# Weighted Timed Automata: Model-Checking and Games

Patricia Bouyer

LSV - CNRS & ENS de Cachan - France

Based on joint works with Thomas Brihaye, Ed Brinksma, Véronique Bruyère, Franck Cassez, Emmanuel Fleury, François Laroussinie, Kim G. Larsen, Nicolas Markey, Jean-François Raskin, and Jacob Illum Rasmussen

### Outline

1. Introduction

- 2. Model-checking weighted timed automat
- 3. Optimal timed games

4. Conclusion

# Model-checking



# Model-checking



# Controller synthesis



# Controller synthesis



**Controller synthesis** 

# Controller synthesis



**Controller synthesis** 

→ modeled as two player games

### Timed automata

[Alur & Dill 90's]

x, y: clocks



# Model of weighted timed automata

[HSCC'01]



# Model of weighted timed automata

[HSCC'01]



- ightharpoonup a configuration:  $(\ell, v)$
- two kinds of transitions:

$$\left\{ \begin{array}{l} (\ell, \nu) \xrightarrow{\delta(d)} (\ell, \nu + d) \\ (\ell, \nu) \xrightarrow{a} (\ell', \nu') \text{ where } \left\{ \begin{array}{l} \nu \models g \\ \nu' = [C \leftarrow 0] \nu \end{array} \right. \text{ for some } \ell \xrightarrow{g, a, C := 0} \ell' \right.$$

# Model of weighted timed automata

[HSCC'01]



- ightharpoonup a configuration:  $(\ell, v)$
- two kinds of transitions:

$$\begin{cases} (\ell, v) \xrightarrow{\delta(d)} (\ell, v + d) \\ (\ell, v) \xrightarrow{a} (\ell', v') \text{ where } \begin{cases} v \models g \\ v' = [C \leftarrow 0]v \end{cases} \text{ for some } \ell \xrightarrow{g, a, C := 0} \ell' \end{cases}$$

$$\mathsf{Cost}\left((\ell, v) \xrightarrow{\delta(d)} (\ell, v + d)\right) = P.d \quad \mathsf{Cost}\left((\ell, v) \xrightarrow{a} (\ell', v')\right) = \rho$$
$$\mathsf{Cost}(\rho) = \mathsf{accumulated} \ \mathsf{cost} \ \mathsf{along} \ \mathsf{run} \ \rho$$

[Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn - CAV'01]



**Fig. 2.** Figure (a) depicts the cost of landing a plane at time t. Figure (b) shows an LPTA modelling the landing costs. Figure (c) shows an LPTA model of the runway.







$$5t + 10(2-t) + 1$$



$$5t + 10(2-t) + 1$$
,  $5t + (2-t) + 7$ 



min 
$$(5t+10(2-t)+1, 5t+(2-t)+7)$$



$$\inf_{0 \le t \le 2} \min \left( 5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$



Question: what is the optimal cost for reaching the happy state?

$$\inf_{0 < t < 2} \min \left( \ 5t + 10(2-t) + 1 \ , \ 5t + (2-t) + 7 \ \right) = 9$$

 $\rightarrow$  strategy: leave immediately  $\ell_0$ , go to  $\ell_3$ , and wait there 2 t.u.

# Several issues on weighted timed automata



# Several issues on weighted timed automata



#### ► Model-checking problems

- reachability with an optimization criterium on the cost
- safety with a mean-cost optimization criterium
- model-checking WCTL, an extension of CTL with cost constraints

# Several issues on weighted timed automata



#### ► Model-checking problems

- reachability with an optimization criterium on the cost
- safety with a mean-cost optimization criterium
- model-checking WCTL, an extension of CTL with cost constraints

#### Optimal timed games

- optimal reachability timed games
- optimal mean-cost timed games

### Outline

1 Introduction

- 2. Model-checking weighted timed automata
- 3. Optimal timed games

Conclusion

# Model-checking weighted timed automata

► Reachability with an optimization criterium on the cost

```
[Behrmann, Brinksma, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager – HSCC'01, TACAS'01, CAV'01]

[Alur, La Torre, Pappas – HSCC'01]

[Bouyer, Brihaye, Bruyère, Raskin – Subm.'06]
```

► Safety with a mean-cost optimization criterium

[Bouyer, Brinksma, Larsen - HSCC'04]

▶ Model-checking WCTL, an extension of CTL with cost constraints

$$\mathbf{A} \: \mathbf{G} \: (\mathsf{problem} \Rightarrow \: \mathbf{A} \: \mathbf{G}_{\leq \mathbf{5}} \: \mathsf{repair})$$

[Brihaye, Bruyère, Raskin – FORMATS+FTRTFT'04]

[Bouyer, Brihaye, Markey – IPL'06]

[Bouyer, Laroussinie, Larsen, Markey, Rasmussen – Subm.'06]

# The classical region abstraction



Idea: reduction to the discrete case

► region abstraction: not sufficient

Idea: reduction to the discrete case

- region abstraction: not sufficient
- ► corner-point abstraction:



#### Idea: reduction to the discrete case

- ► region abstraction: not sufficient .....> reset to 0
- ► corner-point abstraction:



Idea: reduction to the discrete case

- ► region abstraction: not sufficient
- ► corner-point abstraction:



time elapsing

reset to 0

cost rate: 3 p.u.

discrete cost: 7

Idea: reduction to the discrete case

- ► region abstraction: not sufficient
- ► corner-point abstraction:

time elapsing
reset to 0



cost rate: 3 p.u.

discrete cost: 7

#### This abstraction is correct!

→ PSPACE

- for computing optimal paths
- for computing optimal stationary behaviours

### Outline

1 Introduction

2. Model-checking weighted timed automata

3. Optimal timed games

4. Conclusion

# Decidability of timed games

#### **Theorem**

[Henzinger, Kopke 1999]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

→ classical regions are sufficient for solving such problems





**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?



**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?

$$5t + 10(2-t) + 1$$



**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?

$$5t + 10(2-t) + 1$$
,  $5t + (2-t) + 7$ 



**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?

$$\max (5t + 10(2-t) + 1, 5t + (2-t) + 7)$$



**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?

$$\inf_{0 \le t \le 2} \; \max \left( \; 5t + 10(2-t) + 1 \; , \; 5t + (2-t) + 7 \; \right) = 14 + rac{1}{3}$$



**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?

$$\inf_{0 \le t \le 2} \; \max \left( \; 5t + 10(2-t) + 1 \; , \; 5t + (2-t) + 7 \; \right) = 14 + \frac{1}{3}$$

 $\rightarrow$  **strategy**: wait in  $\ell_0$ , and when  $t=\frac{4}{3}$ , go to  $\ell_1$ 



**Question:** what is the optimal cost we can ensure in state  $\ell_0$ ?

$$\inf_{0 \le t \le 2} \; \max \left( \; 5t + 10(2-t) + 1 \; , \; 5t + (2-t) + 7 \; \right) = 14 + \frac{1}{3}$$

- $\rightarrow$  **strategy**: wait in  $\ell_0$ , and when  $t=\frac{4}{3}$ , go to  $\ell_1$
- ▶ How to automatically compute such optimal costs?



**Question**: what is the optimal cost we can ensure in state  $\ell_0$ ?

$$\inf_{0 \le t \le 2} \; \max \left( \; 5t + 10(2-t) + 1 \; , \; 5t + (2-t) + 7 \; \right) = 14 + \frac{1}{3}$$

ightharpoonup strategy: wait in  $\ell_0$ , and when  $t=rac{4}{3}$ , go to  $\ell_1$ 

- ▶ How to automatically compute such optimal costs?
- ► How to synthesize optimal strategies (if one exists)?

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games
- ► [Alur, Bernadsky, Madhusudan ICALP'04]:
  - complexity of k-step games
  - under a strongly non-zeno assumption, optimal cost is computable

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games
- ► [Alur, Bernadsky, Madhusudan ICALP'04]:
  - complexity of k-step games
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
  - structural properties of strategies (e.g. memory)
  - under a strongly non-zeno assumption, optimal cost is computable

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games
- ► [Alur, Bernadsky, Madhusudan ICALP'04]:
  - complexity of k-step games
  - under a strongly non-zeno assumption, optimal cost is computable
- ▶ [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
  - structural properties of strategies (e.g. memory)
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Brihaye, Bruyère, Raskin FORMATS'05]:
  - with five clocks, optimal cost is not computable!
  - with one clock and one stopwatch cost, optimal cost is computable

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games
- ► [Alur, Bernadsky, Madhusudan ICALP'04]:
  - complexity of k-step games
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
  - structural properties of strategies (e.g. memory)
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Brihaye, Bruyère, Raskin FORMATS'05]:
  - with five clocks, optimal cost is not computable!
  - with one clock and one stopwatch cost, optimal cost is computable
- ► [Bouyer, Brihaye, Markey IPL'06]:
  - with three clocks, optimal cost is not computable

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games
- ► [Alur, Bernadsky, Madhusudan ICALP'04]:
  - complexity of k-step games
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
  - structural properties of strategies (e.g. memory)
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Brihaye, Bruyère, Raskin FORMATS'05]:
  - with five clocks, optimal cost is not computable!
  - with one clock and one stopwatch cost, optimal cost is computable
- ► [Bouyer, Brihaye, Markey IPL'06]:
  - with three clocks, optimal cost is not computable
- [Bouyer, Laroussinie, Larsen, Markey, Rasmussen Subm.'06]:
  - with one clock, optimal cost is computable

- ► [Asarin, Maler HSCC'99]:
  - optimal time is computable in timed games
- ► [La Torre, Mukhopadhyay, Murano TCS@02]:
  - case of acyclic games
- ► [Alur, Bernadsky, Madhusudan ICALP'04]:
  - complexity of k-step games
  - under a strongly non-zeno assumption, optimal cost is computable
- ▶ [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
  - structural properties of strategies (e.g. memory)
  - under a strongly non-zeno assumption, optimal cost is computable
- ► [Brihaye, Bruyère, Raskin FORMATS'05]:
  - with five clocks, optimal cost is not computable!
  - with one clock and one stopwatch cost, optimal cost is computable
- ► [Bouyer, Brihaye, Markey IPL'06]:
  - with three clocks, optimal cost is not computable
- [Bouyer, Laroussinie, Larsen, Markey, Rasmussen Subm.'06]:
  - with one clock, optimal cost is computable
- ► [Jurdziński, Trivedi LICS'06]:
  - optimal mean-cost is computable in a (restrictive) case



- ▶ optimal cost: 2
- optimal strategy:



- optimal cost: 2
- ▶ **optimal strategy:** if d is the time before a u occurs, and d' is the time waited in  $\ell_1$ , the cost of the run is 2.d + d'.



- optimal cost: 2
- **optimal strategy:** if d is the time before a u occurs, and d' is the time waited in  $\ell_1$ , the cost of the run is  $2 \cdot d + d'$ .

$$2.d + d' \leq 2$$



- optimal cost: 2
- **optimal strategy:** if d is the time before a u occurs, and d' is the time waited in  $\ell_1$ , the cost of the run is  $2 \cdot d + d'$ .

$$2.d + d' \le 2$$

(accumulated cost)  $+ d' \le 2$ 

Original reduction: [Brihaye, Bruyère, Raskin - FORMATS'05]

This reduction: [Bouyer, Brihaye, Markey - IPL'06]

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05]
This reduction: [Bouyer, Brihaye, Markey – IPL'06]

#### Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05]
This reduction: [Bouyer, Brihaye, Markey – IPL'06]

#### Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

#### **Encoding of the counters:**

- ▶ counter  $c_1$  is encoded by a clock  $x_1$  s.t.  $x_1 = \frac{1}{2^{c_1}}$
- ▶ counter  $c_2$  is encoded by a clock  $x_2$  s.t.  $x_2 = \frac{1}{3^{c_2}}$
- $\triangleright$   $x_1$  and  $x_2$  will be alternatively x, y or z

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05]

This reduction: [Bouyer, Brihaye, Markey – IPL'06]

#### Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

#### **Encoding of the counters:**

- ▶ counter  $c_1$  is encoded by a clock  $x_1$  s.t.  $x_1 = \frac{1}{2^{c_1}}$
- ▶ counter  $c_2$  is encoded by a clock  $x_2$  s.t.  $x_2 = \frac{1}{3^{c_2}}$
- $\triangleright$   $x_1$  and  $x_2$  will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost  $\leq$  3,

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05]
This reduction: [Bouyer, Brihaye, Markey – IPL'06]

#### Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

#### **Encoding of the counters:**

- ▶ counter  $c_1$  is encoded by a clock  $x_1$  s.t.  $x_1 = \frac{1}{2^{c_1}}$
- ▶ counter  $c_2$  is encoded by a clock  $x_2$  s.t.  $x_2 = \frac{1}{3^{c_2}}$
- $\triangleright$   $x_1$  and  $x_2$  will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost  $\leq$  3, and

Player 1 has a winning strategy with cost  $\leq$  3 iff the two-counter machine halts

### Simulation of an incrementation

### Instruction $i: c_1 + +$ ; goto instruction j



### Simulation of an incrementation

#### Instruction $i: c_1 + +$ ; goto instruction j



# Adding x or 1-x to the cost variable



The cost is increased by  $x_0$ 

# Adding x or 1-x to the cost variable



The cost is increased by  $x_0$ 



The cost is increased by  $1-x_0$ 

# Adding x or 1-x to the cost variable

Add<sup>+</sup>(x, {z})

$$y=1,y:=0$$
 $x=1,x:=0$ 
 $z=1,z:=0$ 
 $z=1,z:=0$ 

The cost is increased by  $x_0$ 



The cost is increased by  $1-x_0$ 



In 
$$W_1$$
, cost =  $2x_0 + (1 - y_0) + 2$ .  
In  $W_2$ , cost =  $2(1 - x_0) + y_0 + 1$ .



In 
$$W_1$$
, cost =  $2x_0 + (1 - y_0) + 2$ .  
In  $W_2$ , cost =  $2(1 - x_0) + y_0 + 1$ .

• if  $y_0 < 2x_0$ , player 2 chooses the first branch: in  $W_1$ , cost > 3

$$z:=0$$

$$z:=0$$

$$z:=0$$

$$Add^{+}(x,\{z\})$$

$$Add^{+}(x,\{z\})$$

$$Add^{-}(y,\{z\})$$

$$Cost=0$$

$$Add^{-}(x,\{z\})$$

$$Add^{-}(x,\{z\})$$

$$Add^{-}(x,\{z\})$$

$$Add^{+}(y,\{z\})$$

$$Cost=1$$

$$Cost=0$$

In 
$$W_1$$
, cost =  $2x_0 + (1 - y_0) + 2$ .  
In  $W_2$ , cost =  $2(1 - x_0) + y_0 + 1$ .

- if  $y_0 < 2x_0$ , player 2 chooses the first branch: in  $W_1$ , cost > 3
- if  $y_0 > 2x_0$ , player 2 chooses the second branch: in  $W_2$ , cost > 3

$$z:=0$$

$$z:=0$$

$$cost=0$$

$$Add^{+}(x,\{z\})$$

$$Add^{+}(x,\{z\})$$

$$Add^{-}(y,\{z\})$$

$$cost=0$$

$$z:=0$$

$$Add^{-}(x,\{z\})$$

$$Add^{-}(x,\{z\})$$

$$Add^{+}(y,\{z\})$$

$$cost=1$$

$$Cost=0$$

$$Add^{+}(y,\{z\})$$

$$Cost=1$$

$$Cost=0$$

In 
$$W_1$$
, cost =  $2x_0 + (1 - y_0) + 2$ .  
In  $W_2$ , cost =  $2(1 - x_0) + y_0 + 1$ .

- if  $y_0 < 2x_0$ , player 2 chooses the first branch: in  $W_1$ , cost > 3
- if  $y_0 > 2x_0$ , player 2 chooses the second branch: in  $W_2$ , cost > 3
- if  $y_0 = 2x_0$ , in  $W_1$  or in  $W_2$ , cost = 3.





We will ensure that:

▶ no cost is accumulated in D-states





#### We will ensure that:

cost=3 Halt

- no cost is accumulated in D-states
- ▶ the delay between the A-state and the D-state is 1 t.u.



We will ensure that:



- no cost is accumulated in D-states
- ▶ the delay between the A-state and the D-state is 1 t.u.
  - ▶ the value of x in D is of the form  $\frac{1}{2^n}$



We will ensure that:

cost=3 Halt

- ▶ no cost is accumulated in *D*-states
- ▶ the delay between the A-state and the D-state is 1 t.u.
  - the value of x in D is of the form  $\frac{1}{2^n}$
  - the value of y in D is of the form  $\frac{2n}{3^m}$



#### We will ensure that:

- no cost is accumulated in D-states
- ▶ the delay between the A-state and the D-state is 1 t.u.
  - the value of x in D is of the form  $\frac{1}{2^n}$
  - the value of y in D is of the form  $\frac{2^n}{3^m}$



# Checking that x is of the form $\frac{1}{2^n}$



### Outline

1 Introduction

- 2. Model-checking weighted timed automat
- 3. Optimal timed games
- 4. Conclusion

#### Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed
  - → implemented in tool Uppaal Cora
- branching-time properties are undecidable

### Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed
  - → implemented in tool Uppaal Cora
- branching-time properties are undecidable
- what about linear-time properties?
- consider more general cost functions

#### Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed
  - → implemented in tool Uppaal Cora
- branching-time properties are undecidable
- what about linear-time properties?
- consider more general cost functions

#### Optimal timed games

- optimal cost is in general not computable in timed games
- under some assumption, it becomes computable
- complexity issues and properties of strategies have also been studied

#### Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed
  - → implemented in tool Uppaal Cora
- branching-time properties are undecidable
- what about linear-time properties?
- consider more general cost functions

### Optimal timed games

- optimal cost is in general not computable in timed games
- under some assumption, it becomes computable
- complexity issues and properties of strategies have also been studied
- investigate further mean-cost optimal timed games
- ► approximate optimal cost
- propose more algorithmics solutions
- **.** . . .