 1$

Decisiveness ensured by the existence of a finite attractor

• Finite attractor = finite set A such that for every state s, $\mathbb{P}(s \models \mathbf{F} A) = 1$

Example

Approximation scheme for reachability properties For every $n \in \mathbb{N}$:

$$\begin{cases} p_n^{\text{Yes}} &= \mathbb{P}_{\mathcal{M}}(\mathbf{F}_{\leq n} B) \\ p_n^{\text{No}} &= \mathbb{P}_{\mathcal{M}}(\neg B \ \mathbf{U}_{\leq n} \ \widetilde{B}) \end{cases}$$

Example

Approximation scheme for reachability properties For every $n \in \mathbb{N}$:

Result

Assuming \mathcal{M} is decisive w.r.t. B, the two sequences $(p_n^{\text{Yes}})_n$ and $(1 - p_n^{\text{No}})_n$ are adjacent and converge to $\mathbb{P}_{\mathcal{M}}(\mathbf{F} B)$.

More abstract model

Stochastic transition system $\mathcal{T} = (S, \Sigma, \kappa)$

- (S, Σ) a measurable space (more or less)
- $\kappa: S imes \Sigma o [0,1]$ is the Markov kernel of $\mathcal T$
 - for every $s \in S$, $\kappa(s, \cdot)$ is a probability measure
 - for every $A \in \Sigma$, $\kappa(\cdot, A)$ is a measurable function

More abstract model

Stochastic transition system $\mathcal{T} = (S, \Sigma, \kappa)$

- (S, Σ) a measurable space (more or less)
- $\kappa: S imes \Sigma o [0,1]$ is the Markov kernel of $\mathcal T$
 - for every $s \in S$, $\kappa(s, \cdot)$ is a probability measure
 - for every $A \in \Sigma$, $\kappa(\cdot, A)$ is a measurable function

Examples

- discrete Markov chains
- continuous-time Markov chains
- generalized semi-Markov processes
- stochastic timed automata
- ...

Via an abstraction!

Via an abstraction!

• Notions of soundness and completeness can be formally defined

Via an abstraction!

- Notions of soundness and completeness can be formally defined
- Sound and complete abstractions allow to transfer properties and algorithms between the abstract and the concrete model.

Strong fairness result (†)

Assume that $\mathcal{T}_1 \xrightarrow{\alpha} \mathcal{T}_2$, and that \mathcal{T}_2 is discrete.

Strong fairness result (†)

Assume that $\mathcal{T}_1 \xrightarrow{\alpha} \mathcal{T}_2$, and that \mathcal{T}_2 is discrete. Assume that A_2 is a finite attractor of \mathcal{T}_2 such that $\alpha^{-1}(A_2)$ is an attractor for \mathcal{T}_1 .

Strong fairness result (†)

Assume that $\mathcal{T}_1 \xrightarrow{\alpha} \mathcal{T}_2$, and that \mathcal{T}_2 is discrete.

Assume that A_2 is a finite attractor of \mathcal{T}_2 such that $\alpha^{-1}(A_2)$ is an attractor for \mathcal{T}_1 .

Assume furthermore that there exists $\epsilon > 0$ and $k \in \mathbb{N}$ such that for every $s_2 \in A_2$, for every $B_2 \in \Sigma_2$, writing $B_1 = \alpha^{-1}(B_2)$, for every $s_1 \in \alpha^{-1}(s_2)$:

- either $\mathbb{P}_{\mathcal{T}_1}(s_1 \models \mathbf{F} B_1) = 0$
- or $\mathbb{P}_{\mathcal{T}_1}(s_1 \models \mathbf{F}_{\leq k} B_1) \geq \epsilon$

Strong fairness result (†)

Assume that $\mathcal{T}_1 \xrightarrow{\alpha} \mathcal{T}_2$, and that \mathcal{T}_2 is discrete.

Assume that A_2 is a finite attractor of \mathcal{T}_2 such that $\alpha^{-1}(A_2)$ is an attractor for \mathcal{T}_1 .

Assume furthermore that there exists $\epsilon > 0$ and $k \in \mathbb{N}$ such that for every $s_2 \in A_2$, for every $B_2 \in \Sigma_2$, writing $B_1 = \alpha^{-1}(B_2)$, for every $s_1 \in \alpha^{-1}(s_2)$:

• either $\mathbb{P}_{\mathcal{T}_1}(s_1 \models \mathbf{F} B_1) = 0$

• or
$$\mathbb{P}_{\mathcal{T}_1}(s_1 \models \mathsf{F}_{\leq k} B_1) \geq \epsilon$$

Then this is really great!

Hypothesis: T_2 finite

- or T_2 denumerable satisfying some decisiveness properties

<u>Hypothesis:</u> \mathcal{T}_2 finite or \mathcal{T}_2 denumerable satisfying some decisiveness properties

Nice properties which are satisfied If (†) holds for T_1 and T_2 :

 $\begin{array}{ccc} \underline{\text{Hypothesis:}} & \mathcal{T}_2 \text{ finite} \\ & \text{or} & \mathcal{T}_2 \text{ denumerable satisfying some decisiveness properties} \end{array}$

Nice properties which are satisfied

- If (†) holds for \mathcal{T}_1 and \mathcal{T}_2 :
 - \mathcal{T}_1 is decisive w.r.t. α -closed sets, and \mathcal{T}_2 is a sound α -abstraction!

 $\begin{array}{ccc} \underline{\text{Hypothesis:}} & \mathcal{T}_2 \text{ finite} \\ \text{or} & \mathcal{T}_2 \text{ denumerable satisfying some decisiveness properties} \end{array}$

Nice properties which are satisfied

- If (†) holds for \mathcal{T}_1 and \mathcal{T}_2 :
 - \mathcal{T}_1 is decisive w.r.t. α -closed sets, and \mathcal{T}_2 is a sound α -abstraction!
 - $\bullet\,$ One can decide qualitative (repeated) reachability properties in \mathcal{T}_1

... under effectiveness properties...

 $\begin{array}{ccc} \underline{\text{Hypothesis:}} & \mathcal{T}_2 \text{ finite} \\ \text{or} & \mathcal{T}_2 \text{ denumerable satisfying some decisiveness properties} \end{array}$

Nice properties which are satisfied

- If (†) holds for \mathcal{T}_1 and \mathcal{T}_2 :
 - \mathcal{T}_1 is decisive w.r.t. α -closed sets, and \mathcal{T}_2 is a sound α -abstraction!
 - $\bullet\,$ One can decide qualitative (repeated) reachability properties in \mathcal{T}_1
 - \bullet One can approximate the probability of (repeated) reachability properties in \mathcal{T}_1

... under effectiveness properties...

 $\begin{array}{ccc} \underline{\text{Hypothesis:}} & \mathcal{T}_2 \text{ finite} \\ \text{or} & \mathcal{T}_2 \text{ denumerable satisfying some decisiveness properties} \end{array}$

Nice properties which are satisfied

- If (†) holds for \mathcal{T}_1 and \mathcal{T}_2 :
 - \mathcal{T}_1 is decisive w.r.t. α -closed sets, and \mathcal{T}_2 is a sound α -abstraction!
 - $\bullet\,$ One can decide qualitative (repeated) reachability properties in \mathcal{T}_1
 - \bullet One can approximate the probability of (repeated) reachability properties in \mathcal{T}_1
- If (†) holds for $\mathcal{T}_1 \ltimes \mathcal{M}$ and $\mathcal{T}_2 \ltimes \mathcal{M}$ (\mathcal{M} : det. Muller automaton):
 - \bullet One can decide qualitative satisfaction of property ${\cal M}$ in ${\cal T}_1$
 - \bullet One can approximate the probability of satisfying property ${\cal M}$ in ${\cal T}_1$

... under effectiveness properties...

Illustration

 \mathcal{T}_2 finite:

 $\mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = \sum_{\mathcal{T}_1 \ltimes \mathcal{M}} \mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{F} \; \alpha^{-1}(\mathcal{C}))$

 $\begin{array}{c} \mathcal{C} \ \, \mathcal{F}\text{-good} \ \, \mathsf{BSCC} \\ \text{of} \ \, \mathcal{T}_2 \ltimes \mathcal{M} \end{array}$

 \mathcal{T}_2 finite:

$$\mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = \sum_{C \ \mathcal{F} \text{-good BSCC}} \mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathbf{F} \ \alpha^{-1}(C))$$

of $\mathcal{T}_2 \ltimes \mathcal{M}$

Results

• $\mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = 1$ iff $\mathbb{P}_{\mathcal{T}_2 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = 1$

 \mathcal{T}_2 finite:

$$\mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = \sum_{C \ \mathcal{F} \text{-good BSCC}} \mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{F} \ \alpha^{-1}(C))$$

of $\mathcal{T}_2 \ltimes \mathcal{M}$

Results

- $\mathbb{P}_{\mathcal{T}_1 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = 1$ iff $\mathbb{P}_{\mathcal{T}_2 \ltimes \mathcal{M}}(\mathsf{Inf} \in \mathcal{F}) = 1$
- Approx. algorithm for reachability properties can be applied to $\mathcal{T}_1 \ltimes \mathcal{M}$ and $\bigcup \quad \alpha^{-1}(\mathcal{C})$

 $\begin{array}{c} {\it C} \ {\cal F}\text{-good} \ {\sf BSCC} \\ \text{of} \ {\cal T}_2 \ltimes {\cal M} \end{array}$

Stochastic timed automata (STA)

• Which abstraction? The region automaton! (almost)

Stochastic timed automata (STA)

- Which abstraction? The region automaton! (almost)
- Single-clock STA satisfy (†) for the following attractor:

 $\{(\ell,0)\} \cup \{(\ell,r) \mid \forall (\ell,r) \rightarrow^* (\ell',r'), \ r'=r\}$

Stochastic timed automata (STA)

- Which abstraction? The region automaton! (almost)
- Single-clock STA satisfy (†) for the following attractor:

$$\{(\ell,0)\} \cup \{(\ell,r) \mid \forall (\ell,r) \rightarrow^* (\ell',r'), r'=r\}$$

• Reactive STA satisfy (†) for the following attractor:

$$\{(\ell, r) \mid \forall x, \ x = 0 \text{ or } x > M \text{ in } r\}$$

Stochastic timed automata (STA)

- Which abstraction? The region automaton! (almost)
- Single-clock STA satisfy (†) for the following attractor:

$$\{(\ell,0)\} \cup \{(\ell,r) \mid \forall (\ell,r) \rightarrow^* (\ell',r'), \ r'=r\}$$

• Reactive STA satisfy (†) for the following attractor:

$$\{(\ell, r) \mid \forall x, \ x = 0 \text{ or } x > M \text{ in } r\}$$

Results

• We recover all decidability/approximability results which were known before...

Stochastic timed automata (STA)

- Which abstraction? The region automaton! (almost)
- Single-clock STA satisfy (†) for the following attractor:

$$\{(\ell,0)\} \cup \{(\ell,r) \mid \forall (\ell,r) \rightarrow^* (\ell',r'), \ r'=r\}$$

• Reactive STA satisfy (†) for the following attractor:

$$\{(\ell, r) \mid \forall x, \ x = 0 \text{ or } x > M \text{ in } r\}$$

Results

- We recover all decidability/approximability results which were known before...
- ... and even more!

Generalized semi-Markov processes (GSMPs)

- Which abstraction? The region automaton! (almost)
- Single-ticking GSMPs [BKKR11] satisfy (†) for the following attractor:

 $\{(\ell, v) \mid v \text{ is } \epsilon \text{-separated}\}$

```
(\epsilon has to be small)
```

Generalized semi-Markov processes (GSMPs)

- Which abstraction? The region automaton! (almost)
- Single-ticking GSMPs [BKKR11] satisfy (†) for the following attractor:

 $\{(\ell, v) \mid v \text{ is } \epsilon \text{-separated}\}$

(ϵ has to be small)

Results

• We find decidability/approximability results

Conclusion

- A generic approach to the analysis of continuous stochastic systems
 - Algorithms for qualitative analysis
 - Approximation schemes for quantitative analysis
- Has been successfully applied to classes of stochastic real-time systems
 - Abstraction = the one used for the underlying non-stochastic real-time systems

Conclusion

- A generic approach to the analysis of continuous stochastic systems
 - Algorithms for qualitative analysis
 - Approximation schemes for quantitative analysis
- Has been successfully applied to classes of stochastic real-time systems
 - Abstraction = the one used for the underlying non-stochastic real-time systems

Further work

- Application to more classes of systems
 - Try to fit existing approximation results in our context
 - Further examples: timed lossy channel systems
- Convergence speed of the approximation schemes
- Extend to systems with non-determinism (and more...)
- Compositional approach