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An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):
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+ 2 picoseconds

× 3 picoseconds
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The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·
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Analyzing timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
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Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; This is a finite time-abstract bisimulation!
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Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .
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Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata
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Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode
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Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)
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(y≤7)y :=0
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y :=0
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y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
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+90
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x :=0

mult1
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done1
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done1
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done2

Modelling uncertainty
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x :=0
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P2:
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(x≤3)
x :=0
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x :=0
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y≥3

done2

y≥2

done2
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A good schedule is a path in the
product automaton with a low cost
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Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
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+7

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

32/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

Technical tool: a refinement of the regions, the corner-point
abstraction

3 0 0
0

0 0 3
7

7

Symbolic technics based on priced zones
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Technical tool: the corner-point abstraction
y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)
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An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)
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Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems
a region-closed attractor can be computed

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.
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A simple

weighted

timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1
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Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
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Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.
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Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .
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Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)
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Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)
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winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c1

y= 1
2c2

z=?

éu:=0 Ñ
x= 1

2c1
+α

y= 1
2c2

+α

z=0

éz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ñ
x= 1

2c1

y= 1
2c2

z= 1

2c1+1

éu=1,u:=0

Testy (x=2z)
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Are we done?

No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...
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Idea of the proof: Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after finitely many steps
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Tools for (weighted) timed automata and games

Uppaal url: http://www.uppaal.org

TiAMo url: https://git.lsv.fr/colange/tiamo

[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV’16).

Many tools and prototypes everywhere on earth...

Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

Our new tool TiAMo, developed by Maximilien Colange (LSV),
using code by Ocan Sankur (IRISA)

TiAMo = Timed Automata
Model-checker

Timed automata:
(time-optimal) reachability

Weighted timed automata:
optimal rechability

Aims at being a platform for
experiments (open source!)

Aims at asserting and
comparing algorithms
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Example problem, objective and approach

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS’15).

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2

Infinitely many configurations

Complex behaviour

Mechanical constraints

Goal: Synthesize a controller:

Which robot handles an object

How to avoid collision

Don’t miss any object

Approach:

Discretization of the behaviour
via a fixed set of continuous
controllers

Create an abstraction and use
previous results
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Our approach

Simplistic idea: fixed set of reference trajectories + property

Corresponding timed automaton:

P1

(t ∈ I1)

P2

(t ∈ I2)
,

t = a12

t := c12

t = a21

t := c21

a ≤ t ≤ b
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Our approach

More realistic idea: fixed set of funnels for control law + property

Corresponding timed automaton:

F1

(t ∈ I1)

F2

(t ∈ I2)
,

a12 ≤ t ≤ b12

t := c12

a21 ≤ t ≤ b21

t := c21

a ≤ t ≤ b
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Control funnels

System with continuous dynamics ẋ = f (x , t)

x1
x 2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

∀t0 ∈ R, x(t0) ∈ F(t0)⇒ ∀t ≥ t0, x(t) ∈ F(t)

F(t0)

F(t)

x1

x 2
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Example

obstacle

ct : positional clock; ch: local clock

F1
1

(ct∈I 1
1 )

F1
2

(ct∈I 1
2 )

F2
2

(ct∈I 2
2 )

F1
3

(ct∈I 1
3 )

α1≤ct≤β1

ct :=γ1; ch:=0

ch≥∆

ch:=0

α2≤ct≤β2

ct :=γ2, ch:=0
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Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller

← winning (optimal) strategy

89/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller

← winning (optimal) strategy

89/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller

← winning (optimal) strategy

89/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

Summary

conveyor belt

storage 2storage 1

controller controller

robot 1 robot 2 ; (huge) timed automata/games
(with weights), with few clocks

safe (good) controller ← winning (optimal) strategy

89/96



Timed automata Weighted timed automata Timed games Weighted timed games Tools Towards further applications Conclusion

A pick-and-place example

1d point mass

Funnel system
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Current challenges

For control people

Handle more non-linear systems (automatically build control funnels)

For us

Does not scale up very well so far (huge timed automata models)

Build the model on-demand?
But, can we give guarantees (optimality) when only part of the
model has been built?
Develop specific algorithms for the special timed automata we
construct?

Implement efficient approx. algorithm for weighted timed games
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Our new tool TiAMo

Future work
Various theoretical issues

Apply further the idea of approximation
Robustness issues

Continue working on TiAMo

Implementation of (weighted) timed games (good data structures,
abstractions, etc.)
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