Nash Equilibria in Timed Games

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

This talk is based on joint works with Romain Brenguier and Nicolas Markey

Outline

1. The context

- 2. Multiplayer timed games
- 3. Focusing on two-player timed games
- 4. A generic approach for reachability objectives
- 5. Conclusion

- Context: formal verification of systems
- Why timed systems?
 - to model time-constrained systems (eg embedded systems)
 - to model systems running in real-time (for instance GPS)

safe

- X 0
- y 0

	safe	$\xrightarrow{23}$	safe
х	0		23
y	0		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm
х	0		23		0
у	0		23		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm
х	0		23		0		15.6
у	0		23		23		38.6

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe
х	0		23		0		15.6		15.6
у	0		23		23		38.6		0

	safe	$\xrightarrow{23}$	safe	 alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23	0		15.6		15.6	
у	0		23	23		38.6		0	

failsafe

... 15.6

0

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe
 15.6		17.9
0		2.3

	safe	$\xrightarrow{23}$	safe	 alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23	0		15.6		15.6	
у	0		23	23		38.6		0	

	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
•••	15.6		17.9		17.9
	0		2.3		0

	safe	$\xrightarrow{23}$	safe	 alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23	0		15.6		15.6	
у	0		23	23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing
 15.6		17.9		17.9		40
0		2.3		0		22.1

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	 failsafe	
х	0		23		0		15.6	15.6	
у	0		23		23		38.6	0	

	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
•••	15.6		17.9		17.9		40		40
	0		2.3		0		22.1		22.1

• to model uncertainty

• to model uncertainty

• to model uncertainty

• to model an interaction with an environment

• to model uncertainty

• to model an interaction with an environment

• to model uncertainty

• to model an interaction with an environment

Rule of the game

- Aim (for the controller): avoid (2) and reach (2)
- How do we play? According to strategies

Rule of the game

- Aim (for the controller): avoid (2) and reach (2)
- How do we play? According to strategies
 - f: history \mapsto (delay, cont. transition)

Rule of the game

- Aim (for the controller): avoid (2) and reach (2)
- How do we play? According to strategies

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy • from $(\ell_0, 0)$, play $(0.5, c_1)$

Rule of the game

- Aim (for the controller): avoid 🙁 and reach 🙂
- How do we play? According to strategies

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy • from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2

Rule of the game

- Aim (for the controller): avoid 🙁 and reach 🙂
- How do we play? According to strategies

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2
- from (ℓ_2,\star) , play $(1-\star,c_2)$

Rule of the game

- Aim (for the controller): avoid 🙁 and reach 🙂
- How do we play? According to strategies

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$

Rule of the game

- Aim (for the controller): avoid (2) and reach (2)
- How do we play? According to strategies

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$
- from (ℓ_1 , 1), play (1, c_4)

Rule of the game

- Aim (for the controller): avoid (2) and reach (2)
- How do we play? According to strategies

```
f: history \mapsto (delay, cont. transition)
```

What we are computing here

• (simple) worst-case winning strategies

Rule of the game

- Aim (for the controller): avoid (2) and reach (2)
- How do we play? According to strategies
 - f : history \mapsto (delay, cont. transition)

What we are computing here

- (simple) worst-case winning strategies
- should win against any strategy of the opponent

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

 \rightsquigarrow classical regions are sufficient to solve those games

(we can for instance compute the so-called attractor)

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

A short visit to control (two-player) timed games

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

 \rightsquigarrow classical regions are sufficient to solve those games (we can for instance compute the so-called attractor)

A short visit to control (two-player) timed games

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

 \rightsquigarrow classical regions are sufficient to solve those games (we can for instance compute the so-called attractor)

A short visit to control (two-player) timed games

Theorem [AMPS98,HK99,...]

For ω -regular objectives, it is decidable whether the controller has a winning strategy. It is EXPTIME-complete for safety and reachability objectives.

 \rightsquigarrow classical regions are sufficient to solve those games (we can for instance compute the so-called attractor)

1. The context

- 2. Multiplayer timed games
- 3. Focusing on two-player timed games
- 4. A generic approach for reachability objectives
- 5. Conclusion

Multi-agent systems

• Why multi-agent systems?

• development of distributed systems (distributed scheduling problems, power control problems, mobile systems, ...)

Multi-agent systems

• Why multi-agent systems?

• development of distributed systems (distributed scheduling problems, power control problems, mobile systems, ...)

• How can we model those systems?

- with distributed automata
- with multiplayer games
- ...

As a natural extension of two-player timed games:

As a natural extension of two-player timed games:

How do we play those games?

- Each player plays according to standard strategies (which specify moves at each step)
- Once all moves are given, the shortest delay is chosen and a corresponding transition is non-deterministically selected

As a natural extension of two-player timed games:

How do we play those games?

- Each player plays according to standard strategies (which specify moves at each step)
- Once all moves are given, the shortest delay is chosen and a corresponding transition is non-deterministically selected

→ They are infinite-state non-deterministic concurrent games Strategies are assumed to be pure (*i.e.* not stochastic)

As a natural extension of two-player timed games:

What is the aim of the game?

Each player has her own objective (via a preference relation or a payoff function).
 NP: qualitative objective = 0/1 payoff function

NB: qualitative objective = 0/1 payoff function

As a natural extension of two-player timed games:

What is the aim of the game?

- Each player has her own objective (via a preference relation or a payoff function).
 NB: qualitative objective = 0/1 payoff function
- The notions of winning strategies are no more relevant, as those games are not zero-sum

As a natural extension of two-player timed games:

What is the aim of the game?

Each player has her own objective (via a preference relation or a payoff function).
 NB: qualitative objective = 0/1 payoff function

• The notions of winning strategies are no more relevant, as those games are not zero-sum

• The players should play rationally, for instance according to equilibria (eg Nash equilibria, subgame-perfect equilibria, secure equilibria, ...)

Nash equilibria

Definition

Nash equilibria (in deterministic games)

Definition

Nash equilibria (in deterministic games)

Definition

Nash equilibria (in deterministic games)

Definition

Nash equilibria (in non-deterministic games)

Definition

A strategy profile $(\sigma_j)_{A_j \in A_{gt}}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.

What if there are several outcomes due to non-determinism?

Nash equilibria (in non-deterministic games)

Definition

A strategy profile $(\sigma_j)_{A_j \in A_{gt}}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.

What if there are several outcomes due to non-determinism?

Definition

A pair $((\sigma_j)_{A_j \in Agt}, \pi)$ is a pseudo-Nash equilibrium if π is an outcome of $(\sigma_j)_{A_j \in Agt}$ and no player can improve her payoff by unilaterally changing her strategy (*i.e.*, no outcome improves the payoff of π).

Nash equilibria (in non-deterministic games)

Definition

A pair $((\sigma_j)_{A_j \in Agt}, \pi)$ is a pseudo-Nash equilibrium if π is an outcome of $(\sigma_j)_{A_j \in Agt}$ and no player can improve her payoff by unilaterally changing her strategy (*i.e.*, no outcome improves the payoff of π).

There are several (pseudo-)Nash equilibria:

There are several (pseudo-)Nash equilibria:

• Some with payoff (1, 1, 0)

There are several (pseudo-)Nash equilibria:

- Some with payoff (1, 1, 0)
- Some with payoff (1, 1, 1)

[BBM10a]

Two different approaches to solve the problem

• use the specificity of two-player timed games

- can be turned into two twin turn-based finite games
- apply to ω-regular objectives (and even more!)

[BBM10a] Bouyer, Brenguier, Markey. Computing equilibria in two-player timed games via turn-based finite games (FORMATS'10). [BBM10b] Bouyer, Brenguier, Markey. Nash equilibria for reachability objectives in multi-player timed games (CONCUR'10).

Two different approaches to solve the problem

• use the specificity of two-player timed games

- can be turned into two twin turn-based finite games
- apply to ω-regular objectives (and even more!)
- consider a general abstract framework
 - non-deterministic concurrent multiplayer (infinite) games
 - restrict to qualitative reachability objectives
 - apply the general framework to finite games and then to timed games (through a simulation theorem), and get "optimal" algorithms

[BBM10b]

[BBM10a]

- 1. The context
- 2. Multiplayer timed games
- 3. Focusing on two-player timed games
- 4. A generic approach for reachability objectives
- 5. Conclusion

region x = 0

ro

From timed games to finite concurrent games...

Compute the Nash equilibria in the following timed game:

Proposition

(Pseudo-)Nash equilibria "coincide" in both games.

Game where Player 1 has an advantage (and all payoffs for Player 2 are set to 0)

Game where Player 2 has an advantage (and all payoffs for Player 1 are set to 0)

Proposition

(Pseudo-)Nash equilibria in the game on the left correspond to twin Nash equilibria in the two games on the right.

Building turn-based games

Games where Player 1 has an advantage.

Games where Player 2 has an advantage.

Proposition

The twin Nash equilibria in the two games on the left coincide with the twin Nash equilibria in the two turn-based games on the right.

Theorem

(Pseudo-)Nash equilibria in the original timed game coincide with the twin Nash equilibria in the two turn-based games.

19/30

19/30

There is a single Nash equilibrium in the original timed game.

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

- in two-player timed games
- with large classes of objectives

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

- in two-player timed games
- with large classes of objectives

Examples of objectives

- ω-regular objectives
- optimal paths
- ...

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

- in two-player timed games
- with large classes of objectives

An interesting side-result

In two-player control timed games, the controller (Player 1) has a winning strategy iff she has a winning strategy in the turn-based game where Player 2 has the advantage.

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

- in two-player timed games
- with large classes of objectives

Example

This technique does not extend to three-player timed games:

$$0 < x < 1 \qquad (0, 0, 1)$$

- 1. The context
- 2. Multiplayer timed games
- 3. Focusing on two-player timed games
- 4. A generic approach for reachability objectives
- 5. Conclusion

Context of these developments

- general (possibly infinite-state) concurrent non-deterministic multiplayer games
- qualitative reachability objectives

- the path visits all winning states for all other players
- the path doesn't visit the winning states of Player 1

• from any state along the path, Player 1 cannot enforce visiting his winning state

- from any state along the path, Player 1 cannot enforce visiting his winning state
 - \bullet all states along the path are out of the attractor of Player 1

- from any state along the path, Player 1 cannot enforce visiting his winning state
 - all states along the path are out of the attractor of Player 1
 - \sim this is ok for deterministic turn-based games

- from any state along the path, Player 1 cannot enforce visiting his winning state
 - ${\scriptstyle \bullet}$ all states along the path are out of the attractor of Player 1

 \rightsquigarrow this is ok for deterministic turn-based games

 \sim this is not ok for the general case!

- from any state along the path, Player 1 cannot enforce visiting his winning state
 - ${\ensuremath{\, \bullet }}$ all states along the path are out of the attractor of Player 1

 \rightsquigarrow this is ok for deterministic turn-based games

 \sim this is not ok for the general case!

Two counter-examples:

- from any state along the path, Player 1 cannot enforce visiting his winning state
 - $\bullet\,$ all states along the path are out of the attractor of Player 1

 \sim this is ok for deterministic turn-based games \sim this is **not ok** for the general case!

• Two counter-examples:

And what if only Player 1 and Player 2 lose?

And what if only Player 1 and Player 2 lose?

- the path visits all winning states for all other players
- the path doesn't visit the winning states of Player 1 and of Player 2

And what if only Player 1 and Player 2 lose?

• from any state along the path, if Player 1 deviates, he should not be able to enforce visiting his winning states. Idem for Player 2.
And what if only Player 1 and Player 2 lose?

- from any state along the path, if Player 1 deviates, he should not be able to enforce visiting his winning states. Idem for Player 2.
 - $\rightsquigarrow\,$ requires that we are able to compute who is to be blamed for the deviation

And what if only Player 1 and Player 2 lose?

- from any state along the path, if Player 1 deviates, he should not be able to enforce visiting his winning states. Idem for Player 2.

 - \sim if there is a unique suspect for the deviation, we should blame him (as in the previous case)

And what if only Player 1 and Player 2 lose?

- from any state along the path, if Player 1 deviates, he should not be able to enforce visiting his winning states. Idem for Player 2.

 - $\rightsquigarrow\,$ if both players are suspect for the deviation, we should be able to blame each of them.

If we want to formalize...

Definition

If P is a set of players, the *repellor set* for P (written Rep(P)) is defined inductively by $\text{Rep}(\emptyset) =$ "all states", and then as the largest set satisfying:

- $\forall A \in P$, $\operatorname{Rep}(P) \cap \odot_A = \emptyset$
- $\forall s \in \operatorname{Rep}(P), \exists m \text{ s.t. } \forall s', s' \in \operatorname{Rep}(P \cap \operatorname{Susp}((s, s'), m))$

If we want to formalize...

Definition

If P is a set of players, the *repellor set* for P (written Rep(P)) is defined inductively by $\text{Rep}(\emptyset) =$ "all states", and then as the largest set satisfying:

- $\forall A \in P$, $\operatorname{Rep}(P) \cap \odot_A = \emptyset$
- $\forall s \in \operatorname{Rep}(P), \exists m \text{ s.t. } \forall s', s' \in \operatorname{Rep}(P \cap \operatorname{Susp}((s, s'), m))$

 \sim we define in a natural way the repellor transition system $S_{\text{Rep}}(P)$

If we want to formalize ...

Definition

If P is a set of players, the *repellor set* for P (written Rep(P)) is defined inductively by $\text{Rep}(\emptyset) =$ "all states", and then as the largest set satisfying:

- $\forall A \in P$, $\operatorname{Rep}(P) \cap \odot_A = \emptyset$
- $\forall s \in \operatorname{Rep}(P), \exists m \text{ s.t. } \forall s', s' \in \operatorname{Rep}(P \cap \operatorname{Susp}((s, s'), m))$

 \sim we define in a natural way the repellor transition system $\mathcal{S}_{\mathsf{Rep}}(P)$

Theorem

There is a pseudo-Nash equilibrium with payoff ν_P (*i.e.* 0 for all players in P and 1 for all players out of P) iff there is an infinite path in $S_{\text{Rep}}(P)$ which visits a winning state \odot_A for each $A \notin P$.

NB: this equivalence is furthermore constructive.

A generic procedure to compute (pseudo-)Nash equilibria in concurrent non-deterministic games

- Guess the payoff function ν_P (if not already given);
- **2** Build the repellor transition system $S_{\text{Rep}}(P)$;
- Find a path in $S_{\text{Rep}}(P)$ visiting the objectives of Agt $\setminus P$.

Side results: the case of finite games

	\mathcal{C}^{nd} , \mathcal{C}^{d} , \mathcal{TB}^{nd}		\mathcal{TB}^{d}	
	bounded	general	bounded	general
Existence	P-c.	NP-c.	True	True
Verification	P-c.	NP-c.	P-c.	NP-c.
Constr. Ex.	P-c.	NP-c.	P-c.	NP-c.

- TB^{d} , TB^{nd} : turn-based games (deterministic and non-deterministic, resp.)
- C^{d}, C^{nd} : concurrent games (deterministic and non-deterministic, resp.)
- bounded: bounded number of players (hence not a parameter in the complexity)
- general: the number of players is a parameter of the problem.

The case of timed games

How do we proceed?

- Construct an appropriate region game
- \bullet Define a simulation that preserves all $\textcircled{\sc {i}}$'s and suspect players, hence repellors
- Prove that the two games (original timed game and region game) simulate each other

The case of timed games

How do we proceed?

- Construct an appropriate region game
- \bullet Define a simulation that preserves all $\textcircled{\sc {i}}$'s and suspect players, hence repellors
- Prove that the two games (original timed game and region game) simulate each other

Theorem

The verification, existence and constrained-existence problems for pseudo-Nash equilibria in timed games are EXPTIME-complete.

Outline

- 1. The context
- 2. Multiplayer timed games
- 3. Focusing on two-player timed games
- 4. A generic approach for reachability objectives
- 5. Conclusion

Conclusion and ongoing/further work

Summary of the results

• A specific technique for computing Nash equilibria for large classes of objectives in two-player timed games

Conclusion and ongoing/further work

Summary of the results

- A specific technique for computing Nash equilibria for large classes of objectives in two-player timed games
- A general technique for computing Nash equilibria for qualitative reachability objectives in multiplayer (potentially infinite) games:
 - can be applied to finite games
 - can be applied to timed games

In both cases, yields optimal complexity bounds.

Conclusion and ongoing/further work

Summary of the results

- A specific technique for computing Nash equilibria for large classes of objectives in two-player timed games
- A general technique for computing Nash equilibria for qualitative reachability objectives in multiplayer (potentially infinite) games:
 - can be applied to finite games
 - can be applied to timed games

In both cases, yields optimal complexity bounds.

What's going on now?

- Use the general technique to compute Nash equilibria in other families of systems (eg pushdown games)
- Extend the repellor idea beyond reachability
- Consider randomized strategies
- Compute other kinds of equilibria