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The context

Context: formal verification of systems

Why timed systems?
to model time-constrained systems (eg embedded systems)
to model systems running in real-time (for instance GPS)
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The context

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ⋅⋅⋅

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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The context

Why (timed) games?

to model uncertainty

Example of a processor

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

to model an interaction with an environment

Example of the gate in the train/gate example

?
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The context

Control (two-player) timed games

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim (for the controller): avoid /
and reach ,

How do we play? According to
strategies

f : history 7→(delay, cont. transition)

=

move
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The context

A short visit to control (two-player) timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99,...]

For !-regular objectives, it is decidable whether the controller has a
winning strategy. It is EXPTIME-complete for safety and reachability
objectives.

; classical regions are sufficient to solve those games
(we can for instance compute the so-called attractor)

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

ℓ0
0 1 2 3

ℓ1
0 1 2 3

ℓ2
0 1 2 3

ℓ3
0 1 2 3

Winning states Losing states
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Multiplayer timed games

Multi-agent systems

Why multi-agent systems?

development of distributed systems (distributed scheduling problems,
power control problems, mobile systems, ...)

How can we model those systems?

with distributed automata
with multiplayer games
...
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A pair ((�j)Aj∈Agt, �) is a pseudo-Nash equilibrium if � is an outcome
of (�j)Aj∈Agt and no player can improve her payoff by unilaterally
changing her strategy (i.e., no outcome improves the payoff of �).

Example

is not a pseudo-Nash equilibrium.
There is no pseudo-Nash equilibirum in this game.
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Multiplayer timed games

Two different approaches to solve the problem

[BBM10a] Bouyer, Brenguier, Markey. Computing equilibria in two-player timed games via turn-based finite games (FORMATS’10).
[BBM10b] Bouyer, Brenguier, Markey. Nash equilibria for reachability objectives in multi-player timed games (CONCUR’10).

use the specificity of two-player timed games [BBM10a]

can be turned into two twin turn-based finite games
apply to !-regular objectives (and even more!)

consider a general abstract framework [BBM10b]

non-deterministic concurrent multiplayer (infinite) games
restrict to qualitative reachability objectives
apply the general framework to finite games and then to timed
games (through a simulation theorem), and get “optimal” algorithms
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Focusing on two-player timed games

From timed games to finite concurrent games...

Compute the Nash equilibria in
the following timed game:

(x≤1)

1,0

0,1

1,1

0<x<1
x :=0

0<x≤1

x :=0

x=1
x :=0

x :=0

x :=0

x :=0

r0 region x = 0
r1 region 0 < x < 1
r2 region x = 1

r1,r2

r1,r1

r2,r1

r2,r2

Proposition

(Pseudo-)Nash equilibria “coincide” in both games.
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Removing non-determinism
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(Pseudo-)Nash equilibria in the game on the left correspond to twin Nash
equilibria in the two games on the right.
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Focusing on two-player timed games

Summary of the construction

(x≤1)

1,0

0,1

1,1

0<x<1
x :=0

0<x≤1

x :=0

x=1
x :=0

x :=0

x :=0

x :=0

r1,∙

r1

r1,∘

r2,∙

r2

r2,∘
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0,0

1,0
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del
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(r 1
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del

(r2 ,∙)del

r 2
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del
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(r1,∘)

del (r2,
∙)

del

r2

Theorem

(Pseudo-)Nash equilibria in the original timed game coincide with the
twin Nash equilibria in the two turn-based games.
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Computing (twin) Nash equilibria in the turn-based games
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There is a single Nash equilibrium in the original timed game.
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Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

in two-player timed games

with large classes of objectives
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with large classes of objectives

Examples of objectives

!-regular objectives

optimal paths

...
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Focusing on two-player timed games

Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

in two-player timed games

with large classes of objectives

An interesting side-result

In two-player control timed games, the controller (Player 1) has a
winning strategy iff she has a winning strategy in the turn-based game
where Player 2 has the advantage.
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Focusing on two-player timed games

Summary of the construction

Theorem

Using this construction, we can compute (pseudo-)Nash equilibria:

in two-player timed games

with large classes of objectives

Example

This technique does not extend to three-player timed games:

(0, 0, 1)

(0, 0, 1)

(1, 1, 0)

0 < x < 1

0 < x < 1

0 < x < 1
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A generic approach for reachability objectives

Context of these developments

general (possibly infinite-state) concurrent non-deterministic
multiplayer games

qualitative reachability objectives
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At which condition a play is an equilibrium where only Player 1 loses?
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A generic approach for reachability objectives

At which condition a play is an equilibrium where only Player 1 loses?

. . .

Player 1
should lose

, ,

from any state along the path, Player 1 cannot enforce visiting his
winning state

all states along the path are out of the attractor of Player 1

; this is ok for deterministic turn-based games
; this is not ok for the general case!

Two counter-examples:

concurrent game
“matching pennies” ,

,

(a,
a),

(b,
b)

(a,b),(b,a)

turn-based non-det. game
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A generic approach for reachability objectives

And what if only Player 1 and Player 2 lose?
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And what if only Player 1 and Player 2 lose?

,

the path visits all winning states for all other players

the path doesn’t visit the winning states of Player 1 and of Player 2
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A generic approach for reachability objectives

And what if only Player 1 and Player 2 lose?

. . .

the player
who deviates
should lose

,

from any state along the path, if Player 1 deviates, he should not be
able to enforce visiting his winning states. Idem for Player 2.

; requires that we are able to compute who is to be blamed for the
deviation

; if there is a unique suspect for the deviation, we should blame him
(as in the previous case)

; if both players are suspect for the deviation, we should be able to
blame each of them.
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A generic approach for reachability objectives

If we want to formalize...

Definition

If P is a set of players, the repellor set for P (written Rep(P)) is defined
inductively by Rep(∅) = “all states”, and then as the largest set
satisfying:

∀A ∈ P, Rep(P) ∩,A = ∅
∀s ∈ Rep(P), ∃m s.t. ∀s ′, s ′ ∈ Rep(P ∩ Susp((s, s ′),m))

; we define in a natural way the repellor transition system SRep(P)

Theorem

There is a pseudo-Nash equilibrium with payoff �P (i.e. 0 for all players
in P and 1 for all players out of P) iff there is an infinite path in SRep(P)
which visits a winning state ,A for each A ∕∈ P.

NB: this equivalence is furthermore constructive.
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A generic approach for reachability objectives

A generic procedure to compute (pseudo-)Nash equilibria
in concurrent non-deterministic games

1 Guess the payoff function �P (if not already given);

2 Build the repellor transition system SRep(P);

3 Find a path in SRep(P) visiting the objectives of Agt ∖ P.
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A generic approach for reachability objectives

Side results: the case of finite games

Cnd, Cd, T ℬnd T ℬd

bounded general bounded general

Existence P-c. NP-c. True True

Verification P-c. NP-c. P-c. NP-c.

Constr. Ex. P-c. NP-c. P-c. NP-c.

T ℬd, T ℬnd: turn-based games (deterministic and non-deterministic, resp.)

Cd,Cnd: concurrent games (determinstic and non-deterministic, resp.)

bounded: bounded number of players (hence not a parameter in the complexity)

general: the number of players is a parameter of the problem.

27/30



A generic approach for reachability objectives

The case of timed games

How do we proceed?

Construct an appropriate region game

Define a simulation that preserves all ,’s and suspect players, hence
repellors

Prove that the two games (original timed game and region game)
simulate each other

Theorem
The verification, existence and constrained-existence problems for
pseudo-Nash equilibria in timed games are EXPTIME-complete.
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Conclusion

Conclusion and ongoing/further work

Summary of the results

A specific technique for computing Nash equilibria for large classes
of objectives in two-player timed games

A general technique for computing Nash equilibria for qualitative
reachability objectives in multiplayer (potentially infinite) games:

can be applied to finite games
can be applied to timed games

In both cases, yields optimal complexity bounds.

What’s going on now?

Use the general technique to compute Nash equilibria in other
families of systems (eg pushdown games)

Extend the repellor idea beyond reachability

Consider randomized strategies

Compute other kinds of equilibria
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