An introduction to timed automata

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Outline

Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

- Timed games
- Weighted timed games

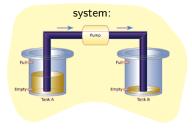
6 Conclusion

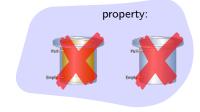
Time-dependent systems

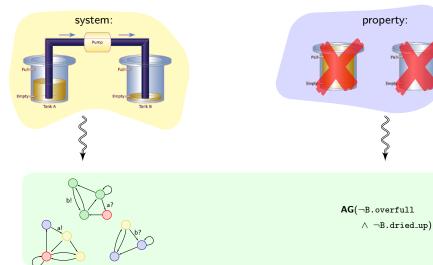
• We are interested in timed systems

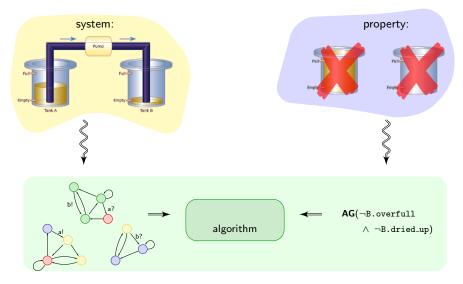

Time-dependent systems

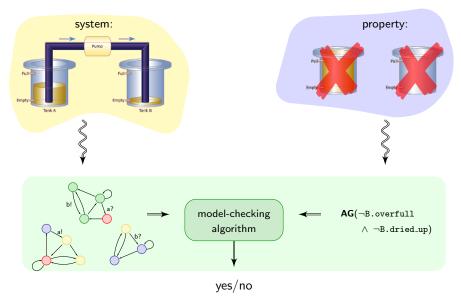
• We are interested in timed systems

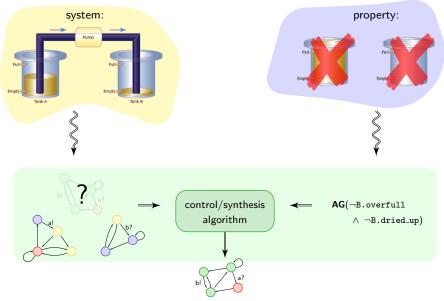

Time-dependent systems


• We are interested in timed systems




• and in their correctness


"Will the airbag open within 5ms after the car crashes?" "Will the robot explore a given area without getting out of energy?"



Outline

1 Introduction

Timed automata

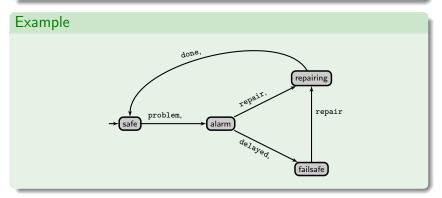
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

- Timed games
- Weighted timed games

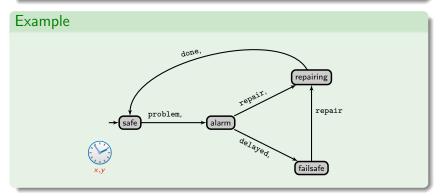
6 Conclusion

A plethora of models

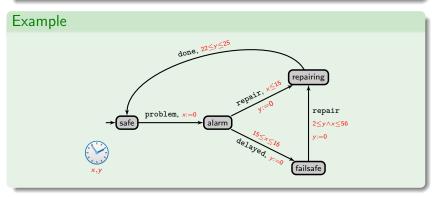

- timed circuits,
- time(d) Petri nets,
- timed automata,
- timed process algebra,
- • •

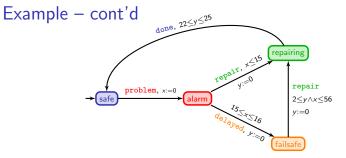
A plethora of models

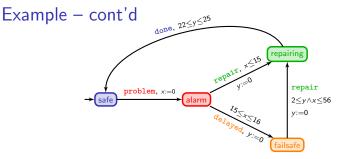
- timed circuits,
- time(d) Petri nets,
- timed automata,
- timed process algebra,
- • •


The model of timed automata [AD94]

- A timed automaton is made of
 - a finite automaton-based structure

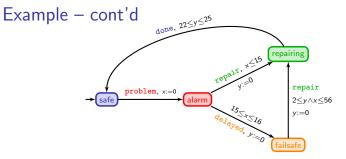

The model of timed automata [AD94]

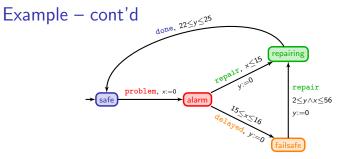

- A timed automaton is made of
 - a finite automaton-based structure
 - a set of clocks



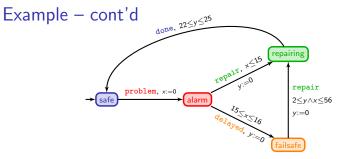
The model of timed automata [AD94]

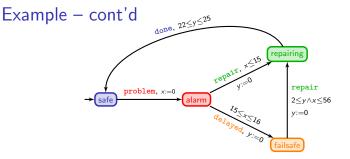
- A timed automaton is made of
 - a finite automaton-based structure
 - a set of clocks
 - timing constraints and clock resets on transitions





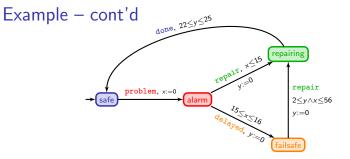
safe


- X 0
- у о



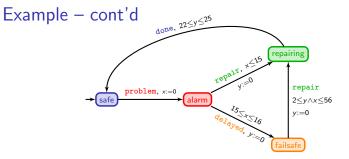
	safe	$\xrightarrow{23}$	safe	 alarm
х	0		23	0
у	0		23	23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm
х	0		23		0		15.6
у	0		23		23		38.6

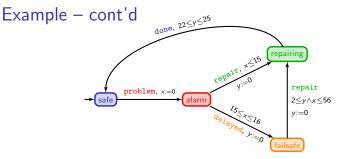


	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

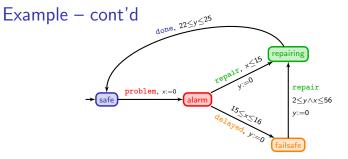
failsafe


... 15.6

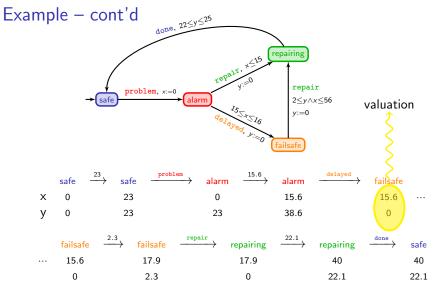
0

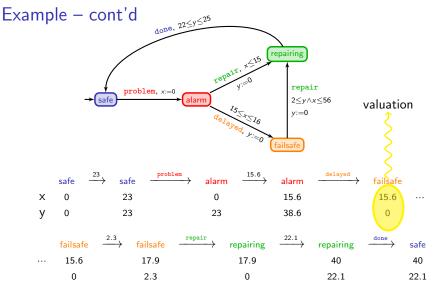

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

$$\begin{array}{ccc} \mbox{failsafe} & \xrightarrow{2.3} & \mbox{failsafe} \\ \cdots & 15.6 & 17.9 \\ 0 & 2.3 \end{array}$$


	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

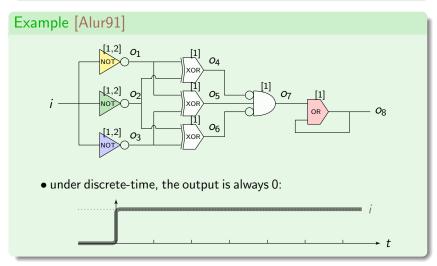
failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
 15.6		17.9		17.9
0		2.3		0

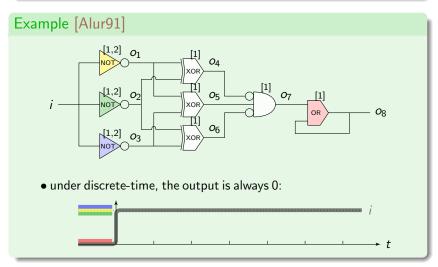

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}} \rightarrow$	failsafe	
х	0		23		0		15.6		15.6	
У	0		23		23		38.6		0	
			2				00.1			


	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing
•••	15.6		17.9		17.9		40
	0		2.3		0		22.1

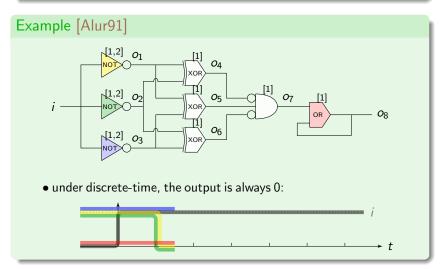
	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

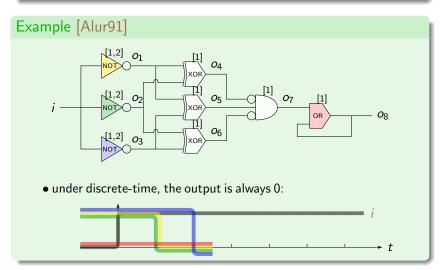
failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
 15.6		17.9		17.9		40		40
0		2.3		0		22.1		22.1

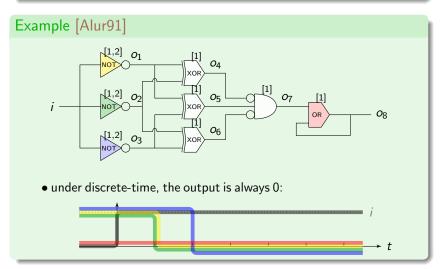


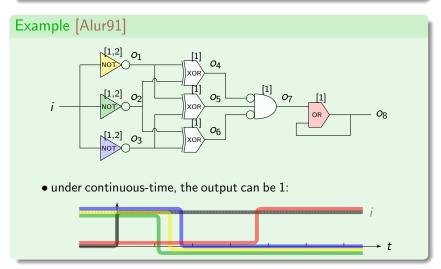

This run reads the timed word (problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63).

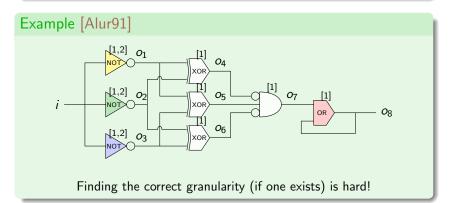
...because computers are digital!


...because computers are digital!

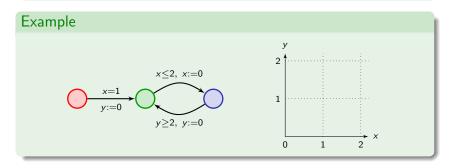

...because computers are digital!


...because computers are digital!

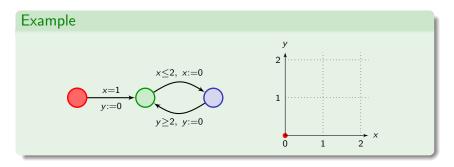

...because computers are digital!

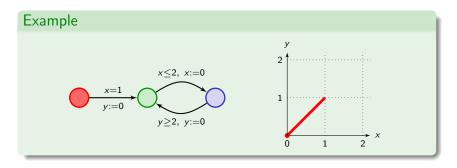

...because computers are digital!



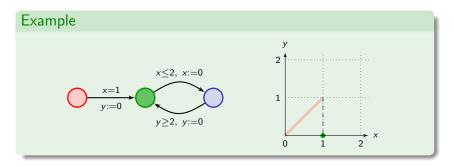

...because computers are digital!

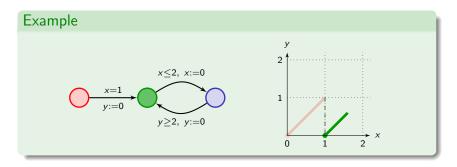



...because computers are digital!

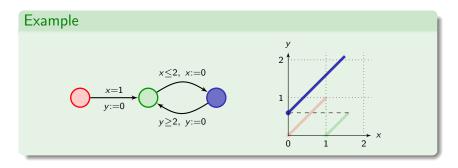


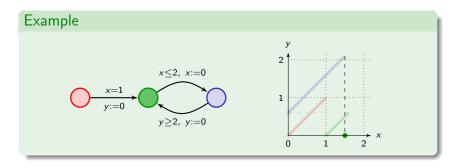


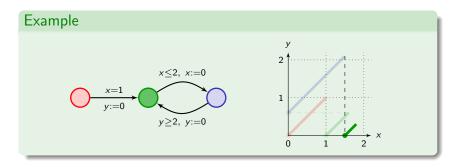


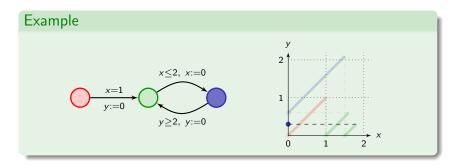


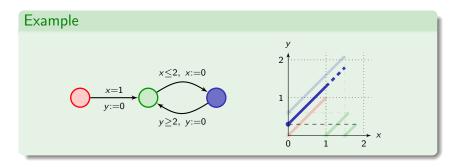


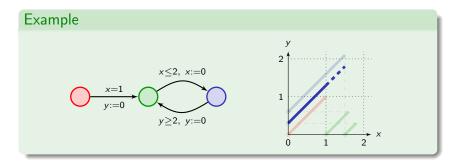












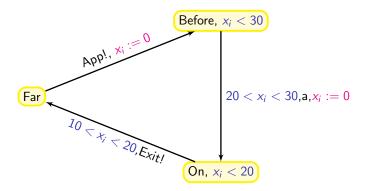
... real-time models for real-time systems!

We will focus on the continuous-time semantics, and discuss further its relevance at the end of the tutorial

Outline

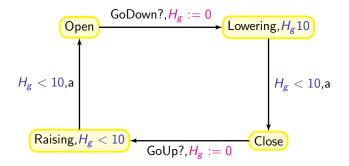
Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

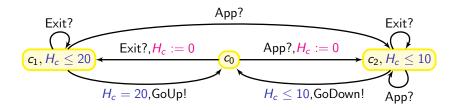

5 Timed control

- Timed games
- Weighted timed games

6 Conclusion


The train crossing example

Train_{*i*} with i = 1, 2, ...


The train crossing example - cont'd

The gate:

The train crossing example - cont'd

The controller:

The train crossing example – cont'd

We use the synchronization function f:

$Train_1$	$Train_2$	Gate	Controller	
App!			App?	Арр
	App!		App?	Арр
Exit!			Exit?	Exit
	Exit!		Exit?	Exit
а	•			а
	а			а
		а		а
		GoUp?	GoUp!	GoUp
	•	GoDown?	GoDown!	GoDown

to define the parallel composition (Train₁ \parallel Train₂ \parallel Gate \parallel Controller)

NB: the parallel composition does not add expressive power!

The train crossing example - cont'd

Some properties one could check:

• Is the gate closed when a train crosses the road?

The train crossing example - cont'd

Some properties one could check:

- Is the gate closed when a train crosses the road?
- Is the gate always closed for less than 5 minutes?

Another example: A mutual exclusion protocol

A mutual exclusion protocol with a shared variable *id* [AL94].

Another example: A mutual exclusion protocol

A mutual exclusion protocol with a shared variable *id* [AL94].

Process *i*:

- a: await (id = 0);
- b : set id to i;
- c: await (id = i);
- d : enter critical section.

 \sim a max. delay k_1 between a and b a min. delay k_2 between b and c

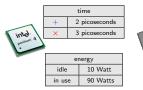
Another example: A mutual exclusion protocol

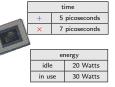
A mutual exclusion protocol with a shared variable *id* [AL94].

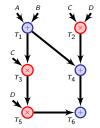
Process i:

- a: await (id = 0);
- *b* : set *id* to *i*;
- c: await (id = i);
- d : enter critical section.

 \sim a max. delay k_1 between a and b a min. delay k_2 between b and c


~ See the demo with the tool Uppaal
 (can be downloaded on http://www.uppaal.com/)


Another example: The task graph scheduling problem


Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

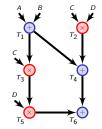
$$P_2$$
 (slow):

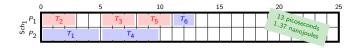
Another example: The task graph scheduling problem

 P_2 (slow):

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

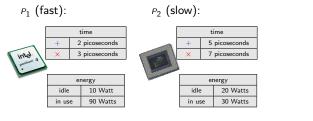
energy

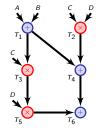

10 Watt

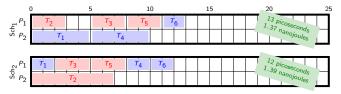

90 Watts

idle

in use

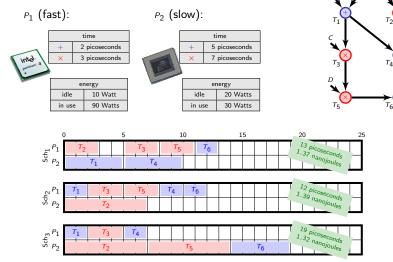


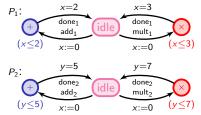


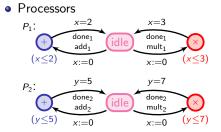


Another example: The task graph scheduling problem

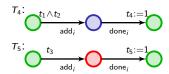
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

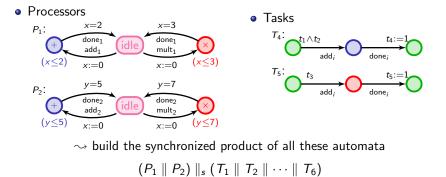


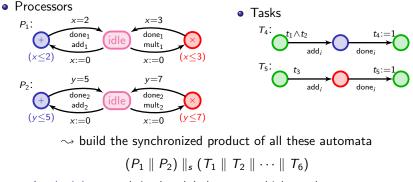


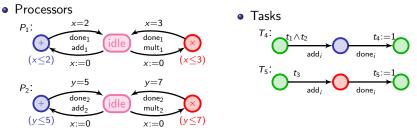

Another example: The task graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:




Processors




Tasks

A schedule: a path in the global system which reaches $t_1 \land \cdots \land t_6$

 \rightsquigarrow build the synchronized product of all these automata

 $(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$

A schedule: a path in the global system which reaches $t_1 \wedge \cdots \wedge t_6$

Questions one can ask

- Can the computation be made in no more than 10 time units?
- Is there a scheduling along which no processor is ever idle?

o . . .

Outline

1 Introduction

- Timed automata
- Examples

2 Decidability of basic properties

- The region abstraction
- Extensions of timed automata
- Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

- Timed games
- Weighted timed games

6 Conclusion

Verification

Basic verification problems

- basic reachability/safety properties
- basic liveness properties

Verification

Basic verification problems

- basic reachability/safety properties
- basic liveness properties

(final states)

(ω -regular conditions)

Is the language accepted by a timed automaton empty?

Verification

Basic verification problems

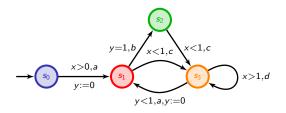
- Problem: the set of configurations is infinite
 - \rightsquigarrow classical methods for finite-state systems cannot be applied

Verification

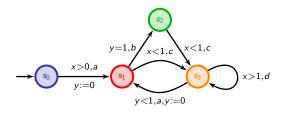
Basic verification problems

- Problem: the set of configurations is infinite
 ∼→ classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Verification

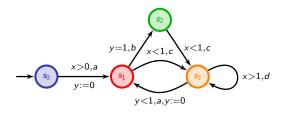

Basic verification problems

- Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed


Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete.

An example [AD94]



An example [AD94]

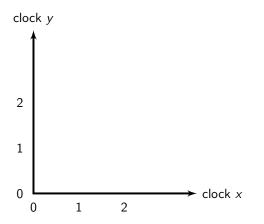
Starting at s_0 , can we visit s_2 and then s_3 ?

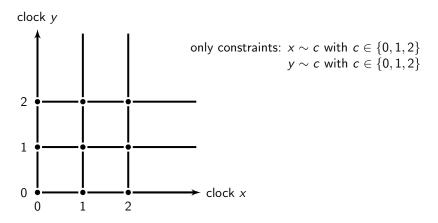
An example [AD94]

Starting at s_0 , can we visit s_2 and then s_3 ?

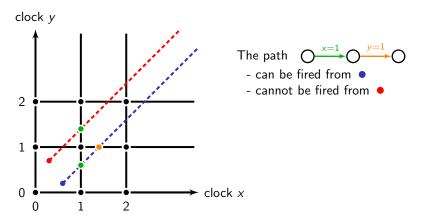
Method: construct a finite abstraction

Outline

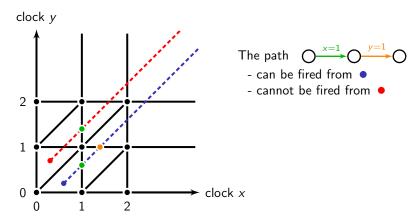

1 Introduction

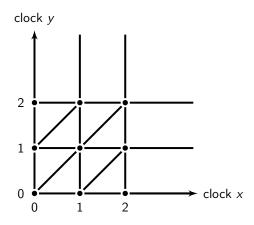

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

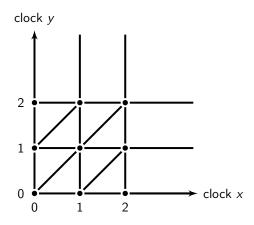

- Timed games
- Weighted timed games

6 Conclusion

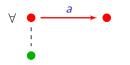



• "compatibility" between regions and constraints

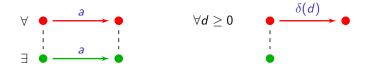
- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

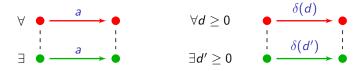

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

 \rightsquigarrow an equivalence of finite index



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

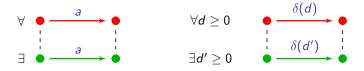
 \rightsquigarrow an equivalence of finite index a time-abstract bisimulation



This is a relation between • and • such that:

... and vice-versa (swap • and •).

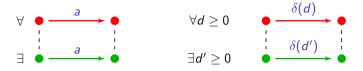
This is a relation between • and • such that:



... and vice-versa (swap • and •).

Consequence

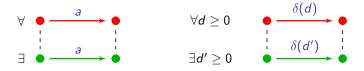
$$\forall \quad (\ell_1, v_1) \xrightarrow{d_1, a_1} (\ell_2, v_2) \xrightarrow{d_2, a_2} (\ell_3, v_3) \xrightarrow{d_3, a_3} \cdots$$


This is a relation between • and • such that:

... and vice-versa (swap • and •).

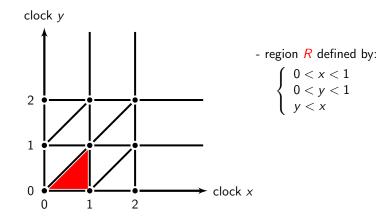
Consequence

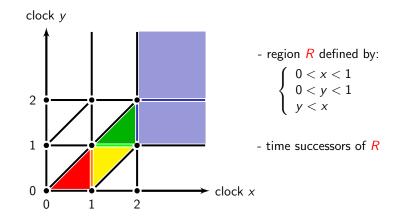
This is a relation between • and • such that:



... and vice-versa (swap • and •).

Consequence

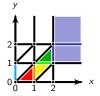

 $\forall v_1' \in R_1$

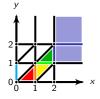

This is a relation between • and • such that:

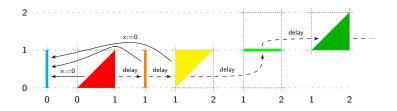


... and vice-versa (swap • and •).

Consequence

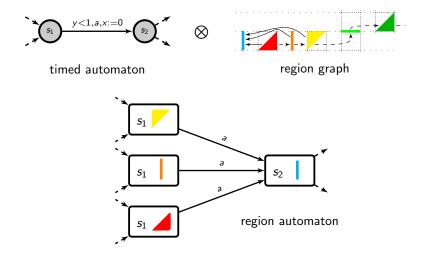


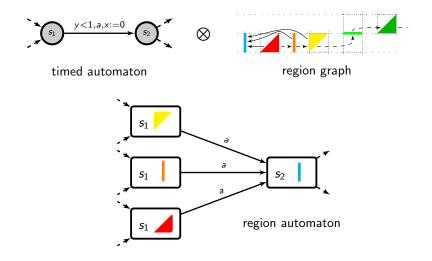

The construction of the region graph

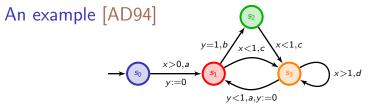

It "mimicks" the behaviours of the clocks.

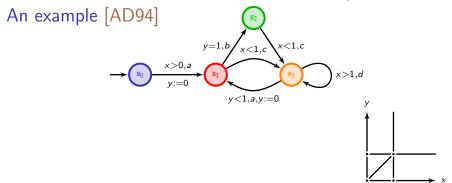
The construction of the region graph

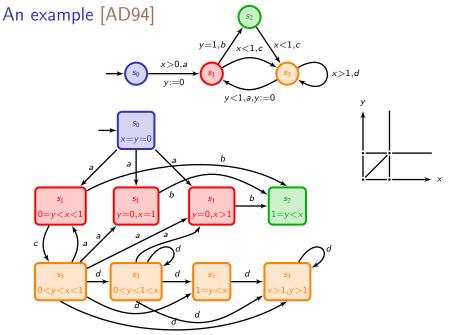
It "mimicks" the behaviours of the clocks.

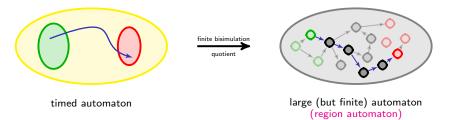


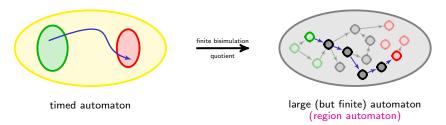

Region automaton \equiv finite bisimulation quotient


Region automaton \equiv finite bisimulation quotient




Region automaton \equiv finite bisimulation quotient


language(reg. aut.) = UNTIME(language(timed aut.))



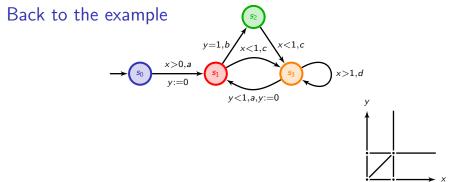
• large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

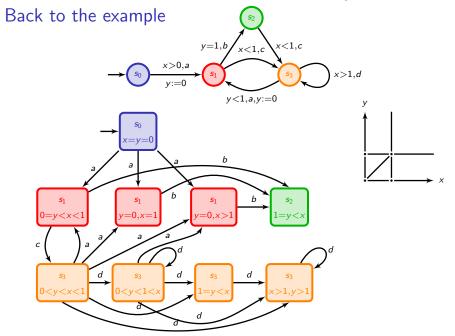
$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

• large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

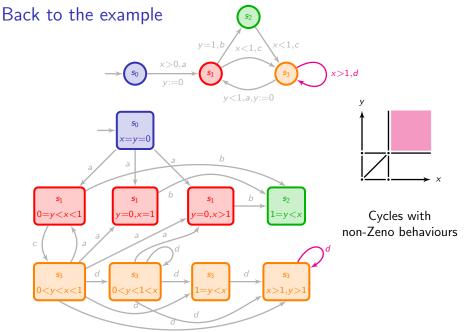
$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$


- It can be used to check for:
 - reachability/safety properties
 - liveness properties (Büchi/ω-regular properties)
 - LTL properties




• large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:


$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

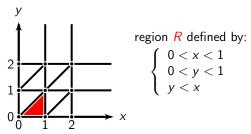

- It can be used to check for:
 - reachability/safety properties
 - liveness properties (Büchi/ω-regular properties)
 - LTL properties
- Problems with Zeno behaviours? (infinitely many actions in bounded time)

Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04).
[F113] Fearnley, Jurdziński. Reachability in two-clock timed automata is PSPACE-complete (ICALP'13).

Theorem [AD90, AD94]


The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

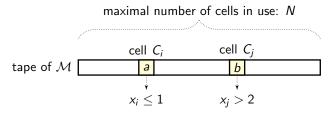
• PSPACE upper bound: guess a path in the region automaton

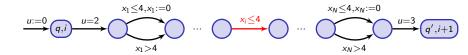
Theorem [AD90, AD94]

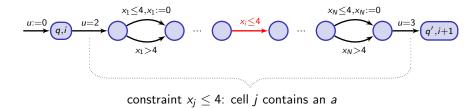
The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

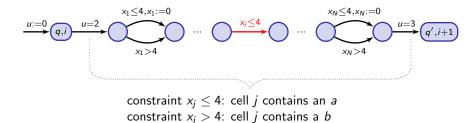
• PSPACE upper bound: guess a path in the region automaton

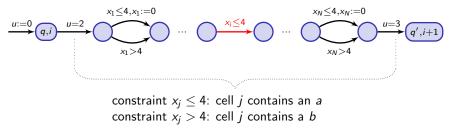
Theorem [AD90, AD94]


The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

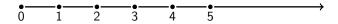

- PSPACE upper bound: guess a path in the region automaton
- \bullet PSPACE lower bound: by reduction from a linearly-bounded Turing machine ${\cal M}$


Theorem [AD90, AD94]


The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].


- PSPACE upper bound: guess a path in the region automaton
- \bullet PSPACE lower bound: by reduction from a linearly-bounded Turing machine $\mathcal M$

reset of clock x_i : the new content is an *a*



constraint $x_j \le 4$: cell *j* contains an *a* constraint $x_i > 4$: cell *j* contains a *b*

reset of clock x_j : the new content is an *a* no reset of clock x_j : the new content is a *b*

Introduction Decidability Implementation Other problems Timed control Conclusion Regions Extensions WTA

The case of single-clock timed automata

Introduction Decidability Implementation Other problems Timed control Conclusion Regions Extensions WTA

The case of single-clock timed automata

if only constants 0, 2 and 5 are used

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed $\mu\text{-calculus})$

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ -calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ -calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 - o-minimal hybrid systems

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ -calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 - o-minimal hybrid systems

• • • •

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ -calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 - o-minimal hybrid systems

• • • •

• Note however that it might be hard to prove there is a finite bisimulation quotient!

Outline

Introduction

- Timed automata
- Examples

2 Decidability of basic properties

• The region abstraction

Extensions of timed automata

- Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

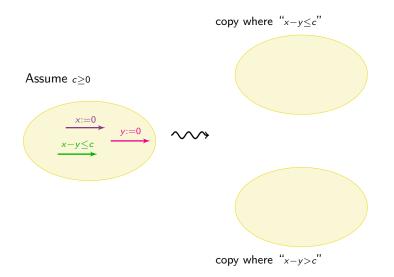
- Timed games
- Weighted timed games

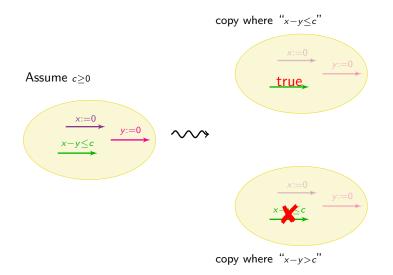
6 Conclusion

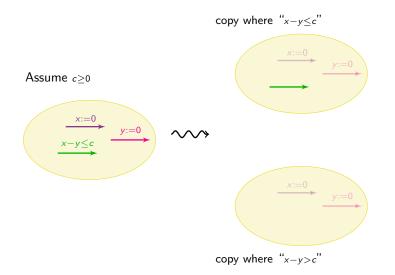
• Diagonal constraints (*i.e.* $x - y \leq 2$)

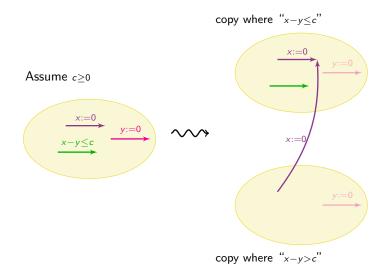
- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

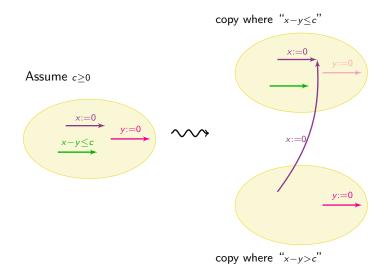
- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

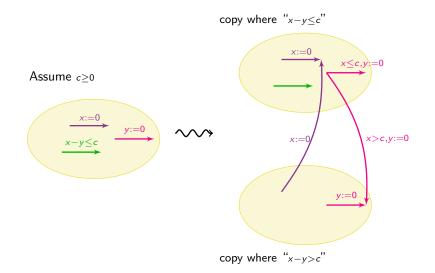

is also a time-abstract bisimulation!


- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)




is also a time-abstract bisimulation!


• they can be removed (at an exponential price)



- Diagonal constraints (i.e. $x y \leq 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

• they can be removed (at an exponential price)

- Diagonal constraints (i.e. $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

• they can be removed (at an exponential price)

• Linear constraints (*i.e.* $2x + 3y \sim 5$)

- Diagonal constraints (i.e. $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- they can be removed (at an exponential price)
- Linear constraints (*i.e.* $2x + 3y \sim 5$)
 - undecidable in general

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- they can be removed (at an exponential price)
- Linear constraints (*i.e.* $2x + 3y \sim 5$)
 - undecidable in general
 - only decidable in few cases

- Diagonal constraints (*i.e.* $x y \le 2$)
 - decidable (with the same complexity)

is also a time-abstract bisimulation!

- they can be removed (at an exponential price)
- Linear constraints (*i.e.* $2x + 3y \sim 5$)
 - undecidable in general
 - only decidable in few cases

is a time-abstract bisimulation (when two clocks x and y and constraints $x + y \sim c$)!

that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

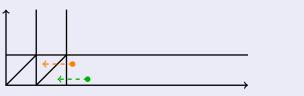
that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

	simple constraints	+ diagonal constraints
x := c, x := y		
x := x + 1]	
x := y + c		
x := x - 1		
x :< c		
x :> c]	
$x :\sim y + c$		
y + c <: x :< y + d		
y + c <: x :< z + d		

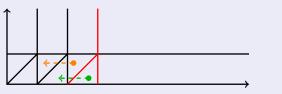
that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

	simple constraints	+ diagonal constraints
x := c, x := y	decidable	decidable
x := x + 1		
x := y + c		undecidable
x := x - 1	undecidable	
x :< c	decidable	decidable
x :> c		
$x :\sim y + c$		undecidable
y + c <: x :< y + d		undecidable
y + c <: x :< z + d	undecidable	

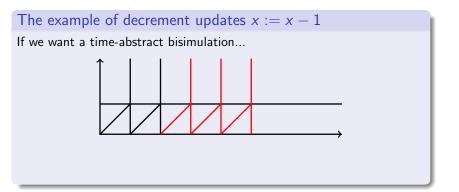
that can be transfer operations (*i.e.* x := y), or reinitialization operations (*i.e.* x := 4), or ...

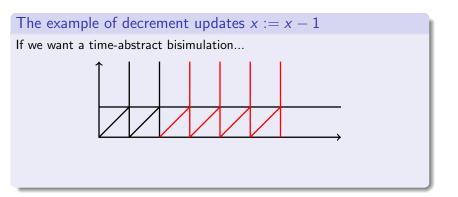

	simple constraints	+ diagonal constraints
x := c, x := y	decidable	decidable
x := x + 1		
x := y + c		undecidable
x := x - 1	undecidable	
x :< c	decidable	decidable
x :> c		
$x :\sim y + c$		undecidable
y + c <: x :< y + d		undecidable
y + c <: x :< z + d	undecidable	

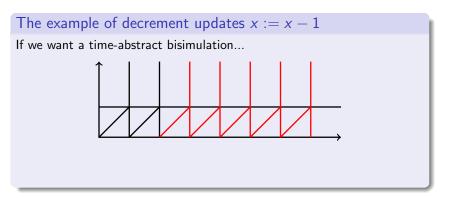
 \rightsquigarrow need of being very careful when using more operations on clocks!


The example of decrement updates x := x - 1

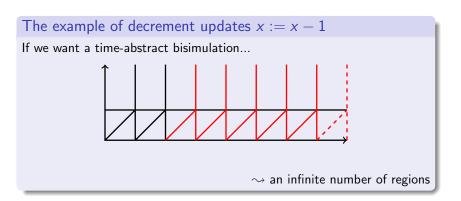
The example of decrement updates x := x - 1




The example of decrement updates x := x - 1



The example of decrement updates x := x - 1



• We can simulate a two-counter machine!

• We can simulate a two-counter machine!

Definition

A two-counter machine is a finite set of instructions over two counters (c and d):

• Incrementation:

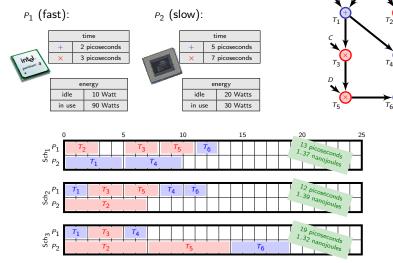
(p): c := c + 1; goto (q)

• Decrementation:

(p): if c > 0 then c := c - 1; goto (q) else goto (r)

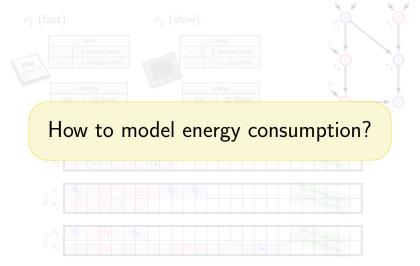
Theorem [Minsky 67]

The halting and recurring problems for two counter machines are undecidable.


- We can simulate a two-counter machine!
- Clocks x and y store the two counters...

- We can simulate a two-counter machine!
- Clocks x and y store the two counters...

Back to the task-graph scheduling problem

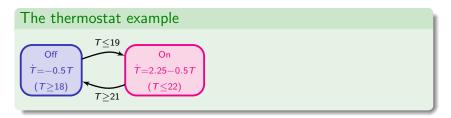

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

D

Back to the task-graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

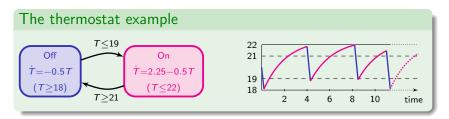
A note on hybrid automata (see more on Thursday)


a discrete control (the mode of the system)

+ continuous evolution of the variables within a mode

A note on hybrid automata (see more on Thursday)

a discrete control (the mode of the system)


 $+ \quad$ continuous evolution of the variables within a mode

A note on hybrid automata (see more on Thursday)

a discrete control (the mode of the system)

 $+ \quad$ continuous evolution of the variables within a mode

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata, even for stopwatch automata.

(stopwatch automata: timed automata in which clocks can be stopped)

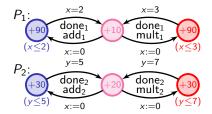
[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).

Outline

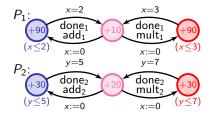
1 Introduction

- Timed automata
- Examples

2 Decidability of basic properties

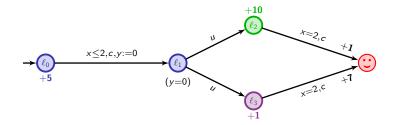

- The region abstraction
- Extensions of timed automata
- Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

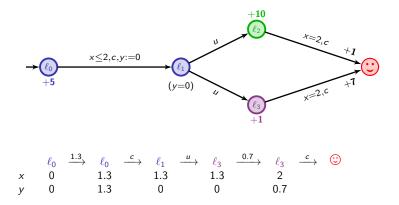
5 Timed control

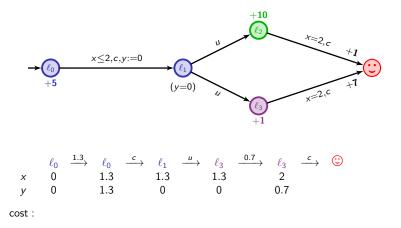

- Timed games
- Weighted timed games

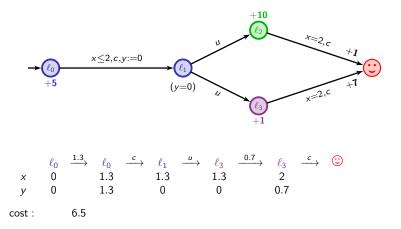
6 Conclusion

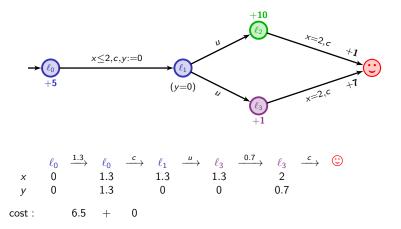
Weighted timed automata

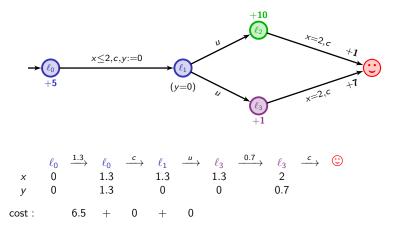


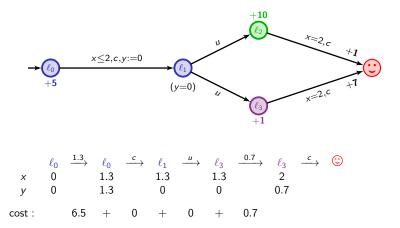

Weighted timed automata

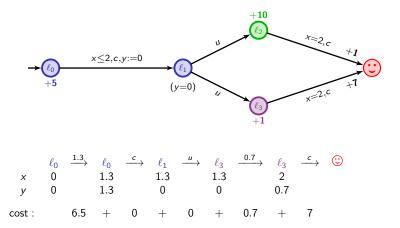


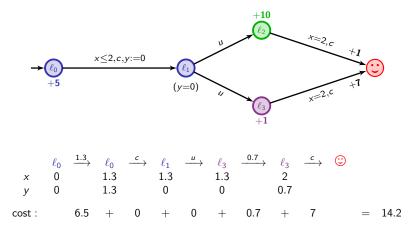

The model of weighted automata hybrid variables are observer variables (they do not constrain a priori the system)

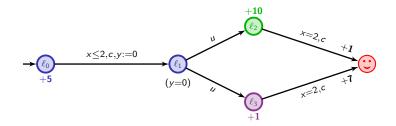

 \rightsquigarrow models energy consumption, bandwidth, price to pay, etc.

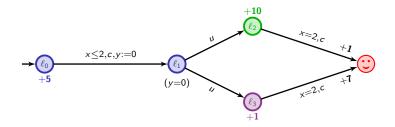


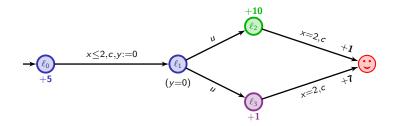




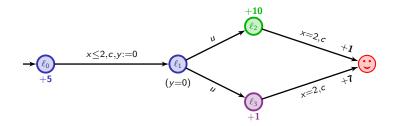




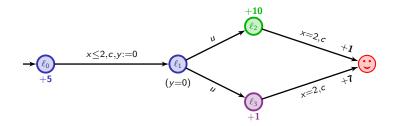




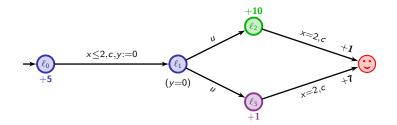
Question: what is the optimal cost for reaching \bigcirc ?


Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1


Question: what is the optimal cost for reaching \bigcirc ?

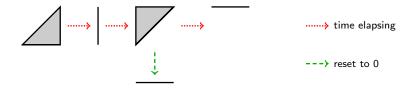
5t + 10(2 - t) + 1, 5t + (2 - t) + 7


Question: what is the optimal cost for reaching \bigcirc ?

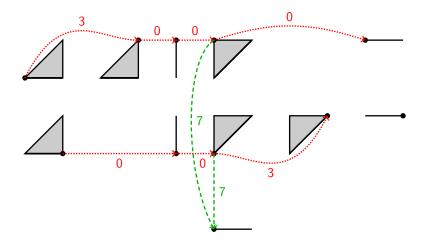
min (5t + 10(2 - t) + 1 , 5t + (2 - t) + 7)

Question: what is the optimal cost for reaching \bigcirc ?

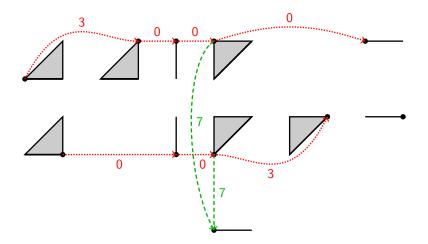
$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$


Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 9$$


 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Introduction Decidability Implementation Other problems Timed control Conclusion Regions Extensions WTA


The region abstraction is not fine enough

The corner-point abstraction

The corner-point abstraction

We can somehow discretize the behaviours...

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_1 + t_2 \leq 2 \\ \end{array} \right.$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{cases}$$

Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{cases}$$

Lemma

Let Z be a bounded constraint as above and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

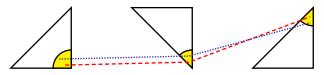
Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{cases}$$

Lemma

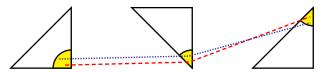
Let Z be a bounded constraint as above and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

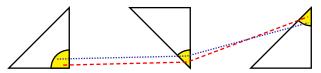

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightsquigarrow for every finite path π in $\mathcal A,$ there exists a path Π in $\mathcal A_{\sf cp}$ such that

 $cost(\Pi) \leq cost(\pi)$

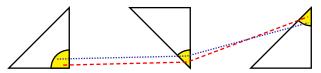

[Π is a "corner-point projection" of π]

Approximation of abstract paths:


For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:

For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon > 0,$


Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon>0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:

For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

The optimal-cost reachability problem is decidable (and PSPACE-complete) in weighted timed automata.

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (*HSCC'01*). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (*HSCC'01*). [BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (*Formal Methods in System Design*).

Further problems of interest

Relevant questions

- Optimization questions:
 - optimal reachability
 - optimal average consumption
 - . . .
- Management of resources:
 - a lower bound global constraint (your bank account)
 - a lower and an upper bound global constraint (the tank of your car, the pressure in a pump)
 - . . .

 \rightsquigarrow lots of developments, many open problems

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (*HSCC'01*). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (*HSCC'01*). [BBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (*Formal Methods in System Design*). [BFLM08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (*FORMATS'08*). [BFLM10] Bouyer, Larsen, Markey. Correct Journa automata with observers under energy constraints (*HSCC'10*). [BFML2] Bouyer, Larsen, Markey. Lower-bound constrained runs in weighted timed automata (*QEST'12*).

Outline

1 Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata

Implementation and tools

- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

- Timed games
- Weighted timed games

6 Conclusion

- the region automaton is never computed
- instead, symbolic computations are performed

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

Finite representation of infinite sets of configurations

• in the plane, a line represented by two points.

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets
- sets of constraints, polyhedra, zones, regions

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets
- sets of constraints, polyhedra, zones, regions
- BDDs, DBMs (see later), CDDs, etc...

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

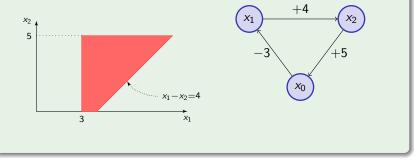

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets
- sets of constraints, polyhedra, zones, regions
- BDDs, DBMs (see later), CDDs, etc...
- Need of abstractions, heuristics, etc...

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

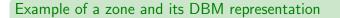
$$Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

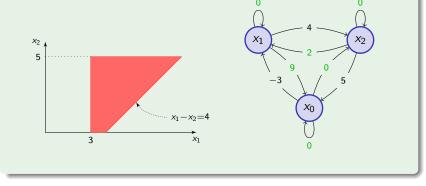

DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

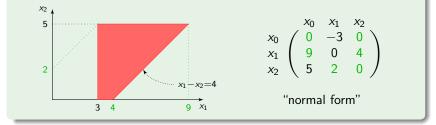

$$Z \;=\; (x_1 \geq 3) \;\wedge\; (x_2 \leq 5) \;\wedge\; (x_1 - x_2 \leq 4)$$


DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems). 55/100

Zones: A symbolic representation for timed systems

 $Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$


DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

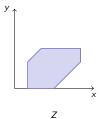
Zones: A symbolic representation for timed systems

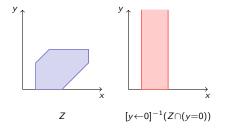
Example of a zone and its DBM representation

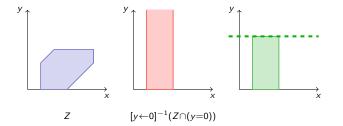
$$Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

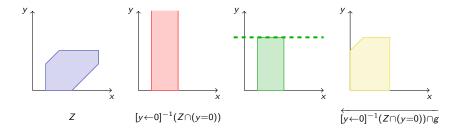
DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems). 55/100




$$\begin{array}{c} \ell & g, a, Y := 0 \\ \hline \ell & & \ell' \end{array}$$


$$\overleftarrow{[C \leftarrow 0]^{-1}(Z \cap (C = 0)) \cap g} & Z \end{array}$$


$$\begin{array}{c} \ell & g, a, Y := 0 \\ \hline \ell & & \ell' \end{array}$$

$$\overleftarrow{[C \leftarrow 0]^{-1}(Z \cap (C = 0)) \cap g} & Z \end{array}$$

$$[C \leftarrow 0]^{-1}(Z \cap (C=0)) \cap g$$

$\textcircled{\sc op}$ All previous operations can be computed using DBMs!

• intersection: take the minimum of the two constraints

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
- past: relax lower bounds (on a DBM on normal form)

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
- past: relax lower bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
- past: relax lower bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
- past: relax lower bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Let R be a region. Assume:

• $v \in \overleftarrow{R}$ (for ex. $v + t \in R$)

•
$$v' \equiv_{reg.} v$$

There exists t' s.t. $v' + t' \equiv_{reg.} v + t$, which implies that $v' + t' \in R$ and thus $v' \in \overleftarrow{R}$.

© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
- past: relax lower bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

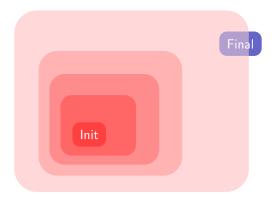
The backward computation terminates

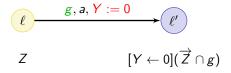
Because of the bisimulation property of the region abstraction:

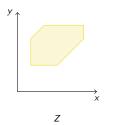
"Every set of valuations which is computed along the backward computation is a finite union of regions"

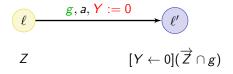
However the backward computation is not appropriate to manipulate other variables (think for instance of assignment i := j.k + l)

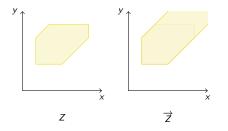


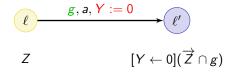


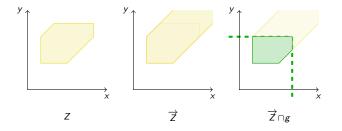


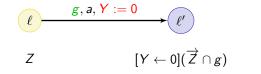


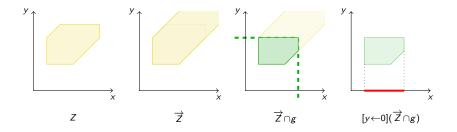


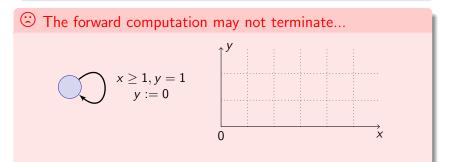

$$\ell \xrightarrow{g, a, Y := 0} \ell'$$

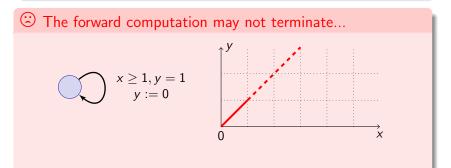

$$Z \qquad [Y \leftarrow 0](\overrightarrow{Z} \cap g)$$



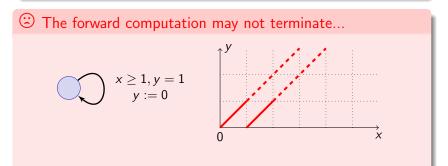


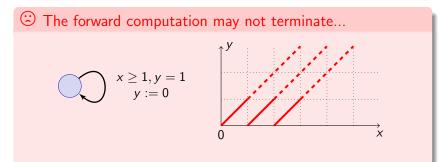






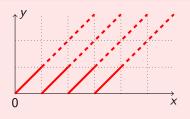
- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle


- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle


- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

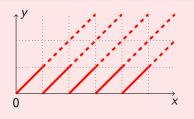


© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

☺ The forward computation may not terminate...

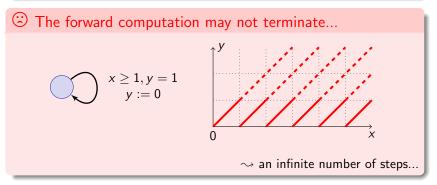
$$x \ge 1, y = 1$$
$$y := 0$$



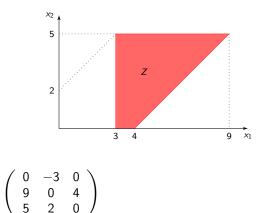
© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

© The forward computation may not terminate...

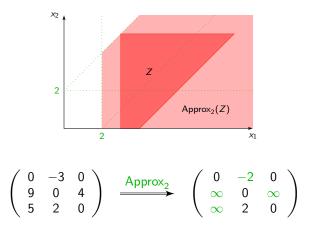

$$x \ge 1, y = 1$$
$$y := 0$$

Note on the forward analysis (cont.)


© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

An abstraction: the extrapolation operator


Approx₂(Z): "the smallest zone containing Z that is defined only with constants no more than 2"

 \rightsquigarrow The extrapolation operator ensures termination of the computation!

An abstraction: the extrapolation operator

Approx₂(Z): "the smallest zone containing Z that is defined only with constants no more than 2"

 \sim The extrapolation operator ensures termination of the computation!

The extrapolation: correctness

Theorem

The algorithm using the extrapolation w.r.t. the maximal constant is correct for timed automata with only rectangular constraints. *Note:* the hypothesis on the constraints is crucial.

The extrapolation: correctness

Theorem

The algorithm using the extrapolation w.r.t. the maximal constant is correct for timed automata with only rectangular constraints. *Note:* the hypothesis on the constraints is crucial.

- Implemented in tools like Uppaal, Kronos, RT-Spin...
- Successfully used on many real-life examples

- the extrapolation operator can be made coarser:
 - local extrapolation constants [BBFL03];
 - distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

- [BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS'03).
- [BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS'04).
- [BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International Journal on Software Tools for Technology Transfer).
- [HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS'03).
- [DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS'06).
- [HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).
- [HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13).

- the extrapolation operator can be made coarser:
 - local extrapolation constants [BBFL03];
 - distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

- over-approximations can be used
 - convex-hull

[[]BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS'03).

[[]BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS'04).

[[]BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International Journal on Software Tools for Technology Transfer).

[[]HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS'03).

[[]DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS'06).

[[]HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).

[[]HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13).

- the extrapolation operator can be made coarser:
 - local extrapolation constants [BBFL03];
 - distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

- over-approximations can be used
 - convex-hull
- heuristics can be added
 - order for exploration
 - symmetry reduction [HBL+03]

- [BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS'04).
- [BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International Journal on Software Tools for Technology Transfer).
- [HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS'03).
- [DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS'06).
- [HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).
- [HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13).

[[]BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS'03).

- the extrapolation operator can be made coarser:
 - local extrapolation constants [BBFL03];
 - distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06,HSW12,HSW13]

- over-approximations can be used
 - convex-hull
- heuristics can be added
 - order for exploration
 - symmetry reduction [HBL+03]
- the representation of zones can be improved [DHLP06]

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).

[[]BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS'03).

[[]BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS'04).

[[]BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International Journal on Software Tools for Technology Transfer).

[[]HBL+03] Hendriks, Behrmann, Larsen, Niebert, Vaandrager. Adding symmetry reduction to Uppaal (FORMATS'03).

[[]DHLP06] David, Håkansson, Larsen, Pettersson. Model checking timed automata with priorities using DBM subtraction (FORMATS'06).

[[]HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13).

Outline

1 Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata

Implementation and tools

Other verification problems

- Equivalence (or preorder) checking
- Verification of timed temporal logics (short)

5 Timed control

- Timed games
- Weighted timed games

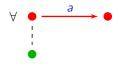
6 Conclusion

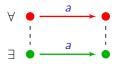
Outline

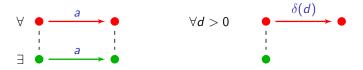
1 Introduction

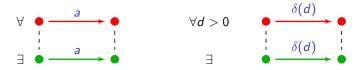
- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata

Implementation and tools

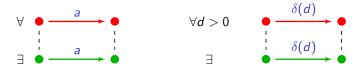

Other verification problems


- Equivalence (or preorder) checking
- Verification of timed temporal logics (short)


5 Timed control


- Timed games
- Weighted timed games

6 Conclusion



This is a relation between • and • such that:

... and vice-versa (swap • and •) for the bisimulation relation.

This is a relation between • and • such that:

... and vice-versa (swap \bullet and \bullet) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and EXPTIME-complete.

(see later for a simple proof of the upper bound)

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(A) = L(B) (resp. $L(A) \subseteq L(B)$)?

Introduction Decidability Implementation Other problems Timed control Conclusion Equivalence Timed logics

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(A) = L(B) (resp. $L(A) \subseteq L(B)$)?

Theorem [AD90, AD94]

Language equivalence and language inclusion are undecidable in timed automata.

... as a special case of the universality problem (are all timed words accepted by the automaton?).

Language (or trace) equivalence and inclusion

Question

Given two timed automata A and B, is L(A) = L(B) (resp. $L(A) \subseteq L(B)$)?

Theorem [AD90, AD94]

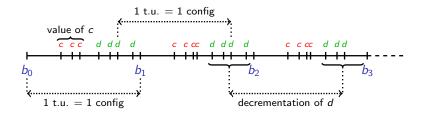
Language equivalence and language inclusion are undecidable in timed automata.

... as a special case of the universality problem (are all timed words accepted by the automaton?).

 \rightsquigarrow Proof by reduction from the recurring problem of a two-counter machine

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90). [AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Undecidability of universality

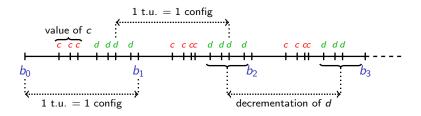

Theorem [AD90, AD94]

Universality of timed automata is undecidable.

Undecidability of universality

Theorem [AD90, AD94]

Universality of timed automata is undecidable.

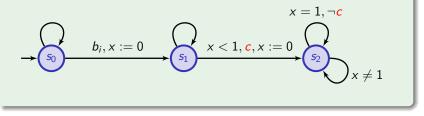


- one configuration is encoded in one time unit
- number of c's: value of counter c
- number of d's: value of counter d
- one time unit between two corresponding c's (resp. d's)

Undecidability of universality

Theorem [AD90, AD94]

Universality of timed automata is undecidable.



- one configuration is encoded in one time unit
- number of c's: value of counter c
- number of d's: value of counter d
- one time unit between two corresponding *c*'s (resp. *d*'s)

\rightsquigarrow We encode "non-behaviours" of a two-counter machine

Example

Module to check that if instruction *i* does not decrease counter *c*, then all actions *c* appearing less than 1 t.u. after b_i has to be followed by an other *c* 1 t.u. later.

Example

Module to check that if instruction *i* does not decrease counter *c*, then all actions *c* appearing less than 1 t.u. after b_i has to be followed by an other *c* 1 t.u. later.

The union of all small modules is not universal $$\operatorname{iff}$$ The two-counter machine has a recurring computation

Bad consequences

• ...

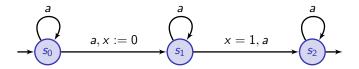
- Language inclusion is undecidable (Bad news for the application to verification)
- Complementability is undecidable

[AD90, AD94]

[Tri03,Fin06]

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03). [Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

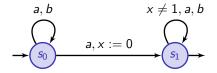
Bad consequences


• ...

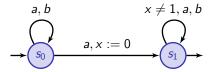
- Language inclusion is undecidable (Bad news for the application to verification)
- Complementability is undecidable

[AD90,AD94]

[Tri03,Fin06]


An example of non-determinizable/non-complementable timed aut.:

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03). [Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).


An example of non-determinizable/non-complementable aut.: [AM04]

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03). [Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06). [AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

An example of non-determinizable/non-complementable aut.: [AM04]

UNTIME $(\overline{L} \cap \{(a^*b^*, \tau) \mid all \ a's \text{ happen before 1 and no two } a's \text{ simultaneously}\})$ is not regular (exercise!)

[Tri03] Tripakis. Folk theorems on the determinization and minimization of timed automata (FORMATS'03).

[Fin06] Finkel. Undecidable problems about timed automata (FORMATS'06).

[AM04] Alur, Madhusudan. Decision problems for timed automata: A survey (SFM-04:RT)).

Outline

1 Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata

Implementation and tools

Other verification problems

- Equivalence (or preorder) checking
- Verification of timed temporal logics (short)

5 Timed control

- Timed games
- Weighted timed games

6 Conclusion

Branching-time: TCTL

 $\mathsf{TCTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{E}\varphi \mathsf{U}_{\mathsf{I}} \varphi$

where I is an interval with integral bounds.

• Linear-time: MTL [Koy90]

 $\mathsf{MTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi$

where I is an interval with integral bounds.

• Alternative: add variables (clocks) to the logics, e.g. TPTL

• Branching-time: TCTL

 $\mathsf{TCTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{E}\varphi \mathsf{U}_{\mathsf{I}} \varphi$

where I is an interval with integral bounds.

• Linear-time: MTL [Koy90]

$$\mathsf{MTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi$$

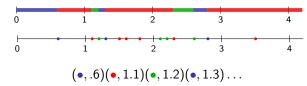
where I is an interval with integral bounds.

• Alternative: add variables (clocks) to the logics, e.g. TPTL

Branching-time: TCTL

 $\mathsf{TCTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{E}\varphi \mathsf{U}_{\mathsf{I}} \varphi$

where I is an interval with integral bounds.


• Linear-time: MTL [Koy90]

$$\mathsf{MTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi$$

where I is an interval with integral bounds.

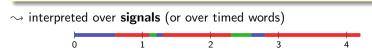
• Alternative: add variables (clocks) to the logics, e.g. TPTL

 \sim interpreted over **signals** (or over timed words)

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

Branching-time: TCTL

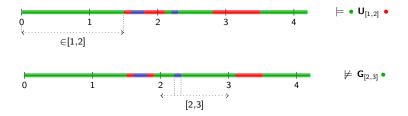
 $\mathsf{TCTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{E}\varphi \mathsf{U}_{\mathsf{I}} \varphi$

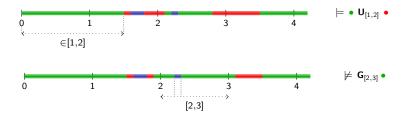

where I is an interval with integral bounds.

• Linear-time: MTL [Koy90]

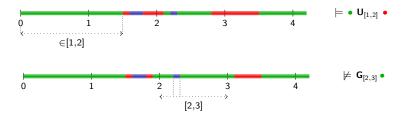
$$\mathsf{MTL} \ni \varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi$$

where I is an interval with integral bounds.


• Alternative: add variables (clocks) to the logics, e.g. TPTL


Examples

Examples



Examples

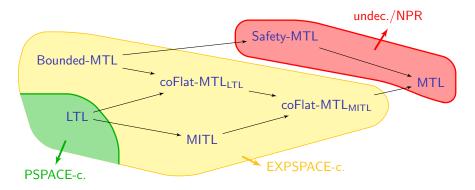
• "Every problem is followed within 56 time units by an alarm" $\label{eq:G} G(\texttt{problem} \to F_{\leq 56}\,\texttt{alarm})$

Examples

- "Every problem is followed within 56 time units by an alarm" $\label{eq:G} G(\texttt{problem} \to F_{\leq 56}\,\texttt{alarm})$
- "Each time there is a problem, it is either repaired within the next 15 time units, or an alarm rings during 3 time units 12 time units later" $\mathbf{G}(\texttt{problem} \rightarrow (\mathbf{F}_{\leq 15} \texttt{repair} \lor \mathbf{G}_{[12,15)} \texttt{alarm}))$

Branching-time logic TCTL [ACD93]

The model-checking of TCTL is PSPACE-complete! (The region abstraction can be used, with an extra clock for the formula)


Branching-time logic TCTL [ACD93]

The model-checking of TCTL is PSPACE-complete! (The region abstraction can be used, with an extra clock for the formula)

Linear-time logic MTL [AFH96,OW05]

The model-checking of MTL is undecidable/NPR. Some fragments with decidable model-checking have been designed.

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[OW05] Outaknine, Worrell. On the decidability of metric temporal logic (*LICS'05*).

Technics: alternating timed automata, channel machines, small-model properties

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996). [BMOW08] Bouyer, Markey, Ouaknine, Worrell. On Expressiveness and Complexity in Real-time Model Checking (ICALP'08). [BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07). [OW06] Ouaknine, Worrell. Safety Metric Temporal Logic is Fully Decidable (TACAS'06).

Branching-time logic TCTL [ACD93]

The model-checking of TCTL is PSPACE-complete! (The region abstraction can be used, with an extra clock for the formula)

Linear-time logic MTL [AFH96,OW05]

The model-checking of MTL is undecidable/NPR. Some fragments with decidable model-checking have been designed.

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[OW05] Outaknine, Worrell. On the decidability of metric temporal logic (*LICS'05*).

A focus on MITL

The nightmare of timed temporal logics

Requiring too much precision, and hence too many clocks!!

A focus on MITL

The nightmare of timed temporal logics

Requiring too much precision, and hence too many clocks!!

Example

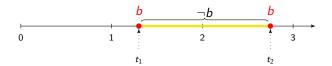
$$\mathsf{G}(ullet o \mathsf{F}_{=1}ullet)$$

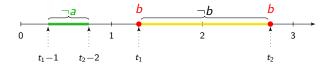
- each time an occurs, start a new clock, and check that a occurs 1 time unit later
- this requires an unbounded number of clocks

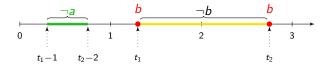
A focus on MITL

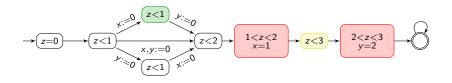
The nightmare of timed temporal logics

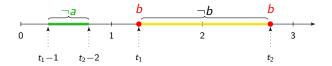
Requiring too much precision, and hence too many clocks!!

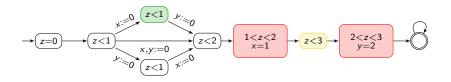

Example


$$\mathsf{G}(ullet o \mathsf{F}_{=1}ullet)$$


- each time an occurs, start a new clock, and check that a occurs 1 time unit later
- this requires an unbounded number of clocks


The logic MITL


- Bans "punctual" constraints
- Consequences:
 - we can bound the variability of signals
 - ${\tt I}{\tt I}{\tt I}$ an MITL formula defines a timed regular language



This idea can be extended to any formula in MITL

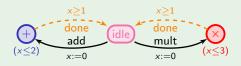
Outline

1 Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control

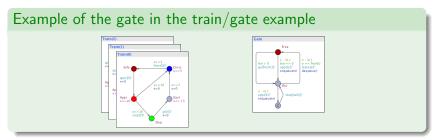
- Timed games
- Weighted timed games


to model uncertainty

Example of a processor in the taskgraph example

• to model uncertainty

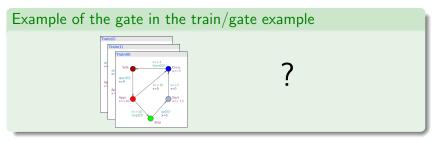
Example of a processor in the taskgraph example



• to model uncertainty

Example of a processor in the taskgraph example

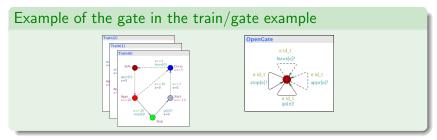
• to model an interaction with the environment



• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with the environment

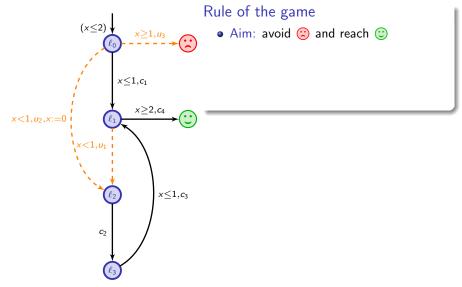


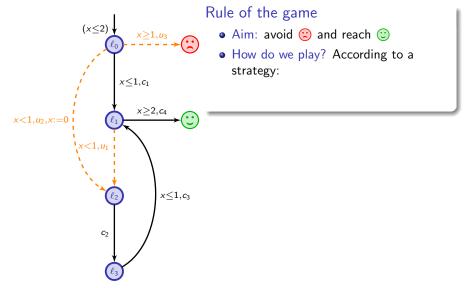
• to model uncertainty

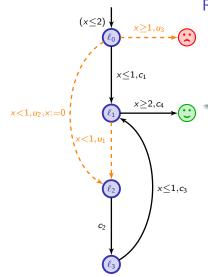
Example of a processor in the taskgraph example

• to model an interaction with the environment

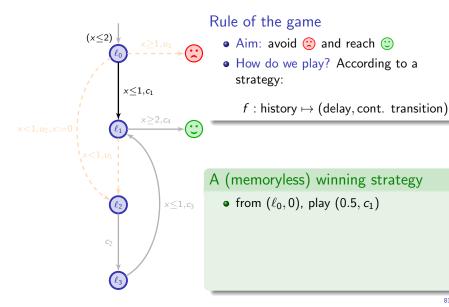
Outline

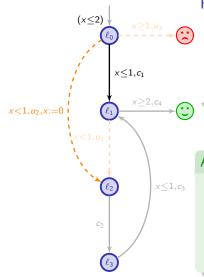

1 Introduction


- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)


5 Timed control

- Timed games
- Weighted timed games





Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

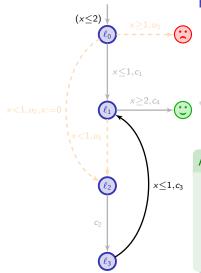
f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2

 $(x \leq 2)$ $x \leq 1, c_1$ $x \leq 1, c_3$ c_2

Rule of the game


- Aim: avoid 2 and reach 2
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2

• from
$$(\ell_2, \star)$$
, play $(1 - \star, c_2)$

Rule of the game

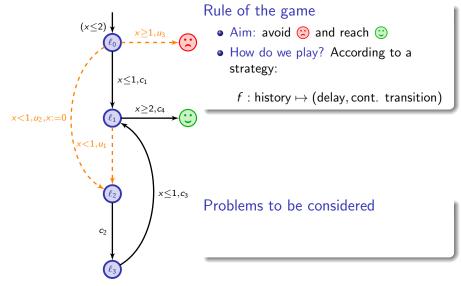
- Aim: avoid 2 and reach 2
- How do we play? According to a strategy:

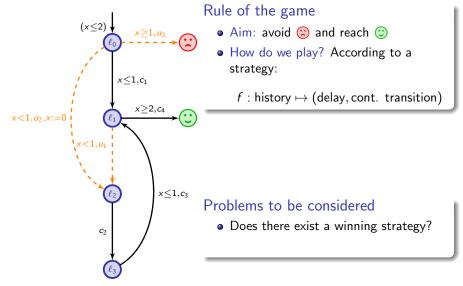
f: history \mapsto (delay, cont. transition)

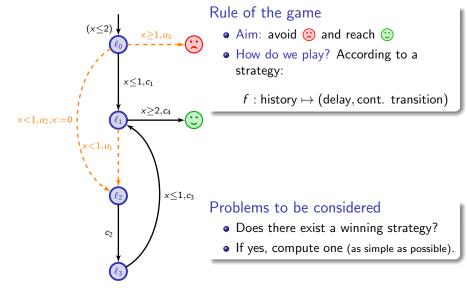
A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2,\star) , play $(1-\star,c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$

 $(x \leq 2)$ $x \ge 2, c_4$ ℓ_2


Rule of the game


- Aim: avoid 2 and reach 2
- How do we play? According to a strategy:


f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$
- from $(\ell_1, 1)$, play $(1, c_4)$

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

Decidability of timed games

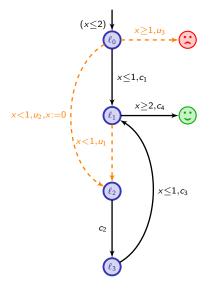
Theorem [AMPS98,HK99]

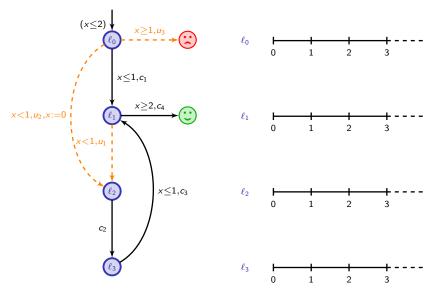
Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

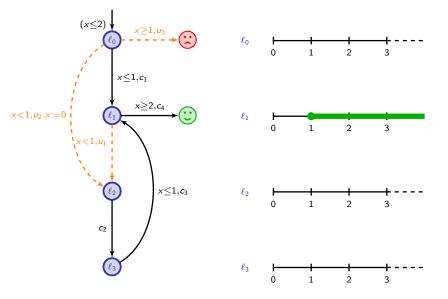
 \rightsquigarrow classical regions are sufficient for solving such problems

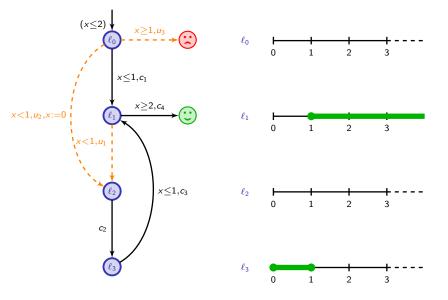
Decidability of timed games

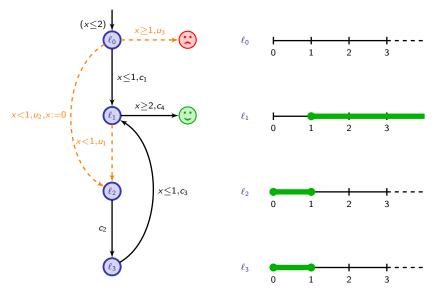
Theorem [AMPS98,HK99]

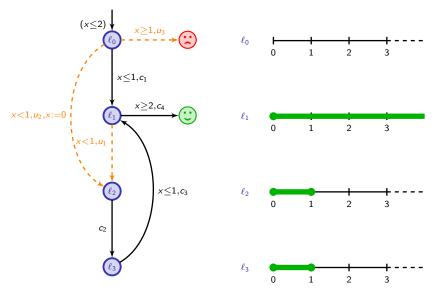

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

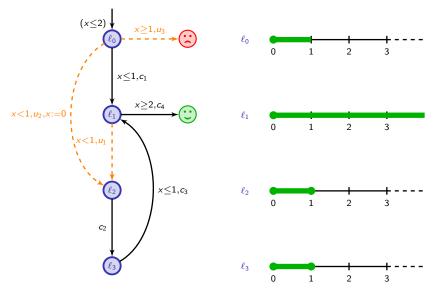

 \rightsquigarrow classical regions are sufficient for solving such problems

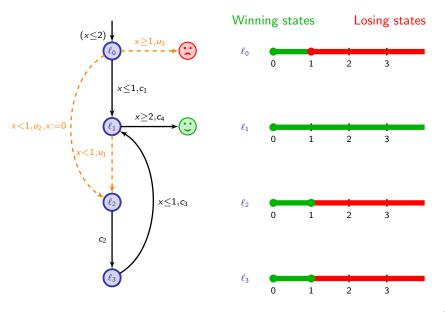

Theorem [AM99,BHPR07,JT07]


Optimal-time reachability timed games are decidable and EXPTIME-complete.

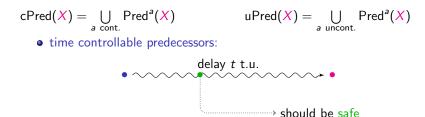

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (*HSCC'99*). [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (*ICALP'07*). [JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (*ICALP'07*). Introduction Decidability Implementation Other problems Timed control Conclusion Timed games WTG



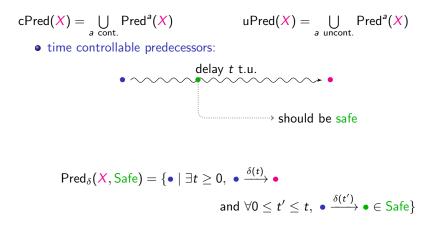




Introduction Decidability Implementation Other problems Timed control Conclusion Timed games WTG



• $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$


- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:

$$\operatorname{cPred}(X) = \bigcup_{a \text{ cont.}} \operatorname{Pred}^{a}(X) \qquad \qquad \operatorname{uPred}(X) = \bigcup_{a \text{ uncont.}} \operatorname{Pred}^{a}(X)$$

- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:

- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

 $\operatorname{Attr}_1(\bigcirc) = \pi(\bigcirc)$

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙄 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙄 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

• . . .

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙂 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

• . . .

• The states from which one can ensure 🙄 in no more than *n* steps is:

$$\operatorname{Attr}_n(\textcircled{\odot}) = \pi(\operatorname{Attr}_{n-1}(\textcircled{\odot}))$$

We write:

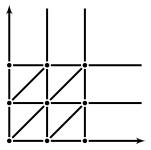
$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

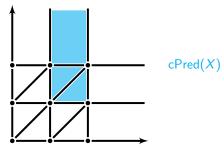
$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure \bigcirc in no more than 2 steps is:

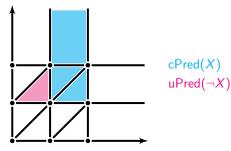
$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

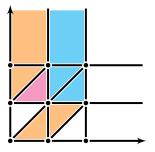

• . . .

• The states from which one can ensure 🙄 in no more than *n* steps is:

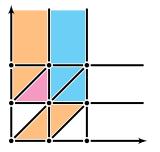

$$\operatorname{Attr}_{n}(\textcircled{c}) = \pi(\operatorname{Attr}_{n-1}(\textcircled{c})) \\ = \pi^{n}(\textcircled{c})$$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).

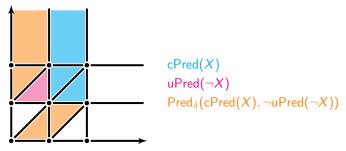

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?


- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

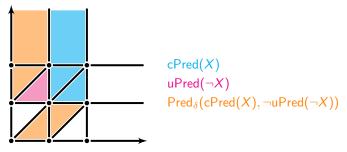
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

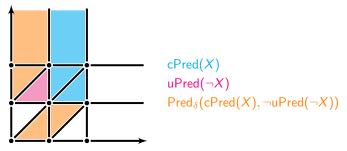

cPred(X) $uPred(\neg X)$ $Pred_{\delta}(cPred(X), \neg uPred(\neg X))$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!


cPred(X)uPred($\neg X$) Pred_{δ}(cPred(X), \neg uPred($\neg X$))

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

(but it generates non-convex unions of regions...)


- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

(but it generates non-convex unions of regions...)

 \rightsquigarrow the computation of $\pi^*(\bigcirc)$ terminates!

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

(but it generates non-convex unions of regions...)

 \sim the computation of $\pi^*(\textcircled{O})$ terminates! ... and is correct

Timed games with a safety objective

• We can use operator $\widetilde{\pi}$ defined by

 $\widetilde{\pi}(X) = \operatorname{Pred}_{\delta}(X \cap \operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$

instead of π , and compute $\tilde{\pi}^*(\neg \bigotimes)$

Timed games with a safety objective

• We can use operator $\widetilde{\pi}$ defined by

$$\widetilde{\pi}(\boldsymbol{X}) = \mathsf{Pred}_{\delta}(\boldsymbol{X} \cap \mathsf{cPred}(\boldsymbol{X}), \neg \mathsf{uPred}(\neg \boldsymbol{X}))$$

instead of π , and compute $\tilde{\pi}^*(\neg \textcircled{2})$

• It is also stable w.r.t. regions.

Some remarks

The model

Our games are control games,

Some remarks

The model

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

 \rightsquigarrow can be done adding a Büchi winning condition

Some remarks

The model

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

 \rightsquigarrow can be done adding a Büchi winning condition

Implementation

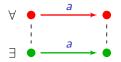
Uppaal-Tiga implements a forward algorithm to compute winning states and winning strategies [CDF+05,BCD+07]

Application of timed games to strong timed bisimulation

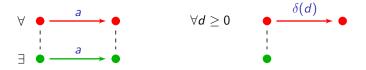
This is a relation between • and • such that:

Introduction Decidability Implementation Other problems Timed control Conclusion Timed games WTG

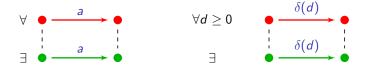
Application of timed games to strong timed bisimulation


This is a relation between • and • such that:

Introduction Decidability Implementation Other problems Timed control Conclusion Timed games WTG


Application of timed games to strong timed bisimulation

This is a relation between • and • such that:


Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

... and vice-versa (swap \bullet and \bullet) for the bisimulation relation.

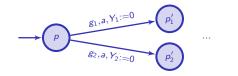
Application of timed games to strong timed bisimulation

This is a relation between • and • such that:

... and vice-versa (swap • and •) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and EXPTIME-complete.

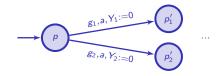

q

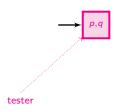
timed automaton B

g,a,Y:=0

q'

timed automaton \mathcal{A}

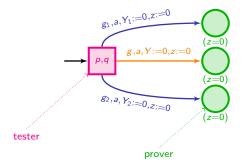



timed automaton B

g,a,Y:=0

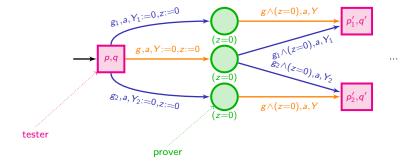
ď

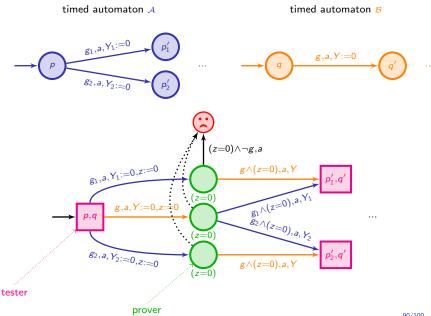
timed automaton \mathcal{A}



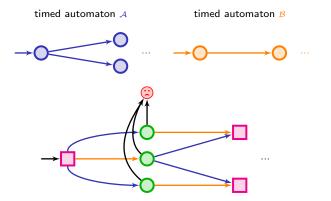
timed automaton B

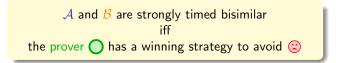
timed automaton \mathcal{A}




timed automaton B

timed automaton \mathcal{A}

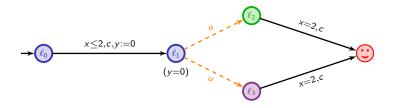


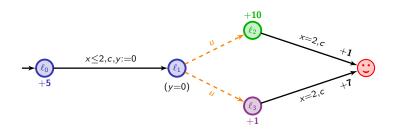


90/100

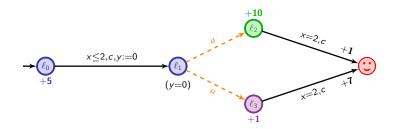
90/100

Outline


1 Introduction


- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

5 Timed control


- Timed games
- Weighted timed games

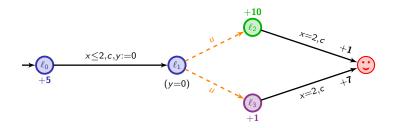
6 Conclusion

Skip

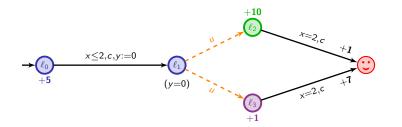
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

Skip

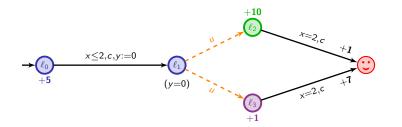
Question: what is the optimal cost we can ensure while reaching \bigcirc ?


5t + 10(2 - t) + 1

Skip


Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7


Question: what is the optimal cost we can ensure while reaching \bigcirc ?

max (5t+10(2-t)+1, 5t+(2-t)+7)

Question: what is the optimal cost we can ensure while reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

Question: what is the optimal cost we can ensure while reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

 $\sim strategy: \text{ wait in } \ell_0, \text{ and when } t = \frac{4}{3}, \text{ go to } \ell_1$

1

Optimal reachability in weighted timed games

This topic has been fairly hot these last ten years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS002). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed game automata (*FCTTCS'04*). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (*FSTTCS'04*). [BBM06] Bouyer, Cassez, Fleury, Larsen. Optimal strategies (*FORMATS'05*). [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (*Information Processing Letters*). [BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (*FSTTCS'06*). [Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (*QAPL'11*). [HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (*CONCUR'13*). [BCK+14] Brihaye, Geeraets, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (*CONCUR'14*).

Optimal reachability in weighted timed games

This topic has been fairly hot these last ten years... [LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

Theorem [BBR05,BBM06,recent_work]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

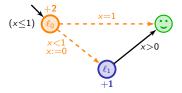
[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS002). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed game automata (*FCTTCS'04*). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (*FSTTCS'04*). [BBM06] Bouyer, Cassez, Fleury, Larsen. Optimal strategies (*FORMATS'05*). [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (*Information Processing Letters*). [BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (*FSTTCS'06*). [Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (*QAPL'11*). [HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (*CONCUR'13*). [BCK+14] Brihaye, Geeraets, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (*CONCUR'14*).

Optimal reachability in weighted timed games

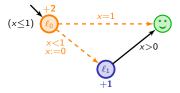
This topic has been fairly hot these last ten years... [LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

Theorem [BBR05,BBM06,recent_work]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

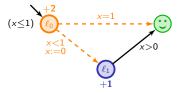

Theorem [BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp. PTIME) when automata have a single clock (with two rates). They are PTIME-hard.

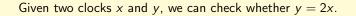

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (*TCS002*). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (*ICALP'04*). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priode timed game automata (*FSTTCS'04*). [BBM06] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priode timed game automata (*FSTTCS'04*). [BBM06] Bouyer, Cassez, Harkey, Improved undecidability results on weighted timed automata (*Information Processing Letters*). [BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (*FSTTCS'06*). [Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (*QAPL'11*). [HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (*CONCUR'13*). [BCK+14] Brinkaye, Gerzents, Krishna, Manasa, Monmege, Trivedi. Adding, Negative Prices to Priced Timed Games (*CONCUR'14*).

• Key: resetting the clock somehow resets the history...

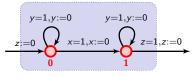
- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...



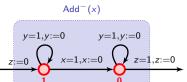
- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

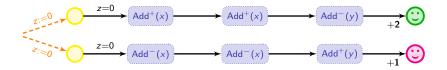

• However, by unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

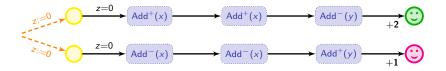


- However, by unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proof of correctness for a simple algorithm.


Given two clocks x and y, we can check whether y = 2x.

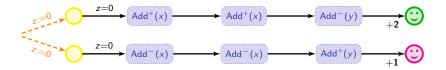


The cost is increased by x_0

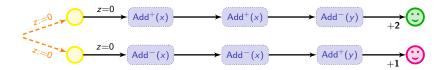


The cost is increased by $1-x_0$

Given two clocks x and y, we can check whether y = 2x.

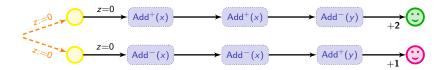


Given two clocks x and y, we can check whether y = 2x.

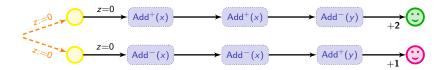


• In \bigcirc , cost = $2x_0 + (1 - y_0) + 2$

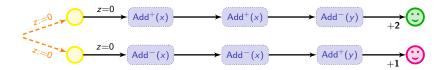
Given two clocks x and y, we can check whether y = 2x.


Given two clocks x and y, we can check whether y = 2x.

• In
$$\textcircled{\begin{subarray}{c} \begin{subarray}{c} cost = 2x_0 + (1 - y_0) + 2 \\ In \\ \fbox{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c} cost = 2(1 - x_0) + y_0 + 1 \\ \end{array}$$


• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

Given two clocks x and y, we can check whether y = 2x.


• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3

Given two clocks x and y, we can check whether y = 2x.

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

Given two clocks x and y, we can check whether y = 2x.

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

• Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = rac{1}{2^{c_1}}$$
 and $y = rac{1}{3^{c_2}}$

The negative side: why is that hard?

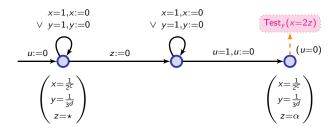
Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

The negative side: why is that hard?


Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Globally, $(x \leq 1, y \leq 1, u \leq 1)$

Outline

1 Introduction

- Timed automata
- Examples
- 2 Decidability of basic properties
 - The region abstraction
 - Extensions of timed automata
 - Weighted timed automata
- Implementation and tools
- Other verification problems
 - Equivalence (or preorder) checking
 - Verification of timed temporal logics (short)

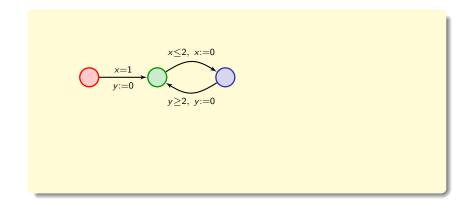
5 Timed control

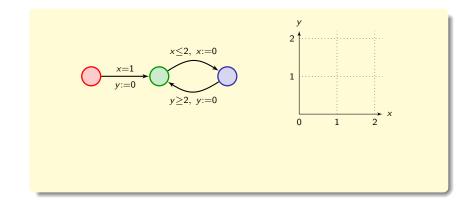
- Timed games
- Weighted timed games

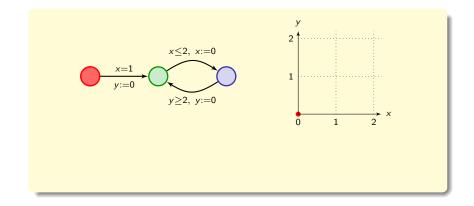
• The model of timed automata:

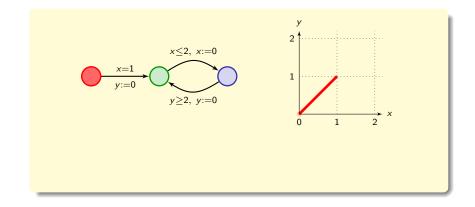
- The model of timed automata:
 - © Some nice properties (decidability of many structural properties, symbolic algorithms, ...)

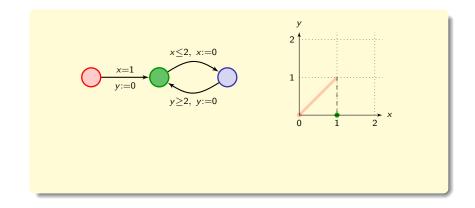
- The model of timed automata:
 - © Some nice properties (decidability of many structural properties, symbolic algorithms, ...)
 - [©] Not all good properties though...
 - (e.g. inclusion undecidable)

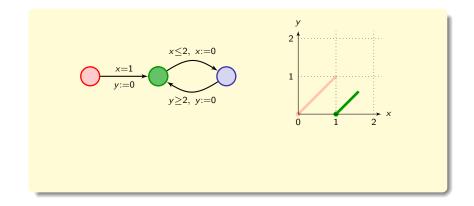

- The model of timed automata:
 - © Some nice properties (decidability of many structural properties, symbolic algorithms, ...)
 - Not all good properties though... (e.g. inclusion undecidable)
 - Sucessfully used!!

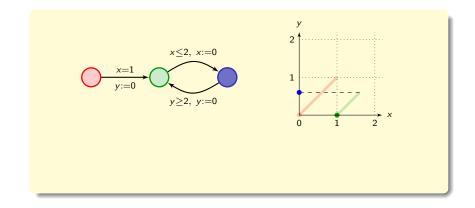

- The model of timed automata:
 - © Some nice properties (decidability of many structural properties, symbolic algorithms, ...)
 - Not all good properties though... (e.g. inclusion undecidable)
 - © Sucessfully used!!
- Many extensions have been studied, which allows more accurate modelling of real systems:
 - Weighted timed automata
 - Timed games
 - Probabilistic/stochastic timed automata
 - Alternating timed automata
 - Hybrid automata
 - ...

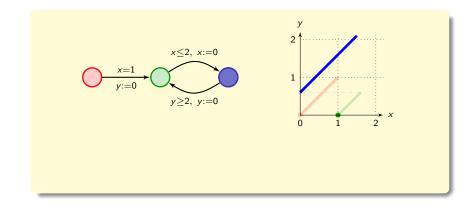

- The model of timed automata:
 - © Some nice properties (decidability of many structural properties, symbolic algorithms, ...)
 - Not all good properties though... (e.g. inclusion undecidable)
 - © Sucessfully used!!
- Many extensions have been studied, which allows more accurate modelling of real systems:
 - Weighted timed automata
 - Timed games
 - Probabilistic/stochastic timed automata
 - Alternating timed automata
 - Hybrid automata
 - ...

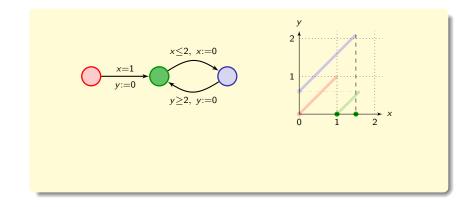

• Going further in the use of timed automata in verification...

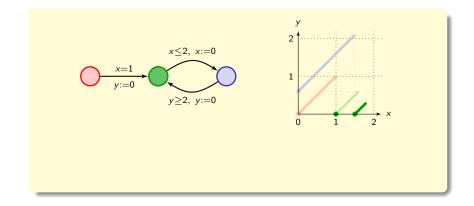

- The model of timed automata:
 - © Some nice properties (decidability of many structural properties, symbolic algorithms, ...)
 - Not all good properties though... (e.g. inclusion undecidable)
 - © Sucessfully used!!
- Many extensions have been studied, which allows more accurate modelling of real systems:
 - Weighted timed automata
 - Timed games
 - Probabilistic/stochastic timed automata
 - Alternating timed automata
 - Hybrid automata
 - ...
- Going further in the use of timed automata in verification...
 ... requires to think about the accurateness of the (mathematical) model we analyze w.r.t. the real-world system

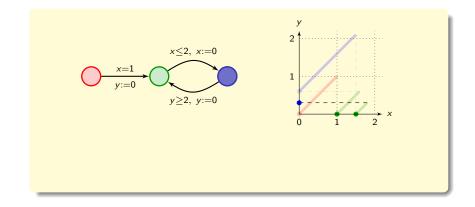


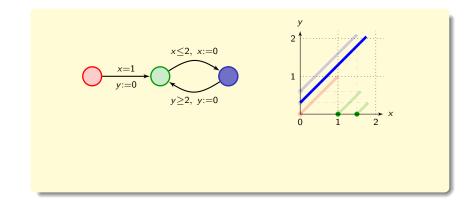


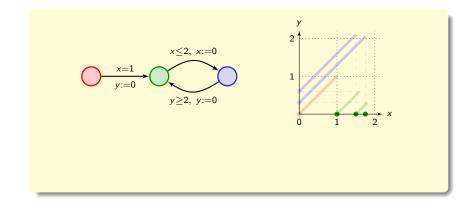


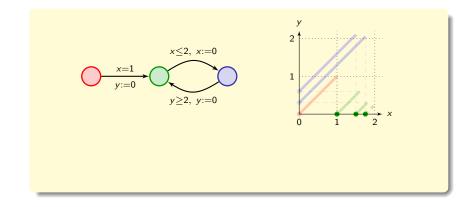


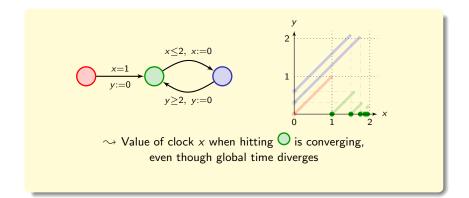


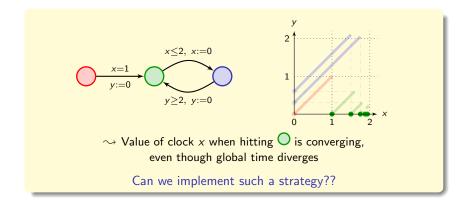


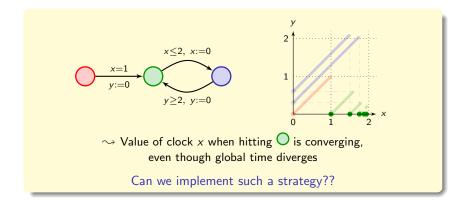












lecture of Pierre-Alain tomorrow afternoon!