Nash Equilibria in Timed Games
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This talk is based on joint works with Romain Brenguier and Nicolas Markey
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The context

e Context: formal verification of systems

e Why timed systems?

e to model time-constrained systems (eg embedded systems)
o to model systems running in real-time (for instance GPS)
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An example of a timed automaton
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Why (timed) games?

@ to model uncertainty

Example of a processor

x=2 x=3
done done
=) x:=0 x:=0 ( )

x<3
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The context
Why (timed) games?
@ to model uncertainty

Example of a processor

done done
Gl\add/.\mult/@

(x<3)

@ to model an interaction with an environment

Example of the gate in the train/gate example

OpenGate
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Control (two-player) timed games

Rule of the game

@ Aim (for the controller): avoid @
and reach ©

x<1,up,x:=0
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The context

Control (two-player) timed games

Rule of the game

@ Aim (for the controller): avoid @
and reach ©

@ How do we play? According to
strategies

x<1,up,x:=0

f : history —>(delay, cont. transition)

v

What we are computing here
@ (simple) worst-case winning
strategies

@ should win against any strategy of
the opponent
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The context

A short visit to control (two-player) timed games

Theorem [AMPS98,HK99,...]

For w-regular objectives, it is decidable whether the controller has a
winning strategy. It is EXPTIME-complete for safety and reachability
objectives.

~ classical regions are sufficient to solve those games
(we can for instance compute the so-called attractor)

[AMPS08] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
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The context

A short visit to control (two-player) timed games

Theorem [AMPS98,HK99,...]

For w-regular objectives, it is decidable whether the controller has a
winning strategy. It is EXPTIME-complete for safety and reachability
objectives.

~ classical regions are sufficient to solve those games
(we can for instance compute the so-called attractor)

Winning states Losing states
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Outline

2. Multiplayer timed games
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Multiplayer timed games

Multi-agent systems

@ Why multi-agent systems?
o development of distributed systems (distributed scheduling problems,
power control problems, mobile systems, ...)
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Multiplayer timed games

Multi-agent systems

@ Why multi-agent systems?

o development of distributed systems (distributed scheduling problems,
power control problems, mobile systems, ...)

@ How can we model those systems?

o with distributed automata
o with multiplayer games
o ...
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e Each player plays according to standard strategies (which specify
moves at each step)

@ Once all moves are given, the shortest delay is chosen and a
corresponding transition is non-deterministically selected
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Multiplayer timed games

As a natural extension of two-player timed games:

How do we play those games?

e Each player plays according to standard strategies (which specify
moves at each step)

@ Once all moves are given, the shortest delay is chosen and a
corresponding transition is non-deterministically selected

~> They are infinite-state non-deterministic concurrent games
Strategies are assumed to be pure (i.e. not stochastic)
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Multiplayer timed games

As a natural extension of two-player timed games:

\ v y=1
\ A}
N .
x>2 N M
2 SOy
x:=0 s x<1, y

What is the aim of the game?

@ Each player has her own objective (via a preference relation or a
payoff function).
NB: qualitative objective = 0/1 payoff function

@ The notions of winning strategies are no more relevant, as those
games are not zero-sum

@ The players should play rationally, for instance according to equilibria
(eg Nash equilibria, subgame-perfect equilibria, secure equilibria, ...)

4
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Multiplayer timed games

Nash equilibria

Definition
A strategy profile (0;)a;eagt is @ Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.
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Multiplayer timed games

Nash equilibria (in deterministic games)

Definition
A strategy profile (0;)a;eagt is @ Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

Example

O

@
0/.3

is a Nash equilibrium with payoff (0,1, 0)
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Multiplayer timed games

Nash equilibria (in deterministic games)

Definition
A strategy profile (0;)a;eagt is @ Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

Example

D~O/:2
0\.3

is not a Nash equilibrium

11/30



Multiplayer timed games

Nash equilibria (in non-deterministic games)

Definition
A strategy profile (0;)a;eagt is @ Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

What if there are several outcomes due to non-determinism? }
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Nash equilibria (in non-deterministic games)

Definition
A strategy profile (0;)a;eagt is @ Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

What if there are several outcomes due to non-determinism? )

Definition

A pair ((0j)a;eagt; T) is @ pseudo-Nash equilibrium if 7 is an outcome
of (0j)a;eagt and no player can improve her payoff by unilaterally
changing her strategy (i.e., no outcome improves the payoff of ).
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Multiplayer timed games

Nash equilibria (in non-deterministic games)

Definition

A pair ((0j)a;eagt; T) is a pseudo-Nash equilibrium if 7 is an outcome
of (0j)a,eagt and no player can improve her payoff by unilaterally
changing her strategy (i.e., no outcome improves the payoff of 7).

Example

€O
N

<><.3

is not a pseudo-Nash equilibrium.
There is no pseudo-Nash equilibirum in this game.
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Multiplayer timed games

Back to the timed game

A
\ \\ y=1
\ .
\ \
x>2 . \
x:=0 ~ *
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Back to the timed game

There are several (pseudo-)Nash equilibria:
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Multiplayer timed games

Back to the timed game

with x<1
x<2, y:=0 : ©
A D
\ s with x<1
\ A}
N A Y

There are several (pseudo-)Nash equilibria:

e Some with payoff (1, 1,0)
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Multiplayer timed games

Back to the timed game

with x>1

There are several (pseudo-)Nash equilibria:

e Some with payoff (1,1,1)
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Multiplayer timed games

Two different approaches to solve the problem

@ use the specificity of two-player timed games [BBM10a]

e can be turned into two twin turn-based finite games
o apply to w-regular objectives (and even more!)

[BBM10a] Bouyer, Brenguier, Markey. Computing equilibria in two-player timed games via turn-based finite games (FORMATS'10).
[BBM10b] Bouyer, Brenguier, Markey. Nash equilibria for reachability objectives in multi-player timed games (CONCUR'10).
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Multiplayer timed games

Two different approaches to solve the problem

@ use the specificity of two-player timed games [BBM10a]
e can be turned into two twin turn-based finite games
o apply to w-regular objectives (and even more!)

@ consider a general abstract framework [BBM10b]

e non-deterministic concurrent multiplayer (infinite) games

e restrict to qualitative reachability objectives

o apply the general framework to finite games and then to timed
games (through a simulation theorem), and get “optimal” algorithms

[BBM10a] Bouyer, Brenguier, Markey. Computing equilibria in two-player timed games via turn-based finite games (FORMATS'10).
[BBM10b] Bouyer, Brenguier, Markey. Nash equilibria for reachability objectives in multi-player timed games (CONCUR'10).
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3. Focusing on two-player timed games
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Focusing on two-player timed games

From timed games to finite concurrent games...

Compute the Nash equilibria in
the following timed game:

x:=0
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From timed games to finite concurrent games...
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the following timed game: o region x =0

rn region0<x<1
rn  region x =1

r,r2

(1,0)

(0,1)

(1,1)

15/30



Focusing on two-player timed games

From timed games to finite concurrent games...

Compute the Nash equilibria in
the following timed game: o region x =0

rn region0<x<1
rn  region x =1

15/30



Focusing on two-player timed games

From timed games to finite concurrent games...

Compute the Nash equilibria in
the following timed game: o region x =0

rn region0<x<1
rn  region x =1

Proposition J

(Pseudo-)Nash equilibria “coincide” in both games.
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Removing non-determinism
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Focusing on two-player timed games

Removing non-determinism

(r1,%),n2

—

(f2~0),f2

Proposition

(Pseudo-)Nash equilibria in the game on the left correspond to twin Nash
equilibria in the two games on the right.
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Building turn-based games

Games where Player 1 has an advantage.

(r1,%),r2

(r1,0),n

. (,%),n
—

(r2,0),r

(fz,.),rz

Focusing on two-player timed games
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Building turn-based games
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Nash equilibria “coincide”.

Proposition J
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Focusing on two-player timed games

Building turn-based games

(n,*),w
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Building turn-based games

(n,*),rz

ri,(r,e)

r2,(r1,%)

—() (o)

ry,(r,e)

2,(r2,0)

Proposition

Focusing on two-player timed games

|

del

del

The twin Nash equilibria in the two games on the left coincide with the
twin Nash equilibria in the two turn-based games on the right.
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Focusing on two-player timed games

Summary of the construction

|
(,1’.) (r1,0)

P
" -

Theorem

(Pseudo-)Nash equilibria in the original timed game coincide with the
twin Nash equilibria in the two turn-based games.
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Computing (twin) Nash equilibria in the turn-based games
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Focusing on two-player timed games

Computing (twin) Nash equilibria in the turn-based games

There is a single Nash equilibrium in the original timed game. J
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Focusing on two-player timed games

Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:
@ in two-player timed games
@ with large classes of objectives
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Focusing on two-player timed games

Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:
@ in two-player timed games
@ with large classes of objectives

Examples of objectives
@ w-regular objectives
@ optimal paths
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Focusing on two-player timed games

Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:
@ in two-player timed games
@ with large classes of objectives

An interesting side-result

In two-player control timed games, the controller (Player 1) has a
winning strategy iff she has a winning strategy in the turn-based game
where Player 2 has the advantage.
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Focusing on two-player timed games

Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:
@ in two-player timed games
@ with large classes of objectives

Example

This technique does not extend to three-player timed games:

0<x<1 (0,0,1)
—()-2=x51 ) (0,0,1)

----------- - (11,0
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4. A generic approach for reachability objectives
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A generic approach for reachability objectives

Context of these developments

@ general (possibly infinite-state) concurrent non-deterministic
multiplayer games

@ qualitative reachability objectives
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A generic approach for reachability objectives

At which condition a play /s an equilibrium where only Player 1 loses?
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A generic approach for reachability objectives

At which condition a play /s an equilibrium where only Player 1 loses?

@ the path visits all winning states for all other players
@ the path doesn't visit the winning states of Player 1
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Player 1
should lose

e from any state along the path, Player 1 cannot enforce visiting his
winning state

23/30



A generic approach for reachability objectives

At which condition a play /s an equilibrium where only Player 1 loses?

|
\

Player 1
should lose

e from any state along the path, Player 1 cannot enforce visiting his
winning state
o all states along the path are out of the attractor of Player 1
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At which condition a play /s an equilibrium where only Player 1 loses?

|
\

Player 1
should lose

e from any state along the path, Player 1 cannot enforce visiting his
winning state
o all states along the path are out of the attractor of Player 1
~ this is ok for deterministic turn-based games
~ this is not ok for the general case!
o Two counter-examples:

turn-based non-det. game

concurrent game
“matching pennies” \aa\\b«b\ ©
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A generic approach for reachability objectives

And what if only Player 1 and Player 2 lose?

24/30



A generic approach for reachability objectives

And what if only Player 1 and Player 2 lose?
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@ the path visits all winning states for all other players
@ the path doesn't visit the winning states of Player 1 and of Player 2
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A generic approach for reachability objectives
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A generic approach for reachability objectives

And what if only Player 1 and Player 2 lose?

|
Y

the player
who deviates
should lose

e from any state along the path, if Player 1 deviates, he should not be
able to enforce visiting his winning states. ldem for Player 2.

~> requires that we are able to compute who is to be blamed for the
deviation

~ if there is a unique suspect for the deviation, we should blame him
(as in the previous case)

~ if both players are suspect for the deviation, we should be able to
blame each of them.
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A generic approach for reachability objectives

If we want to formalize...

Definition
If P is a set of players, the repellor set for P (written Rep(P)) is defined
inductively by Rep(@) = “all states”, and then as the largest set
satisfying:

e VAE P, Rep(P)N©,s =10

@ Vs € Rep(P), Im s.t. Vs, s’ € Rep(P N Susp((s, s’), m))
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If we want to formalize...

Definition
If P is a set of players, the repellor set for P (written Rep(P)) is defined
inductively by Rep(@)) = “all states”, and then as the largest set
satisfying:

e VAE P, Rep(P)N©,s =10

@ Vs € Rep(P), Im s.t. Vs, s’ € Rep(P N Susp((s, s’), m))

v

~> we define in a natural way the repellor transition system Sgep(P)

Theorem

There is a pseudo-Nash equilibrium with payoff vp (i.e. 0 for all players
in P and 1 for all players out of P) iff there is an infinite path in Sgep(P)
which visits a winning state © 4 for each A & P.

NB: this equivalence is furthermore constructive.
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A generic approach for reachability objectives
A generic procedure to compute (pseudo-)Nash equilibria
in concurrent non-deterministic games

@ Guess the payoff function vp (if not already given);
@ Build the repellor transition system Sgep(P);
@ Find a path in Sgep(P) visiting the objectives of Agt \ P.
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A generic approach for reachability objectives

Side results: the case of finite games

cnd, ¢4, 7B TB°
bounded | general | bounded | general
Existence P-c. NP-c.
Verification P-c. NP-c. P-c. NP-c.
Constr. Ex. P-c. NP-c. P-c. NP-c.

@ 789, TB": turn-based games (deterministic and non-deterministic, resp.)
@ ¢4.c": concurrent games (determinstic and non-deterministic, resp.)
@ bounded: bounded number of players (hence not a parameter in the complexity)

@ general: the number of players is a parameter of the problem.
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A generic approach for reachability objectives

The case of timed games

How do we proceed?
@ Construct an appropriate region game

@ Define a simulation that preserves all @'s and suspect players, hence
repellors

@ Prove that the two games (original timed game and region game)
simulate each other
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The case of timed games

How do we proceed?
@ Construct an appropriate region game

@ Define a simulation that preserves all @'s and suspect players, hence
repellors

@ Prove that the two games (original timed game and region game)
simulate each other

Theorem

The verification, existence and constrained-existence problems for
pseudo-Nash equilibria in timed games are EXPTIME-complete.
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Conclusion

Outline

5. Conclusion
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Conclusion

Conclusion and ongoing/further work

Summary of the results
@ A specific technique for computing Nash equilibria for large classes
of objectives in two-player timed games

@ A general technique for computing Nash equilibria for qualitative
reachability objectives in multiplayer (potentially infinite) games:

o can be applied to finite games
o can be applied to timed games

In both cases, yields optimal complexity bounds.

What's going on now?
@ Use the general technique to compute Nash equilibria in other
families of systems (eg pushdown games)
@ Extend the repellor idea beyond reachability
e Consider randomized strategies

@ Compute other kinds of equilibria
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