
Introduction Decidability Implementation Other problems Timed control Conclusion

An introduction to timed automata

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

1/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

2/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Time-dependent systems

We are interested in timed systems

3/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Time-dependent systems

We are interested in timed systems

3/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Time-dependent systems

We are interested in timed systems

and in their correctness

“Will the airbag open within 5ms after the car crashes?”
“Will the robot explore a given area without getting out of energy?”

3/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

algorithm

yes/no

a?
b!

4/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

algorithm

yes/no

a?
b!

4/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)algorithm

yes/noa?
b!

4/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Model-checking and control

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

model-checking

algorithm

yes/no

a?
b!

4/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Model-checking and control

system:

8 8
property:

a!
b?

a?
b! ? AG(¬B.overfull

∧ ¬B.dried up)

control/synthesis

algorithm

yes/no

a?
b!

4/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

5/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

A plethora of models

timed circuits,

time(d) Petri nets,

timed automata,

timed process algebra,

· · ·

6/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

A plethora of models

timed circuits,

time(d) Petri nets,

timed automata,

timed process algebra,

· · ·

6/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

The model of timed automata [AD94]

A timed automaton is made of

a finite automaton-based structure

a set of clocks

timing constraints and clock resets on transitions

Example

safe alarm

repairing

failsafe

problem,

x :=0

re
pa
ir

,

x≤
15

delayed,

y :=0

repair

2≤y∧x≤56

y :=0

done
,

22≤y≤25

x,y

6/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

The model of timed automata [AD94]

A timed automaton is made of

a finite automaton-based structure

a set of clocks

timing constraints and clock resets on transitions

Example

safe alarm

repairing

failsafe

problem,

x :=0

re
pa
ir

,

x≤
15

delayed,

y :=0

repair

2≤y∧x≤56

y :=0

done
,

22≤y≤25

x,y

6/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

The model of timed automata [AD94]

A timed automaton is made of

a finite automaton-based structure

a set of clocks

timing constraints and clock resets on transitions

Example

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤
15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

x,y

6/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23

0 15.6 15.6 ···

y 0 23

23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0 23 0

15.6 15.6 ···

y 0 23 23

38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6

15.6 ···

y 0 23 23 38.6

0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe

2.3−−→ failsafe
repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

··· 15.6

17.9 17.9 40 40

0

2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9

17.9 40 40

0 2.3

0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

··· 15.6 17.9 17.9

40 40

0 2.3 0

22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40

40

0 2.3 0 22.1

22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

valuation

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

valuation

This run reads the timed word

(problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

7/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under continuous-time, the output can be 1:

t

i

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

Finding the correct granularity (if one exists) is hard!

8/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Continuous-time semantics

...real-time models for real-time systems!

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

We will focus on the continuous-time semantics, and
discuss further its relevance at the end of the tutorial

9/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

10/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

The train crossing example

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, x i := 0

20 < xi < 30,a,xi := 0

10 < xi < 20,Exit!

11/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

The train crossing example – cont’d

The gate:

Open Lowering,Hg 10

CloseRaising,Hg < 10

GoDown?,Hg := 0

Hg < 10,a

GoUp?,Hg := 0

Hg < 10,a

12/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

The train crossing example – cont’d

The controller:

c0c1,Hc ≤ 20 c2,Hc ≤ 10
App?,Hc := 0Exit?,Hc := 0

Exit? Exit?

App?Hc = 20,GoUp! Hc ≤ 10,GoDown!

App?

13/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

The train crossing example – cont’d

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App
. App! . App? App

Exit! . . Exit? Exit
. Exit! . Exit? Exit
a . . . a
. a . . a
. . a . a
. . GoUp? GoUp! GoUp
. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!

14/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

The train crossing example – cont’d

Some properties one could check:

Is the gate closed when a train crosses the road?

Is the gate always closed for less than 5 minutes?

15/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

The train crossing example – cont’d

Some properties one could check:

Is the gate closed when a train crosses the road?

Is the gate always closed for less than 5 minutes?

15/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: A mutual exclusion protocol

[AL94] Abad́ı, Lamport. An old-fashioned recipe for real time (ACM Transactions on Programming Languages and Systems ).

A mutual exclusion protocol with a shared variable id [AL94].

Process i :
a : await (id = 0);
b : set id to i ;
c : await (id = i);
d : enter critical section.

; a max. delay k1 between a and b
a min. delay k2 between b and c

; See the demo with the tool Uppaal
(can be downloaded on http://www.uppaal.com/)

16/100

http://www.uppaal.com/


Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: A mutual exclusion protocol

[AL94] Abad́ı, Lamport. An old-fashioned recipe for real time (ACM Transactions on Programming Languages and Systems ).

A mutual exclusion protocol with a shared variable id [AL94].

Process i :
a : await (id = 0);
b : set id to i ;
c : await (id = i);
d : enter critical section.

; a max. delay k1 between a and b
a min. delay k2 between b and c

; See the demo with the tool Uppaal
(can be downloaded on http://www.uppaal.com/)

16/100

http://www.uppaal.com/


Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: A mutual exclusion protocol

[AL94] Abad́ı, Lamport. An old-fashioned recipe for real time (ACM Transactions on Programming Languages and Systems ).

A mutual exclusion protocol with a shared variable id [AL94].

Process i :
a : await (id = 0);
b : set id to i ;
c : await (id = i);
d : enter critical section.

; a max. delay k1 between a and b
a min. delay k2 between b and c

; See the demo with the tool Uppaal
(can be downloaded on http://www.uppaal.com/)

16/100

http://www.uppaal.com/


Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: The task graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

17/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: The task graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

17/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: The task graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

17/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Another example: The task graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

17/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·

18/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·

18/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·

18/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·

18/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·

18/100



Introduction Decidability Implementation Other problems Timed control Conclusion
TA Examples

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·
18/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

19/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Basic verification problems

basic reachability/safety properties

basic liveness properties

Is the language accepted by a timed automaton empty?

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

20/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Basic verification problems

basic reachability/safety properties (final states)

basic liveness properties (ω-regular conditions)

Is the language accepted by a timed automaton empty?

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

20/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Basic verification problems

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

20/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Basic verification problems

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

20/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Basic verification problems

Problem: the set of configurations is infinite
; classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

20/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

Starting at s0, can we visit s2 and then s3?

Method: construct a finite abstraction

21/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

Starting at s0, can we visit s2 and then s3?

Method: construct a finite abstraction

21/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

Starting at s0, can we visit s2 and then s3?

Method: construct a finite abstraction

21/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

22/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

23/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃ with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1 ∃ with v ′i ∈ Ri. . .

24/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

- region R defined by: 0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x

25/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

- region R defined by: 0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x

25/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

- region R defined by: 0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x

25/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The construction of the region graph

It “mimicks” the behaviours of the clocks.

0
0

1

1

2

2

y

x

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x :=0

x :=0

26/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The construction of the region graph

It “mimicks” the behaviours of the clocks.

0
0

1

1

2

2

y

x

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x :=0

x :=0

26/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Region automaton ≡ finite bisimulation quotient

⊗
region graphtimed automaton

s1 s2
y<1,a,x :=0

s1

s1

s1

s2

a

a

a

region automaton

language(reg. aut.) = UNTIME(language(timed aut.))
27/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Region automaton ≡ finite bisimulation quotient

⊗
region graphtimed automaton

s1 s2
y<1,a,x :=0

s1

s1

s1

s2

a

a

a

region automaton

language(reg. aut.) = UNTIME(language(timed aut.))
27/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Region automaton ≡ finite bisimulation quotient

⊗
region graphtimed automaton

s1 s2
y<1,a,x :=0

s1

s1

s1

s2

a

a

a

region automaton

language(reg. aut.) = UNTIME(language(timed aut.))
27/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

28/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

28/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

28/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

It can be used to check for:
reachability/safety properties
liveness properties (Büchi/ω-regular properties)
LTL properties

Problems with Zeno behaviours?
(infinitely many actions in bounded time)

29/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

It can be used to check for:
reachability/safety properties
liveness properties (Büchi/ω-regular properties)
LTL properties

Problems with Zeno behaviours?
(infinitely many actions in bounded time)

29/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

It can be used to check for:
reachability/safety properties
liveness properties (Büchi/ω-regular properties)
LTL properties

Problems with Zeno behaviours?
(infinitely many actions in bounded time)

29/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:∏

x∈X

(2Mx + 2) · |X |! · 2|X |

It can be used to check for:
reachability/safety properties
liveness properties (Büchi/ω-regular properties)
LTL properties

Problems with Zeno behaviours?
(infinitely many actions in bounded time)

29/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

30/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

30/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

30/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

Zeno cycles

30/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the example

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

Cycles with
non-Zeno behaviours

30/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Complexity issues

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
[FJ13] Fearnley, Jurdziński. Reachability in two-clock timed automata is PSPACE-complete (ICALP’13).

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

PSPACE upper bound: guess a path in the region automaton

31/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

PSPACE upper bound: guess a path in the region automaton

31/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

PSPACE upper bound: guess a path in the region automaton

region R defined by: 0 < x < 1
0 < y < 1
y < x

0
0

1

1

2

2

y

x

31/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

PSPACE upper bound: guess a path in the region automaton

PSPACE lower bound: by reduction from a linearly-bounded Turing
machine M

maximal number of cells in use: N

tape of M
cell Ci

a

xi ≤ 1

cell Cj

b

xj > 2

31/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

PSPACE upper bound: guess a path in the region automaton

PSPACE lower bound: by reduction from a linearly-bounded Turing
machine M

maximal number of cells in use: N

tape of M
cell Ci

a

xi ≤ 1

cell Cj

b

xj > 2

31/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj ≤ 4: cell j contains an a

constraint xj > 4: cell j contains a b

reset of clock xj : the new content is an a
no reset of clock xj : the new content is a b

32/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj ≤ 4: cell j contains an a

constraint xj > 4: cell j contains a b

reset of clock xj : the new content is an a
no reset of clock xj : the new content is a b

32/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj ≤ 4: cell j contains an a
constraint xj > 4: cell j contains a b

reset of clock xj : the new content is an a
no reset of clock xj : the new content is a b

32/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj ≤ 4: cell j contains an a
constraint xj > 4: cell j contains a b

reset of clock xj : the new content is an a

no reset of clock xj : the new content is a b

32/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Example of the simulation of a rule (q, a, b, q′,→):

... ...q,i q′,i+1
u:=0 u=2

x1≤4,x1:=0

x1>4

xi≤4
xN≤4,xN :=0

xN>4

u=3

constraint xj ≤ 4: cell j contains an a
constraint xj > 4: cell j contains a b

reset of clock xj : the new content is an a
no reset of clock xj : the new content is a b

32/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The case of single-clock timed automata

0 1 2 3 4 5

0 2 5

if only constants 0, 2 and 5 are used

33/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The case of single-clock timed automata

0 2 5

if only constants 0, 2 and 5 are used

33/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Discussion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata

model-checking of branching-time properties (TCTL, timed
µ-calculus)

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

o-minimal hybrid systems

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

34/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Discussion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata

model-checking of branching-time properties (TCTL, timed
µ-calculus)

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

o-minimal hybrid systems

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

34/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Discussion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata

model-checking of branching-time properties (TCTL, timed
µ-calculus)

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

o-minimal hybrid systems

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

34/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Discussion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata

model-checking of branching-time properties (TCTL, timed
µ-calculus)

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

o-minimal hybrid systems

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

34/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Discussion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata

model-checking of branching-time properties (TCTL, timed
µ-calculus)

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

o-minimal hybrid systems

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

34/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Discussion

This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata

model-checking of branching-time properties (TCTL, timed
µ-calculus)

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

o-minimal hybrid systems

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

34/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

35/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)

decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

36/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)

decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

36/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)

decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

36/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)

decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

36/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Removing diagonal constraints

Assume c≥0

x−y≤c

y :=0
x :=0

copy where “x−y≤c”

y :=0
x :=0x :=0

true
x≤c,y :=0

copy where “x−y>c”

x−y≤c

y :=0

x :=0

8

x :=0

y :=0

x>c,y :=0

37/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Removing diagonal constraints

Assume c≥0

x−y≤c

y :=0
x :=0

copy where “x−y≤c”

y :=0
x :=0

x :=0

true

x≤c,y :=0

copy where “x−y>c”

x−y≤c

y :=0
x :=0

8

x :=0

y :=0

x>c,y :=0

37/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Removing diagonal constraints

Assume c≥0

x−y≤c

y :=0
x :=0

copy where “x−y≤c”

y :=0
x :=0

x :=0

true
x≤c,y :=0

copy where “x−y>c”

x−y≤c

y :=0
x :=0

8

x :=0

y :=0

x>c,y :=0

37/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Removing diagonal constraints

Assume c≥0

x−y≤c

y :=0
x :=0

copy where “x−y≤c”

y :=0

x :=0

x :=0

true
x≤c,y :=0

copy where “x−y>c”

x−y≤c

y :=0

x :=0

8

x :=0

y :=0

x>c,y :=0

37/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Removing diagonal constraints

Assume c≥0

x−y≤c

y :=0
x :=0

copy where “x−y≤c”

y :=0

x :=0

x :=0

true
x≤c,y :=0

copy where “x−y>c”

x−y≤c

y :=0

x :=0

8

x :=0

y :=0

x>c,y :=0

37/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Removing diagonal constraints

Assume c≥0

x−y≤c

y :=0
x :=0

copy where “x−y≤c”

y :=0

x :=0

x :=0

true

x≤c,y :=0

copy where “x−y>c”

x−y≤c

y :=0

x :=0

8

x :=0

y :=0

x>c,y :=0

37/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)
decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

Linear constraints (i.e. 2x + 3y ∼ 5)

undecidable in general

only decidable in few cases

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ∼ c)!

38/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)
decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

Linear constraints (i.e. 2x + 3y ∼ 5)

undecidable in general

only decidable in few cases

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ∼ c)!

38/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)
decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

Linear constraints (i.e. 2x + 3y ∼ 5)
undecidable in general

only decidable in few cases

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ∼ c)!

38/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)
decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

Linear constraints (i.e. 2x + 3y ∼ 5)
undecidable in general
only decidable in few cases

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ∼ c)!

38/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we extend the clock constraints?

Diagonal constraints (i.e. x − y ≤ 2)
decidable (with the same complexity)

is also a time-abstract bisimulation!

they can be removed (at an exponential price)

Linear constraints (i.e. 2x + 3y ∼ 5)
undecidable in general
only decidable in few cases

is a time-abstract bisimulation (when two
clocks x and y and constraints x + y ∼ c)!

38/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we allow more operations on clocks?

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x := 4), or ... [BDFP04]

simple constraints + diagonal constraints

x := c , x := y
x := x + 1
x := y + c
x := x − 1

x :< c
x :> c

x :∼ y + c
y + c <: x :< y + d
y + c <: x :< z + d

; need of being very careful when using more operations on clocks!

39/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we allow more operations on clocks?

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x := 4), or ... [BDFP04]

simple constraints + diagonal constraints

x := c , x := y
x := x + 1
x := y + c
x := x − 1

x :< c
x :> c

x :∼ y + c
y + c <: x :< y + d
y + c <: x :< z + d

; need of being very careful when using more operations on clocks!

39/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we allow more operations on clocks?

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x := 4), or ... [BDFP04]

simple constraints + diagonal constraints

x := c , x := y decidable
x := x + 1 decidable
x := y + c undecidable
x := x − 1 undecidable

x :< c

decidable

decidable
x :> c

undecidable
x :∼ y + c

y + c <: x :< y + d
y + c <: x :< z + d undecidable

; need of being very careful when using more operations on clocks!

39/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

What if we allow more operations on clocks?

[BDFP04] Bouyer, Dufourd, Fleury, Petit. Updatable Timed Automata (Theoretical Computer Science).

that can be transfer operations (i.e. x := y), or reinitialization
operations (i.e. x := 4), or ... [BDFP04]

simple constraints + diagonal constraints

x := c , x := y decidable
x := x + 1 decidable
x := y + c undecidable
x := x − 1 undecidable

x :< c

decidable

decidable
x :> c

undecidable
x :∼ y + c

y + c <: x :< y + d
y + c <: x :< z + d undecidable

; need of being very careful when using more operations on clocks!

39/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Visually...

The example of decrement updates x := x − 1

If we want a time-abstract bisimulation...

; an infinite number of regions

40/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

And formally...

We can simulate a two-counter machine!

41/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

And formally...

We can simulate a two-counter machine!

Definition

A two-counter machine is a finite set of instructions over two counters (c
and d):

Incrementation:

(p): c := c + 1; goto (q)

Decrementation:

(p): if c > 0 then c := c − 1; goto (q) else goto (r)

Theorem [Minsky 67]

The halting and recurring problems for two counter machines are
undecidable.

41/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

And formally...

We can simulate a two-counter machine!

Clocks x and y store the two counters...

Increment x

u:=0 u=1

u:=0, y :=y−1

Decrement x

u:=0 u=0

x :=x−1

41/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

And formally...

We can simulate a two-counter machine!

Clocks x and y store the two counters...

Increment x

u:=0 u=1

u:=0, y :=y−1

Decrement x

u:=0 u=0

x :=x−1

41/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the task-graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

42/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Back to the task-graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

How to model energy consumption?

42/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

A note on hybrid automata (see more on Thursday)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example

Off

Ṫ =−0.5T

(T≥18)

On

Ṫ =2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for
stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

43/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

A note on hybrid automata (see more on Thursday)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example

Off

Ṫ =−0.5T

(T≥18)

On

Ṫ =2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for
stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

43/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

A note on hybrid automata (see more on Thursday)

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

The thermostat example

Off

Ṫ =−0.5T

(T≥18)

On

Ṫ =2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for
stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

43/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

44/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted timed automata

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

The model of weighted automata

hybrid variables are observer variables (they do not
constrain a priori the system)

; models energy consumption, bandwidth, price to pay, etc.

Skip

45/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted timed automata

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

The model of weighted automata

hybrid variables are observer variables (they do not
constrain a priori the system)

; models energy consumption, bandwidth, price to pay, etc.

Skip

45/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

46/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction is not fine enough

time elapsing

reset to 0

47/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The corner-point abstraction

3
0 0

0

0 0
3

7

7

We can somehow discretize the behaviours...

48/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The corner-point abstraction

3
0 0

0

0 0
3

7

7

We can somehow discretize the behaviours...

48/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

ß

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded constraint as above and f be a function

f : (t1, ..., tn) 7→
n∑

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

49/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

ß

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded constraint as above and f be a function

f : (t1, ..., tn) 7→
n∑

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

49/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

ß
t1+t2≤2

t2+t3+t4≥5

x≤2

y :=0 y≥5

Lemma
Let Z be a bounded constraint as above and f be a function

f : (t1, ..., tn) 7→
n∑

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

49/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

ß
t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded constraint as above and f be a function

f : (t1, ..., tn) 7→
n∑

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

49/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

ß
t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded constraint as above and f be a function

f : (t1, ..., tn) 7→
n∑

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

49/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

ß
t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma
Let Z be a bounded constraint as above and f be a function

f : (t1, ..., tn) 7→
n∑

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

49/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

50/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

50/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

50/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η

50/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

The optimal-cost reachability problem is decidable (and
PSPACE-complete) in weighted timed automata.

51/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

Further problems of interest

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).
[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).
[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Timed automata with observers under energy constraints (HSCC’10).
[BFM12] Bouyer, Larsen, Markey. Lower-bound constrained runs in weighted timed automata (QEST’12).

Relevant questions

Optimization questions:

optimal reachability
optimal average consumption
. . .

Management of resources:

a lower bound global constraint (your bank account)
a lower and an upper bound global constraint (the tank of your car,
the pressure in a pump)
. . .

; lots of developments, many open problems

52/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

53/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

54/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

x0 x1 x2

x0

x1

x2

Ñ
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

é
DBM: Difference Bound Matrice [BM83,Dill89]

55/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4
x0

x1 x2

−3 +5

+4

DBM: Difference Bound Matrice [BM83,Dill89]

55/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4
x0

x1 x2

−3

9

4

2

0

5

0

0 0

DBM: Difference Bound Matrice [BM83,Dill89]

55/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

94

2

x0 x1 x2

x0

x1

x2

Ñ
0 −3 0
9 0 4
5 2 0

é
“normal form”

DBM: Difference Bound Matrice [BM83,Dill89]

55/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Backward computation

Final

Init

56/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Backward computation

Final

Init

56/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Backward computation

Final

Init

56/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Backward computation

Final

Init

56/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Backward computation

Final

Init

56/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis of timed automata

` `′
g , a,Y := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

y

x

Z

y

x

[y←0]−1(Z∩(y=0))

y

x

y

x

←−−−−−−−−−−−−−−−−
[y←0]−1(Z∩(y=0))∩g

57/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis of timed automata

` `′
g , a,Y := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

y

x

Z

y

x

[y←0]−1(Z∩(y=0))

y

x

y

x

←−−−−−−−−−−−−−−−−
[y←0]−1(Z∩(y=0))∩g

57/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis of timed automata

` `′
g , a,Y := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

y

x

Z

y

x

[y←0]−1(Z∩(y=0))

y

x

y

x

←−−−−−−−−−−−−−−−−
[y←0]−1(Z∩(y=0))∩g

57/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis of timed automata

` `′
g , a,Y := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

y

x

Z

y

x

[y←0]−1(Z∩(y=0))

y

x

y

x

←−−−−−−−−−−−−−−−−
[y←0]−1(Z∩(y=0))∩g

57/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis of timed automata

` `′
g , a,Y := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

y

x

Z

y

x

[y←0]−1(Z∩(y=0))

y

x

y

x

←−−−−−−−−−−−−−−−−
[y←0]−1(Z∩(y=0))∩g

57/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

v ∈
←−
R (for ex. v + t ∈ R)

v ′ ≡reg. v

There exists t′ s.t. v ′ + t′ ≡reg. v + t, which implies that v ′ + t′ ∈ R and thus v ′ ∈
←−
R .

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)

58/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward computation

Init

Final

59/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward computation

Init

Final

59/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward computation

Init

Final

59/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward computation

Init

Final

59/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward computation

Init

Final

59/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward analysis of timed automata

` `′
g , a,Y := 0

Z [Y ← 0](
−→
Z ∩ g)

y

x

Z

y

x

−→
Z

y

x

−→
Z ∩g

y

x

[y←0](
−→
Z ∩g)

60/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward analysis of timed automata

` `′
g , a,Y := 0

Z [Y ← 0](
−→
Z ∩ g)

y

x

Z

y

x

−→
Z

y

x

−→
Z ∩g

y

x

[y←0](
−→
Z ∩g)

60/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward analysis of timed automata

` `′
g , a,Y := 0

Z [Y ← 0](
−→
Z ∩ g)

y

x

Z

y

x

−→
Z

y

x

−→
Z ∩g

y

x

[y←0](
−→
Z ∩g)

60/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward analysis of timed automata

` `′
g , a,Y := 0

Z [Y ← 0](
−→
Z ∩ g)

y

x

Z

y

x

−→
Z

y

x

−→
Z ∩g

y

x

[y←0](
−→
Z ∩g)

60/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Forward analysis of timed automata

` `′
g , a,Y := 0

Z [Y ← 0](
−→
Z ∩ g)

y

x

Z

y

x

−→
Z

y

x

−→
Z ∩g

y

x

[y←0](
−→
Z ∩g)

60/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...

61/100



Introduction Decidability Implementation Other problems Timed control Conclusion

An abstraction: the extrapolation operator

Approx2(Z ): “the smallest zone containing Z that is defined only with
constants no more than 2”

3

x2

x1

5

2

Z

4 9Ñ
0 −3 0
9 0 4
5 2 0

é

Ñ
0 −2 0
∞ 0 ∞
∞ 2 0

é
Approx2

; The extrapolation operator ensures termination of the computation!
62/100



Introduction Decidability Implementation Other problems Timed control Conclusion

An abstraction: the extrapolation operator

Approx2(Z ): “the smallest zone containing Z that is defined only with
constants no more than 2”

Approx2(Z)

x2

x1

Z

2

2

Ñ
0 −3 0
9 0 4
5 2 0

é Ñ
0 −2 0
∞ 0 ∞
∞ 2 0

é
Approx2

; The extrapolation operator ensures termination of the computation!
62/100



Introduction Decidability Implementation Other problems Timed control Conclusion

The extrapolation: correctness

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

Theorem
The algorithm using the extrapolation w.r.t. the maximal constant is
correct for timed automata with only rectangular constraints.
Note: the hypothesis on the constraints is crucial.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

63/100



Introduction Decidability Implementation Other problems Timed control Conclusion

The extrapolation: correctness

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

Theorem
The algorithm using the extrapolation w.r.t. the maximal constant is
correct for timed automata with only rectangular constraints.
Note: the hypothesis on the constraints is crucial.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

63/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

over-approximations can be used

convex-hull

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

the representation of zones can be improved [DHLP06]

64/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

over-approximations can be used

convex-hull

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

the representation of zones can be improved [DHLP06]

64/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

over-approximations can be used

convex-hull

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

the representation of zones can be improved [DHLP06]

64/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Improving the classical algorithm

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS’03).
[DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS’06).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

over-approximations can be used

convex-hull

heuristics can be added

order for exploration
symmetry reduction [HBL+03]

the representation of zones can be improved [DHLP06]

64/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

65/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

66/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Strong timed (bi)simulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d > 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

(see later for a simple proof of the upper bound)

67/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Language (or trace) equivalence and inclusion

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Question

Given two timed automata A and B, is L(A) = L(B) (resp.
L(A) ⊆ L(B))?

Theorem [AD90,AD94]

Language equivalence and language inclusion are undecidable in timed
automata.

... as a special case of the universality problem (are all timed words

accepted by the automaton?).

; Proof by reduction from the recurring problem
of a two-counter machine

68/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Language (or trace) equivalence and inclusion

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Question

Given two timed automata A and B, is L(A) = L(B) (resp.
L(A) ⊆ L(B))?

Theorem [AD90,AD94]

Language equivalence and language inclusion are undecidable in timed
automata.

... as a special case of the universality problem (are all timed words

accepted by the automaton?).

; Proof by reduction from the recurring problem
of a two-counter machine

68/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Language (or trace) equivalence and inclusion

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Question

Given two timed automata A and B, is L(A) = L(B) (resp.
L(A) ⊆ L(B))?

Theorem [AD90,AD94]

Language equivalence and language inclusion are undecidable in timed
automata.

... as a special case of the universality problem (are all timed words

accepted by the automaton?).

; Proof by reduction from the recurring problem
of a two-counter machine

68/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Undecidability of universality

Theorem [AD90,AD94]

Universality of timed automata is undecidable.

69/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Undecidability of universality

Theorem [AD90,AD94]

Universality of timed automata is undecidable.

b0 b1 b2 b3

1 t.u. = 1 config

c c c c c cc c c ccd d d d d d d d d d d

value of c

1 t.u. = 1 config

decrementation of d

one configuration is encoded in one time unit

number of c ’s: value of counter c

number of d ’s: value of counter d

one time unit between two corresponding c ’s (resp. d ’s)

69/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Undecidability of universality

Theorem [AD90,AD94]

Universality of timed automata is undecidable.

b0 b1 b2 b3

1 t.u. = 1 config

c c c c c cc c c ccd d d d d d d d d d d

value of c

1 t.u. = 1 config

decrementation of d

one configuration is encoded in one time unit

number of c ’s: value of counter c

number of d ’s: value of counter d

one time unit between two corresponding c ’s (resp. d ’s)

; We encode “non-behaviours” of a two-counter machine
69/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Example

Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

s0 s1 s2
bi , x := 0 x < 1, c , x := 0

x = 1,¬c

x 6= 1

The union of all small modules is not universal
iff

The two-counter machine has a recurring computation

70/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Example

Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

s0 s1 s2
bi , x := 0 x < 1, c , x := 0

x = 1,¬c

x 6= 1

The union of all small modules is not universal
iff

The two-counter machine has a recurring computation

70/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).

[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Bad consequences

Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)

Complementability is undecidable [Tri03,Fin06]

...

71/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).

[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Bad consequences

Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)

Complementability is undecidable [Tri03,Fin06]

...

An example of non-determinizable/non-complementable timed aut.:

s0 s1 s2
a, x := 0 x = 1, a

a a a

71/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).
[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Bad consequences

Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)

Complementability is undecidable [Tri03,Fin06]

...

An example of non-determinizable/non-complementable aut.: [AM04]

s0 s1
a, x := 0

a, b x 6= 1, a, b

UNTIME
(

L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}
)

is

not regular (exercise!)

71/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS’03).
[Fin06] Finkel. Undecidable problems about timed automata (FORMATS’06).
[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Bad consequences

Language inclusion is undecidable [AD90,AD94]
(Bad news for the application to verification)

Complementability is undecidable [Tri03,Fin06]

...

An example of non-determinizable/non-complementable aut.: [AM04]

s0 s1
a, x := 0

a, b x 6= 1, a, b

UNTIME
(

L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}
)

is

not regular (exercise!)

71/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

72/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Timed temporal logics

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

Branching-time: TCTL

TCTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eϕ UI ϕ

where I is an interval with integral bounds.

Linear-time: MTL [Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where I is an interval with integral bounds.

Alternative: add variables (clocks) to the logics, e.g. TPTL

; interpreted over signals

(or over timed words)

0 1 2 3 4

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

73/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Timed temporal logics

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

Branching-time: TCTL

TCTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eϕ UI ϕ

where I is an interval with integral bounds.

Linear-time: MTL [Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where I is an interval with integral bounds.

Alternative: add variables (clocks) to the logics, e.g. TPTL

; interpreted over signals

(or over timed words)

0 1 2 3 4

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

73/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Timed temporal logics

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

Branching-time: TCTL

TCTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eϕ UI ϕ

where I is an interval with integral bounds.

Linear-time: MTL [Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where I is an interval with integral bounds.

Alternative: add variables (clocks) to the logics, e.g. TPTL

; interpreted over signals (or over timed words)

0 1 2 3 4

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

73/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Timed temporal logics

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

Branching-time: TCTL

TCTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eϕ UI ϕ

where I is an interval with integral bounds.

Linear-time: MTL [Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where I is an interval with integral bounds.

Alternative: add variables (clocks) to the logics, e.g. TPTL

; interpreted over signals (or over timed words)

0 1 2 3 4

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

73/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Examples

0 1 2 3 4
|= • U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

“Every problem is followed within 56 time units by an alarm”

G(problem→ F≤56 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G(problem→ (F≤15 repair ∨ G[12,15) alarm))

74/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Examples

0 1 2 3 4
|= • U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

“Every problem is followed within 56 time units by an alarm”

G(problem→ F≤56 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G(problem→ (F≤15 repair ∨ G[12,15) alarm))

74/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Examples

0 1 2 3 4
|= • U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

“Every problem is followed within 56 time units by an alarm”

G(problem→ F≤56 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G(problem→ (F≤15 repair ∨ G[12,15) alarm))

74/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Examples

0 1 2 3 4
|= • U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

“Every problem is followed within 56 time units by an alarm”

G(problem→ F≤56 alarm)

“Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G(problem→ (F≤15 repair ∨ G[12,15) alarm))

74/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Model-checking timed temporal logics

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

Branching-time logic TCTL [ACD93]

The model-checking of TCTL is PSPACE-complete!
(The region abstraction can be used, with an extra clock for the formula)

75/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Model-checking timed temporal logics

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).

Branching-time logic TCTL [ACD93]

The model-checking of TCTL is PSPACE-complete!
(The region abstraction can be used, with an extra clock for the formula)

Linear-time logic MTL [AFH96,OW05]

The model-checking of MTL is undecidable/NPR.
Some fragments with decidable model-checking have been designed.

75/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Model-checking timed temporal logics

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP’08).
[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).
[OW06] Ouaknine, Worrell. Safety Metric Temporal Logic is Fully Decidable (TACAS’06).

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

PSPACE-c.

undec./NPR

EXPSPACE-c.

Technics: alternating timed automata, channel machines, small-model
properties

75/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Model-checking timed temporal logics

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).

Branching-time logic TCTL [ACD93]

The model-checking of TCTL is PSPACE-complete!
(The region abstraction can be used, with an extra clock for the formula)

Linear-time logic MTL [AFH96,OW05]

The model-checking of MTL is undecidable/NPR.
Some fragments with decidable model-checking have been designed.

75/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

A focus on MITL

The nightmare of timed temporal logics

Requiring too much precision, and hence too many clocks!!

Example

G(• → F=1 •)

each time an • occurs, start a new clock, and check that a • occurs
1 time unit later

this requires an unbounded number of clocks

The logic MITL

Bans “punctual” constraints

Consequences:

+ we can bound the variability of signals
+ an MITL formula defines a timed regular language

76/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

A focus on MITL

The nightmare of timed temporal logics

Requiring too much precision, and hence too many clocks!!

Example

G(• → F=1 •)

each time an • occurs, start a new clock, and check that a • occurs
1 time unit later

this requires an unbounded number of clocks

The logic MITL

Bans “punctual” constraints

Consequences:

+ we can bound the variability of signals
+ an MITL formula defines a timed regular language

76/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

A focus on MITL

The nightmare of timed temporal logics

Requiring too much precision, and hence too many clocks!!

Example

G(• → F=1 •)

each time an • occurs, start a new clock, and check that a • occurs
1 time unit later

this requires an unbounded number of clocks

The logic MITL

Bans “punctual” constraints

Consequences:

+ we can bound the variability of signals
+ an MITL formula defines a timed regular language

76/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Formula G(0,1)(a→ F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=0

y :=0

x,y :=0

y :=0

x :=0

+ This idea can be extended to any formula in MITL

77/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Formula G(0,1)(a→ F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=0

y :=0

x,y :=0

y :=0

x :=0

+ This idea can be extended to any formula in MITL

77/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Formula G(0,1)(a→ F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=0

y :=0

x,y :=0

y :=0

x :=0

+ This idea can be extended to any formula in MITL

77/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Formula G(0,1)(a→ F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=0

y :=0

x,y :=0

y :=0

x :=0

+ This idea can be extended to any formula in MITL

77/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Equivalence Timed logics

Formula G(0,1)(a→ F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=0

y :=0

x,y :=0

y :=0

x :=0

+ This idea can be extended to any formula in MITL

77/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

78/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

to model an interaction with the environment

Example of the gate in the train/gate example

?

79/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with the environment

Example of the gate in the train/gate example

?

79/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with the environment

Example of the gate in the train/gate example

?

79/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with the environment

Example of the gate in the train/gate example

?

79/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with the environment

Example of the gate in the train/gate example

?

79/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

80/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)

; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered

Does there exist a winning strategy?

If yes, compute one (as simple as possible).

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered
Does there exist a winning strategy?

If yes, compute one (as simple as possible).

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered
Does there exist a winning strategy?

If yes, compute one (as simple as possible).

81/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

82/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

82/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP’07).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

82/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states

83/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability via attractors

Preda(X ) = {• | • a−→ • ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

a cont.
Preda(X ) uPred(X ) =

⋃
a uncont.

Preda(X )

time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

84/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability via attractors

Preda(X ) = {• | • a−→ • ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

a cont.
Preda(X ) uPred(X ) =

⋃
a uncont.

Preda(X )

time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

84/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability via attractors

Preda(X ) = {• | • a−→ • ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

a cont.
Preda(X ) uPred(X ) =

⋃
a uncont.

Preda(X )

time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

84/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability via attractors

Preda(X ) = {• | • a−→ • ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

a cont.
Preda(X ) uPred(X ) =

⋃
a uncont.

Preda(X )

time controllable predecessors:

• •
delay t t.u.
•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

84/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Decidability via attractors

Preda(X ) = {• | • a−→ • ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

a cont.
Preda(X ) uPred(X ) =

⋃
a uncont.

Preda(X )

time controllable predecessors:

• •
delay t t.u.
•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}

84/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

85/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

85/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

85/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

85/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)

85/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))
= πn(,)

85/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions? Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions? Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions? Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions? Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!
... and is correct

86/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a safety objective

We can use operator π̃ defined by

π̃(X ) = Predδ(X ∩ cPred(X ),¬uPred(¬X ))

instead of π, and compute π̃∗(¬/)

It is also stable w.r.t. regions.

87/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Timed games with a safety objective

We can use operator π̃ defined by

π̃(X ) = Predδ(X ∩ cPred(X ),¬uPred(¬X ))

instead of π, and compute π̃∗(¬/)

It is also stable w.r.t. regions.

87/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Some remarks

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR’05).
[BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV’07).

The model
Our games are control games, and in particular they:

are asymmetric

the environment can preempt any decision of the controller
we take the point-of-view of the controller

are neither concurrent nor turn-based

do not take into account Zenoness considerations
; can be done adding a Büchi winning condition

Implementation

Uppaal-Tiga implements a forward algorithm to compute winning states
and winning strategies [CDF+05,BCD+07]

88/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Some remarks

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR’05).
[BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV’07).

The model
Our games are control games, and in particular they:

are asymmetric

the environment can preempt any decision of the controller
we take the point-of-view of the controller

are neither concurrent nor turn-based

do not take into account Zenoness considerations
; can be done adding a Büchi winning condition

Implementation

Uppaal-Tiga implements a forward algorithm to compute winning states
and winning strategies [CDF+05,BCD+07]

88/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Some remarks

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR’05).
[BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV’07).

The model
Our games are control games, and in particular they:

are asymmetric

the environment can preempt any decision of the controller
we take the point-of-view of the controller

are neither concurrent nor turn-based

do not take into account Zenoness considerations
; can be done adding a Büchi winning condition

Implementation

Uppaal-Tiga implements a forward algorithm to compute winning states
and winning strategies [CDF+05,BCD+07]

88/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃
δ(d)

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.

89/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

p

p′1

p′2

g1,a,Y1:=0

g2,a,Y2 :=0

timed automaton A

... q q′
g ,a,Y :=0

timed automaton B

...

p,q

tester

(z=0)

(z=0)

(z=0)

prover

/

g1,a,Y1:=0,z:=0

g2,a,Y2 :=0,z:=0

g ,a,Y :=0,z:=0

p′1,q
′

p′2,q
′

g∧(z=0),a,Y

g1∧(z=0),a,Y1

g∧(z=0),a,Y

g2∧(z=0),a,Y2

...

(z=0)∧¬g ,a

90/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

p

p′1

p′2

g1,a,Y1:=0

g2,a,Y2 :=0

timed automaton A

... q q′
g ,a,Y :=0

timed automaton B

...

p,q

tester

(z=0)

(z=0)

(z=0)

prover

/

g1,a,Y1:=0,z:=0

g2,a,Y2 :=0,z:=0

g ,a,Y :=0,z:=0

p′1,q
′

p′2,q
′

g∧(z=0),a,Y

g1∧(z=0),a,Y1

g∧(z=0),a,Y

g2∧(z=0),a,Y2

...

(z=0)∧¬g ,a

90/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

p

p′1

p′2

g1,a,Y1:=0

g2,a,Y2 :=0

timed automaton A

... q q′
g ,a,Y :=0

timed automaton B

...

p,q

tester

(z=0)

(z=0)

(z=0)

prover

/

g1,a,Y1:=0,z:=0

g2,a,Y2 :=0,z:=0

g ,a,Y :=0,z:=0

p′1,q
′

p′2,q
′

g∧(z=0),a,Y

g1∧(z=0),a,Y1

g∧(z=0),a,Y

g2∧(z=0),a,Y2

...

(z=0)∧¬g ,a

90/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

p

p′1

p′2

g1,a,Y1:=0

g2,a,Y2 :=0

timed automaton A

... q q′
g ,a,Y :=0

timed automaton B

...

p,q

tester

(z=0)

(z=0)

(z=0)

prover

/

g1,a,Y1:=0,z:=0

g2,a,Y2 :=0,z:=0

g ,a,Y :=0,z:=0

p′1,q
′

p′2,q
′

g∧(z=0),a,Y

g1∧(z=0),a,Y1

g∧(z=0),a,Y

g2∧(z=0),a,Y2

...

(z=0)∧¬g ,a

90/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

p

p′1

p′2

g1,a,Y1:=0

g2,a,Y2 :=0

timed automaton A

... q q′
g ,a,Y :=0

timed automaton B

...

p,q

tester

(z=0)

(z=0)

(z=0)

prover

/

g1,a,Y1:=0,z:=0

g2,a,Y2 :=0,z:=0

g ,a,Y :=0,z:=0

p′1,q
′

p′2,q
′

g∧(z=0),a,Y

g1∧(z=0),a,Y1

g∧(z=0),a,Y

g2∧(z=0),a,Y2

...

(z=0)∧¬g ,a

90/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

timed automaton A

...

timed automaton B

...

/

...

A and B are strongly timed bisimilar
iff

the prover has a winning strategy to avoid /

91/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

92/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

A simple weighted timed game

Skip

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

93/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Optimal reachability in weighted timed games

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last ten years...
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

Theorem [BBR05,BBM06,recent work]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (with two rates). They are
PTIME-hard.

94/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Optimal reachability in weighted timed games

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last ten years...
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

Theorem [BBR05,BBM06,recent work]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (with two rates). They are
PTIME-hard.

94/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

Optimal reachability in weighted timed games

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last ten years...
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

Theorem [BBR05,BBM06,recent work]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (with two rates). They are
PTIME-hard.

94/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The positive side (one-clock case)

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

95/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The positive side (one-clock case)

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

95/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The positive side (one-clock case)

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

95/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The positive side (one-clock case)

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

Rather involved proof of correctness for a simple algorithm.

95/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

96/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ñ
x= 1

2c

y= 1

3d

z=α

éu=1,u:=0

Testy (x=2z)

97/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ñ
x= 1

2c

y= 1

3d

z=α

éu=1,u:=0

Testy (x=2z)

97/100



Introduction Decidability Implementation Other problems Timed control Conclusion
Timed games WTG

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ñ
x= 1

2c

y= 1

3d

z=α

éu=1,u:=0

Testy (x=2z)

97/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Outline

1 Introduction
Timed automata
Examples

2 Decidability of basic properties
The region abstraction
Extensions of timed automata
Weighted timed automata

3 Implementation and tools

4 Other verification problems
Equivalence (or preorder) checking
Verification of timed temporal logics (short)

5 Timed control
Timed games
Weighted timed games

6 Conclusion

98/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Conclusion

The model of timed automata:

, Some nice properties (decidability of many structural properties,
symbolic algorithms, ...)

/ Not all good properties though...
(e.g. inclusion undecidable)

, Sucessfully used!!

Many extensions have been studied, which allows more accurate
modelling of real systems:

Weighted timed automata
Timed games
Probabilistic/stochastic timed automata
Alternating timed automata
Hybrid automata
...

Going further in the use of timed automata in verification...
... requires to think about the accurateness of the (mathematical)
model we analyze w.r.t. the real-world system

99/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100



Introduction Decidability Implementation Other problems Timed control Conclusion

Just a taste...

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges

Can we implement such a strategy??

+ lecture of Pierre-Alain tomorrow afternoon!

100/100


	Introduction
	Timed automata
	Examples

	Decidability of basic properties
	The region abstraction
	Extensions of timed automata
	Weighted timed automata

	Implementation and tools
	Other verification problems
	Equivalence (or preorder) checking
	Verification of timed temporal logics (short)

	Timed control
	Timed games
	Weighted timed games

	Conclusion

