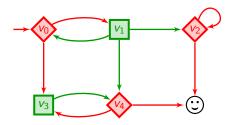
Nash equilibria in games on graphs with a public signal monitoring

Patricia Bouyer

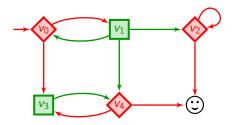
LSV, CNRS & ENS Paris-Saclay Université Paris-Saclay, Cachan, France

What this talk is about

- pure Nash equilibria in game graphs
- imperfect information monitoring
- public signals
- epistemic abstraction
- computability issues



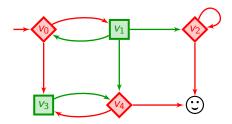
- Game graph G = (V, E)
- V partitioned into V_{\Diamond} and V_{\Box}



- Game graph G = (V, E)
- V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player i:

$$\sigma_i \colon V^* V_i \to V$$

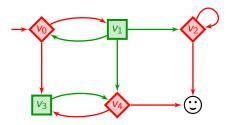
• $\operatorname{out}(\sigma_{\diamond})$: all paths compatible with σ_{\diamond}



- Game graph G = (V, E)
- V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player i:

$$\sigma_i\colon V^*V_i\to V$$

- $out(\sigma_{\diamond})$: all paths compatible with σ_{\diamond}
- Objective for $\diamond: \Omega \subseteq V^{\omega}$
- σ_{\diamond} winning strat. if $\mathsf{out}(\sigma_{\diamond}) \subseteq \Omega$



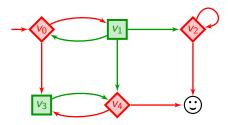
• Objective of \diamond : Reach \bigcirc

•
$$\sigma_{\diamond}(v_0) = v_3$$
,
 $\sigma_{\diamond}(v_2) = \sigma_{\diamond}(v_4) = \odot$ is a winning strategy

- Game graph G = (V, E)
- V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player i:

$$\sigma_i\colon V^*V_i\to V$$

- $out(\sigma_{\diamond})$: all paths compatible with σ_{\diamond}
- Objective for $\diamond: \Omega \subseteq V^{\omega}$
- σ_{\diamond} winning strat. if $\mathsf{out}(\sigma_{\diamond}) \subseteq \Omega$



• Objective of \diamond : Reach \bigcirc

•
$$\sigma_{\diamond}(v_0) = v_3$$
,
 $\sigma_{\diamond}(v_2) = \sigma_{\diamond}(v_4) = \bigcirc$ is a
winning strategy

- Game graph G = (V, E)
- V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player *i*:

$$\sigma_i\colon V^*V_i\to V$$

- $out(\sigma_{\diamond})$: all paths compatible with σ_{\diamond}
- Objective for $\diamond: \Omega \subseteq V^{\omega}$
- σ_◊ winning strat. if out(σ_◊) ⊆ Ω
- Determinacy: Either ◊ has a winning strategy for Ω, or □ has a winning strategy for V^ω \ Omega

• Several players $Agt = \{A_1, \dots, A_N\}$

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

 $\mathsf{payoff}_A:\,V^\omega\to\mathbb{R}$

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A: V^\omega o \mathbb{R}$$

Non-zero-sum

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A: V^\omega o \mathbb{R}$$

- Non-zero-sum
- Selfishness hypothesis: each player wants to maximize her own payoff!

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A: V^\omega o \mathbb{R}$$

- Non-zero-sum
- Selfishness hypothesis: each player wants to maximize her own payoff!
- Need of solution concepts to describe the kind of interactions between the players

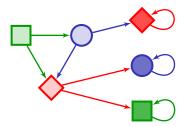
- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A: V^\omega o \mathbb{R}$$

- Non-zero-sum
- Selfishness hypothesis: each player wants to maximize her own payoff!
- Need of solution concepts to describe the kind of interactions between the players
- The simplest: Nash equilibria

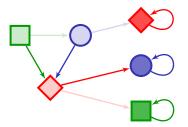
Nash equilibrium

A strategy profile $(\sigma_A)_{A \in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.



Nash equilibrium

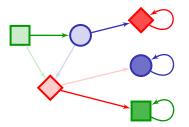
A strategy profile $(\sigma_A)_{A \in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.



is a Nash equilibrium with payoff (0, 1, 0)

Nash equilibrium

A strategy profile $(\sigma_A)_{A \in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.



is not a Nash equilibrium

Nash equilibrium

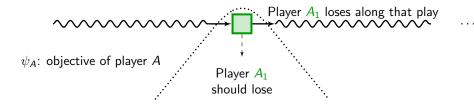
A strategy profile $(\sigma_A)_{A \in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.

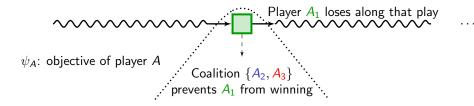


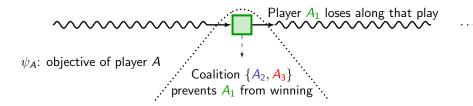
is a Nash equilibrium with payoff (0, 1, 0)

Player A1 loses along that play

 ψ_A : objective of player A







Recipe

- for every $A \in Agt$, compute the set of winning states W_A
- find a path witness for the formula:

$$\Phi_{\mathsf{NE}} = \bigwedge_{\mathcal{A} \in \mathsf{Agt}} \left(\neg \psi_{\mathcal{A}} \Rightarrow \mathbf{G} \neg \mathcal{W}_{\mathcal{A}} \right)$$

(valid for tail or reachability objectives)

[UW11,Umm11]

• There always exists a Nash equilibrium for Boolean ω -regular objectives

[UW11,Umm11]

- There always exists a Nash equilibrium for Boolean ω -regular objectives
- One can decide the constrained existence of a Nash equilibrium (and compute one!)

[UW11,Umm11]

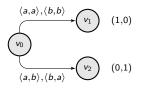
- There always exists a Nash equilibrium for Boolean $\omega\text{-regular}$ objectives
- One can decide the constrained existence of a Nash equilibrium (and compute one!)
- One cannot decide the existence of a mixed (i.e. stochastic) Nash equilibrium

[UW11,Umm11]

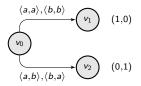
- There always exists a Nash equilibrium for Boolean ω -regular objectives
- One can decide the constrained existence of a Nash equilibrium (and compute one!)
- One cannot decide the existence of a mixed (i.e. stochastic) Nash equilibrium

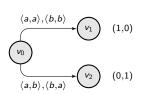
 \rightsquigarrow this is why we restrict to pure equilibria

The matching-penny game:

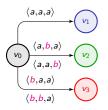


The matching-penny game:

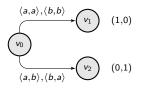


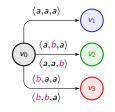


The matching-penny game:



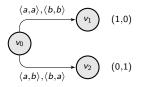
The matching-penny game:

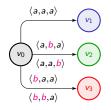


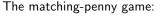


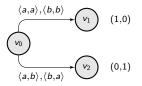
• susp
$$((v_0, v_3), \langle a, a, a \rangle) = \{A_1\}$$

The matching-penny game:

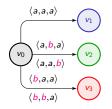




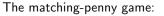


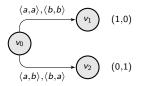


There is no pure Nash eq.

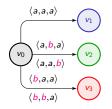


Solution via the suspect game abstraction, a structure to track suspect players





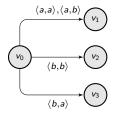
There is no pure Nash eq.



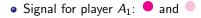
Solution via the suspect game abstraction, a structure to track suspect players

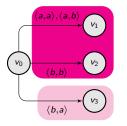
Can we add more partial information to that framework?

Concurrent games with signals



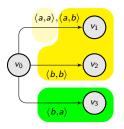
Concurrent games with signals





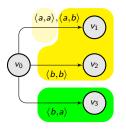
- On playing a, player A_1 will receive iglet
- On playing b, player A₁ will receive either
 or

Concurrent games with signals



- Signal for player A_1 : and •
- Signal for player A_2 : -, and -
- On playing a, player A_1 will receive \bigcirc
- On playing b, player A₁ will receive either
 or
- On playing a, player A₂ will receive either
 or
- On playing b, player A_2 will receive -

Concurrent games with signals



- Signal for player A_1 : and •
- Signal for player A_2 : -, and -
- On playing a, player A_1 will receive \bigcirc
- On playing b, player A₁ will receive either
 or
- On playing a, player A₂ will receive either
 or
- On playing b, player A_2 will receive -

Public signal

Same signal to every player!

$$(v_0 \xrightarrow{\langle a_1, a_2, a_3 \rangle} (v_1 \xrightarrow{\langle b_1, b_2, b_3 \rangle} (v_2 \xrightarrow{\langle c_1, c_2, c_3 \rangle} (v_3 \xrightarrow{\langle d_1, d_2, d_3 \rangle} (v_4 \xrightarrow{\langle c_1, c_2, c_3 \rangle} (v_4 \xrightarrow{\langle c_1, c_3, c_3 \rangle} (v_4 \xrightarrow{\langle c_1, c_$$

...

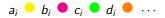
$$(v_0 \underbrace{\langle a_1, a_2, a_3 \rangle}_{(v_1} \underbrace{\langle b_1, b_2, b_3 \rangle}_{(v_2} \underbrace{\langle c_1, c_2, c_3 \rangle}_{(v_3} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3,$$

• What player A_i sees:

...

$$(v_0 \underbrace{\langle a_1, a_2, a_3 \rangle}_{(v_1} \underbrace{\langle b_1, b_2, b_3 \rangle}_{(v_2} \underbrace{\langle c_1, c_2, c_3 \rangle}_{(v_3} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3,$$

• What player A_i sees:

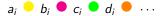


 \rightsquigarrow induces undistinguishability relation \sim_{A_i}

...

$$(v_0 \underbrace{\langle a_1, a_2, a_3 \rangle}_{(v_1} \underbrace{\langle b_1, b_2, b_3 \rangle}_{(v_2} \underbrace{\langle c_1, c_2, c_3 \rangle}_{(v_3} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3,$$

• What player A_i sees:

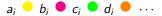


 \rightsquigarrow induces undistinguishability relation \sim_{A_i}

• Strategy of player A_i has to respect \sim_{A_i}

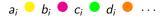
$$(v_0 \underbrace{\langle a_1, a_2, a_3 \rangle}_{(v_1} \underbrace{\langle b_1, b_2, b_3 \rangle}_{(v_2} \underbrace{\langle c_1, c_2, c_3 \rangle}_{(v_3} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3,$$

• What player A_i sees:



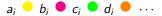
 \rightsquigarrow induces undistinguishability relation \sim_{A_i}

- Strategy of player A_i has to respect \sim_{A_i}
- Privately visible payoff: based on



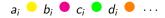
$$(v_0 \underbrace{\langle a_1, a_2, a_3 \rangle}_{(v_1} \underbrace{\langle b_1, b_2, b_3 \rangle}_{(v_2} \underbrace{\langle c_1, c_2, c_3 \rangle}_{(v_3} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4} \underbrace{\langle d_1, d_2, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3, d_3 \rangle}_{(v_4)} \underbrace{\langle d_1, d_3,$$

• What player A_i sees:



 \rightsquigarrow induces undistinguishability relation \sim_{A_i}

- Strategy of player A_i has to respect \sim_{A_i}
- Privately visible payoff: based on



• Publicly visible payoff: based on sequences of colors

Payoff functions of interest

• Boolean ω -regular payoff function (for Ω):

$$\mathsf{payoff}(
ho) = \left\{ egin{array}{cc} 1 & \mathsf{if} \
ho \in \Omega \\ 0 & \mathsf{otherwise} \end{array}
ight.$$

Payoff functions of interest

• Boolean ω -regular payoff function (for Ω):

$$\mathsf{payoff}(
ho) = \left\{ egin{array}{cc} 1 & ext{if }
ho \in \Omega \\ 0 & ext{otherwise} \end{array}
ight.$$

• Mean-payoff (limsup or liminf) w.r.t. weight function w:

$$\begin{cases} \underline{\mathsf{MP}}_{w}(\rho) = \liminf_{n \to \infty} \sum_{i=0}^{n} w\left(v_{i} \xrightarrow{m_{i}} v_{i+1}\right) \\ \overline{\mathsf{MP}}_{w}(\rho) = \limsup_{n \to \infty} \sum_{i=0}^{n} w\left(v_{i} \xrightarrow{m_{i}} v_{i+1}\right) \end{cases}$$

Payoff functions of interest

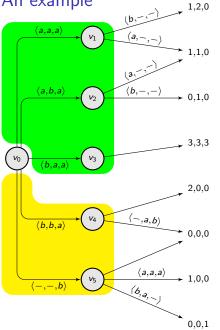
• Boolean ω -regular payoff function (for Ω):

$$\mathsf{payoff}(
ho) = \left\{ egin{array}{cc} 1 & ext{if }
ho \in \Omega \\ 0 & ext{otherwise} \end{array}
ight.$$

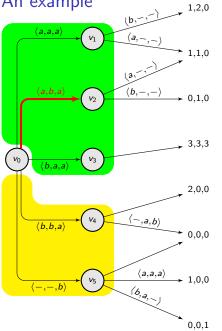
• Mean-payoff (limsup or liminf) w.r.t. weight function w:

$$\begin{cases} \underline{\mathsf{MP}}_{w}(\rho) = \liminf_{n \to \infty} \sum_{i=0}^{n} w\left(v_{i} \xrightarrow{m_{i}} v_{i+1}\right) \\ \overline{\mathsf{MP}}_{w}(\rho) = \limsup_{n \to \infty} \sum_{i=0}^{n} w\left(v_{i} \xrightarrow{m_{i}} v_{i+1}\right) \end{cases}$$

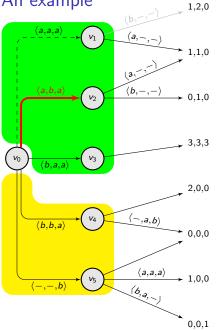
For public visibility, we will assume that atomic propositions/atomic weights are defined w.r.t. the signal alphabet Σ .



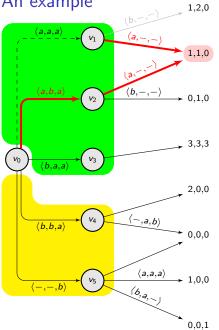
• Three players concurrent game with public signal



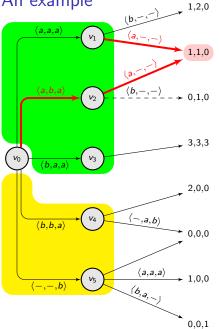
- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash equilibrium?



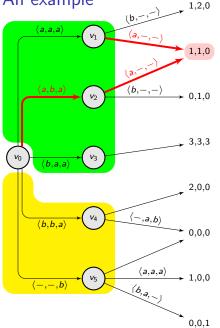
- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash
- This is an A_2 -deviation, which is invisible to both A_1 and A_3 . A_1 has to play *a*.



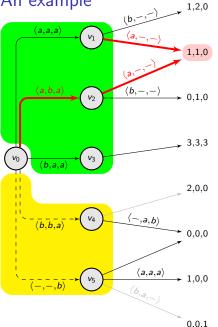
- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash
- This is an A₂-deviation, which is invisible to both A_1 and A_3 . A_1 has to play *a*. Which we propagate out of v_2 .



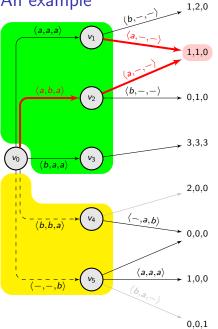
- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash
- This is an A₂-deviation, which is invisible to both A_1 and A_3 . A_1 has to play *a*. Which we propagate out of v_2 .
- This is a non-profitable A_1 -deviation.



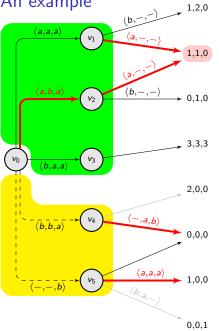
- Three players concurrent game with public signal
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a. Which we propagate out of v₂.
- This is a non-profitable A₁-deviation.
- No one (alone) can deviate to v_3 .



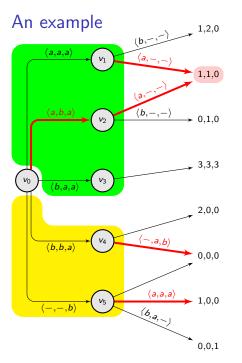
- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash
- This is an A₂-deviation, which is invisible to both A_1 and A_3 . A_1 has to play a. Which we propagate out of v_2 .
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .
- A_1 can deviate to v_4 and A_3 can deviate to v_5 : A_2 knows there has been a deviation, but (s)he doesn't know whether A_1 or A_3 did so, and whether the game proceeds to v_4 or v_5 . On the other hand, both A_1 and A_3 know!



- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash
- This is an A₂-deviation, which is invisible to both A_1 and A_3 . A_1 has to play a. Which we propagate out of v_2 .
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .
- A_1 can deviate to v_4 and A_3 can deviate to v_5 : A_2 knows there has been a deviation, but (s)he doesn't know whether A_1 or A_3 did so, and whether the game proceeds to v_4 or v_5 . On the other hand, both A_1 and A_3 know! But if the game proceeds to v_4 , A_3 can help A_2 punishing A_1 , and if the game proceeds to v_5 , A_1 can help A_2 punishing A_3 .



- Three players concurrent game with public
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash
- This is an A₂-deviation, which is invisible to both A_1 and A_3 . A_1 has to play a. Which we propagate out of v_2 .
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .
- A_1 can deviate to v_4 and A_3 can deviate to v_5 : A_2 knows there has been a deviation, but (s)he doesn't know whether A_1 or A_3 did so, and whether the game proceeds to v_4 or v_5 . On the other hand, both A_1 and A_3 know! But if the game proceeds to v_4 , A_3 can help A_2 punishing A_1 , and if the game proceeds to v_5 , A_1 can help A_2 punishing A_3 .



• The main outcome of a Nash equilibrium has to be robust to invisible deviations

- The main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)

- The main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)
- How to systematically track all individual deviations and uncertainty induced by imperfect information monitoring?

- The main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)
- How to systematically track all individual deviations and uncertainty induced by imperfect information monitoring?
- Is that always possible?

- The main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)
- How to systematically track all individual deviations and uncertainty induced by imperfect information monitoring?
- Is that always possible?
- Can we build a finite epistemic structure?

The epistemic game abstraction

Inspired by:

- the standard powerset construction [Rei84]
- the epistemic unfolding for coordination/distributed synthesis [BKP11]
- the suspect game [BBMU15]
- the deviator game [Bre16]

[Rei84] Reif. The complexity of two-player games of incomplete information (J. Comp. and Syst. Sc.) [BKP11] Berwanger, Kaiser, Puchala. Perfect-information construction for coordination in games (FSTTCS'11) [BBMU15] Pure Nash equilibria in concurrent games (Log. Meth. in Comp. Sc.) [Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS'16)

The epistemic game abstraction

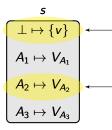
Inspired by:

- the standard powerset construction [Rei84]
- the epistemic unfolding for coordination/distributed synthesis [BKP11]
- the suspect game [BBMU15]
- the deviator game [Bre16]

The idea is to track all possible undistinguishable behaviours, including the single-player deviations

[Rei84] Reif. The complexity of two-player games of incomplete information (J. Comp. and Syst. Sc.) [BKP11] Berwanger, Kaiser, Puchala. Perfect-information construction for coordination in games (FSTTCS'11) [BBMU15] Pure Nash equilibria in concurrent games (Log. Meth. in Comp. Sc.) [Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS'16)

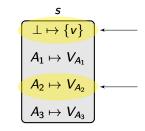
Epistemic states



vertex the game is in if no deviation has occurred

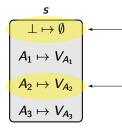
vertices the game might be in if A_2 has deviated (invisible deviation)

Epistemic states



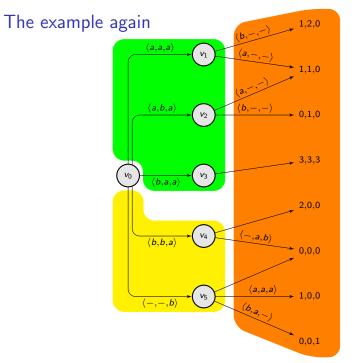
vertex the game is in if no deviation has occurred

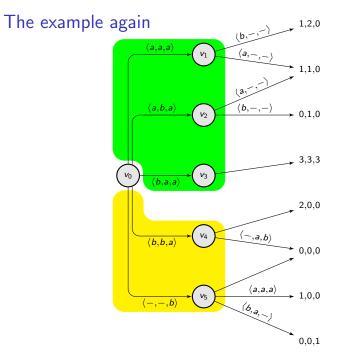
vertices the game might be in if A_2 has deviated (invisible deviation)

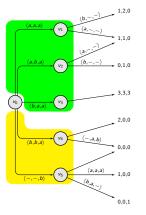


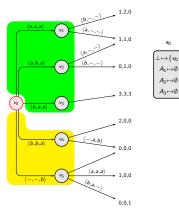
- a visible deviation has for sure occurred

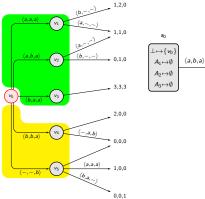
vertices the game might be in if A_2 has deviated (visible deviation)



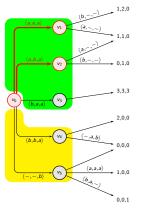


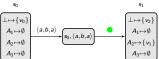


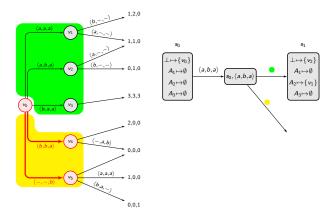


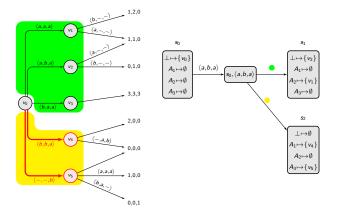


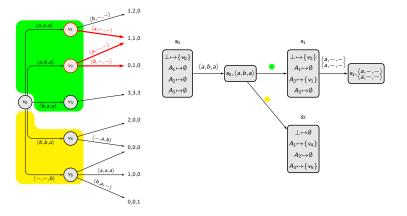
 $\langle a,b,a \rangle$ $s_0, \langle a, b, a \rangle$

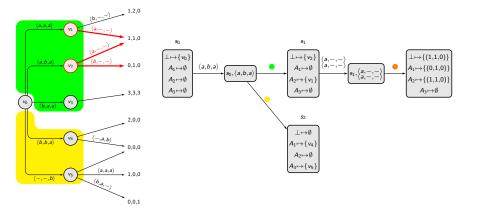


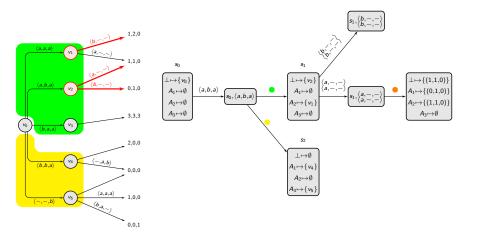


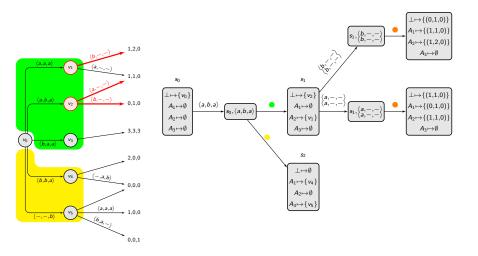




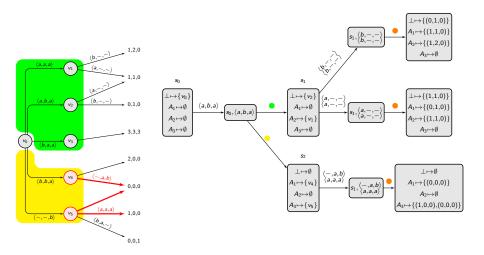


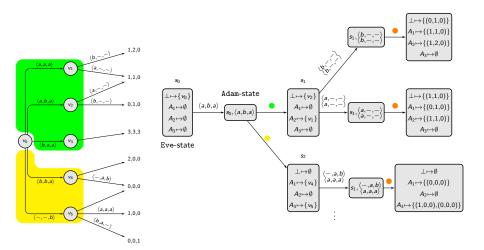












Properties of the epistemic game

• To every history H in the epistemic game, one can associate sets

- $concrete_{\perp}(H)$: at most one concrete real history (if no deviation)
- $concrete_A(H)$: all possible A-deviations
- $concrete(H) = \bigcup_{A \in Agt \cup \{\bot\}} concrete_A(H)$

Properties of the epistemic game

• To every history H in the epistemic game, one can associate sets

- concrete_⊥(H): at most one concrete real history (if no deviation)
- concrete_A(H): all possible A-deviations
- $concrete(H) = \bigcup_{A \in Agt \cup \{\bot\}} concrete_A(H)$

H history in the epistemic game. For every $h_1 \neq h_2 \in concrete(H)$, $h_1 \sim_A h_2$ iff $h_1, h_2 \notin concrete_A(H)$

Properties of the epistemic game (cont'd)

Winning condition for Eve

A strategy σ_{Eve} is said winning for payoff $p \in \mathbb{R}^{\text{Agt}}$ from s_0 whenever payoff($concrete_{\perp}(\text{out}_{\perp}(\sigma_{\text{Eve}}, s_0))) = p$, and for every $R \in \text{out}(\sigma_{\text{Eve}}, s_0)$, for every $A \in \text{Agt}$, for every $\rho \in concrete_A(R)$, payoff_A(ρ) $\leq p_A$.

Properties of the epistemic game (cont'd)

Winning condition for Eve (publicly visible payoffs)

A strategy σ_{Eve} is said winning for p from s_0 whenever payoff'(out_ $(\sigma_{\text{Eve}}, s_0)) = p$, and for every $R \in \text{out}(\sigma_{\text{Eve}}, s_0)$, for every $A \in \text{susp}(R)$, payoff'_ $A(R) \leq p_A$.

Properties of the epistemic game (cont'd)

Winning condition for Eve (publicly visible payoffs)

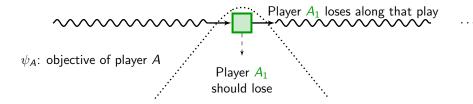
A strategy σ_{Eve} is said winning for p from s_0 whenever payoff'(out_ $(\sigma_{\text{Eve}}, s_0)) = p$, and for every $R \in \text{out}(\sigma_{\text{Eve}}, s_0)$, for every $A \in \text{susp}(R)$, payoff'_ $A(R) \leq p_A$.

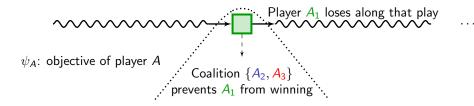
Proposition

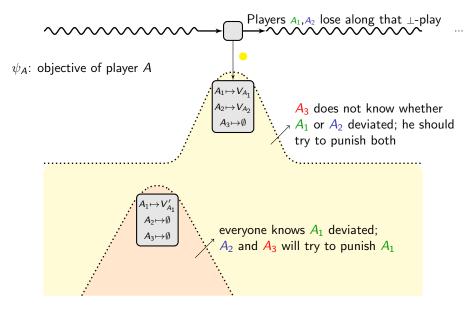
There is a Nash equilibrium in \mathcal{G} with payoff p from v_0 if and only if Eve has a winning strategy for p in $\mathcal{E}_{\mathcal{G}}$ from s_0 .

Player A₁ loses along that play

 ψ_A : objective of player A







Application to ω -regular objectives (cont'd)

• This amounts to solving two-player turn-based games with generalized (i.e. conjunctions of) ω -regular objectives

Application to ω -regular objectives (cont'd)

• This amounts to solving two-player turn-based games with generalized (i.e. conjunctions of) ω -regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible payoff functions associated with parity conditions in EXPSPACE. It is EXPTIME-hard.

Application to ω -regular objectives (cont'd)

• This amounts to solving two-player turn-based games with generalized (i.e. conjunctions of) ω -regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible payoff functions associated with parity conditions in EXPSPACE. It is EXPTIME-hard.

• By reduction from the distributed synthesis problem (proof of [BK10]):

Theorem

One cannot decide the existence of a Nash equilibrium in a game with private signals and publicly visible ω -regular payoff functions. Even for three players.

Application to mean-payoff functions

• Using results on the polyhedron problem [BR15,Bre16]:

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible mean-payoff functions, in NP, with a coNEXPTIME oracle. This in particular can be solved in EXPSPACE. It is EXPTIME-hard.

Application to mean-payoff functions

• Using results on the polyhedron problem [BR15,Bre16]:

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible mean-payoff functions, in NP, with a coNEXPTIME oracle. This in particular can be solved in EXPSPACE. It is EXPTIME-hard.

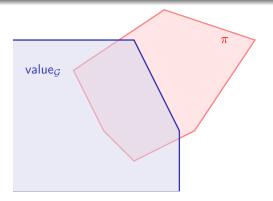
• By reduction from blind mean-payoff games (proven undecidable in [DDG+10])

Theorem

One cannot decide the constrained existence of a Nash equilibrium in a game with public signal and privately visible mean-payoff functions. Even for two players.

The polyhedron problem

In a multi-dimensional mean-payoff two-player turn-based game, the polyhedron problem aks, given a polyhedron π , whether there is a strategy for Eve which ensures a payoff vector which belongs to π .



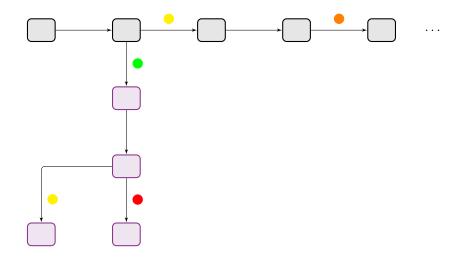
 $\mathsf{value}_{\mathcal{G}} = \{ v \in \mathbb{R}^d \mid \exists \sigma \forall \rho \in \mathsf{out}(\sigma), \ \forall i, \ \mathsf{MP}_i(\rho) \geq v_i \}$

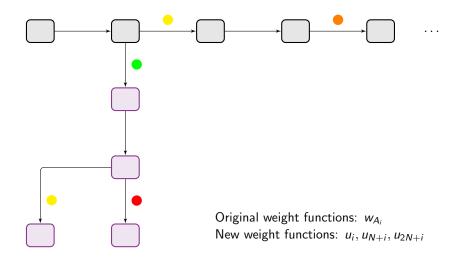
The polyhedron problem

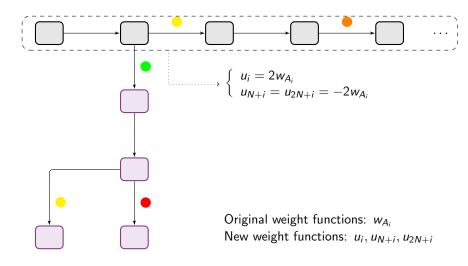
In a multi-dimensional mean-payoff two-player turn-based game, the polyhedron problem aks, given a polyhedron π , whether there is a strategy for Eve which ensures a payoff vector which belongs to π .

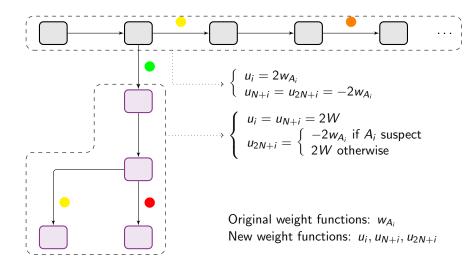
Theorem [BR15]

If there is a solution to the polyhedron problem, there is one solution with a payoff of polynomial size. The polyhedron problem is Σ_2 P-complete (Σ_2 P = NP^{NP})









There is a Nash equilibrium in the original game with payoff p if and only if there is a strategy for Eve in the epistemic game such that for every outcome ρ , for every $1 \le i \le N$,

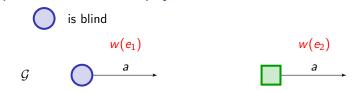
 $\begin{array}{l} \mathsf{MP}_{u_i}(\rho) \geq p_{\mathcal{A}_i} \\ \mathsf{MP}_{u_{N+i}}(\rho) \geq -p_{\mathcal{A}_i} \\ \mathsf{MP}_{u_{2N+i}}(\rho) \geq -p_{\mathcal{A}_i} \end{array}$

Original weight functions: w_{A_i} New weight functions: u_i, u_{N+i}, u_{2N+i}

There is a Nash equilibrium in the original game with a payoff $\nu \leq p \leq \nu'$ (ν and ν' are fixed thresholds) if and only if there is a strategy for Eve in the epistemic game solving the polyhedron problem for the polyhedron

$$\bigwedge_{1 \leq i \leq N} \left(x_i = -x_{N+i} = -x_{2N+i} \right) \ \land \ \bigwedge_{1 \leq i \leq N} (\nu_i \leq x_i \leq \nu_i')$$

Original weight functions: w_{A_i} New weight functions: u_i, u_{N+i}, u_{2N+i}



Application to mean-payoff functions: undecidability is blind $w(e_1)$ $w(e_2)$ а a____ G $(0, -w(e_2))$ $\langle -, a \rangle$ $(0, -w(e_1))$ $\langle a,a
angle$ \mathcal{H} $\langle a,b \rangle \ (a \neq b)$ the public signal only reveals lost lost $\langle -, - \rangle$ (0, -W - 1)

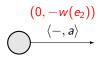
 $(0, -w(e_1))$ $\langle {\it a}, {\it a}
angle$ \mathcal{H} $\langle a,b\rangle \ (a \neq b)$ lost $\langle -, - \rangle$ (0, -W - 1)

is blind

G

 $w(e_1)$

а



w(e₂) a

the public signal only reveals lost but player A_2 has full information

has a winning strategy in G ensuring MP > 0 iff there is an NE in H such that player A_2 has a payoff < 0

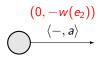
 $(0, -w(e_1))$ $\langle {\it a}, {\it a}
angle$ \mathcal{H} $\langle a,b\rangle \ (a \neq b)$ lost $\langle -, - \rangle$ (0, -W - 1)

is blind

G

 $w(e_1)$

а



w(e₂) a

the public signal only reveals lost but player A_2 has full information

Conclusion

We have:

- proposed a framework for games over graphs with a public signal monitoring Note: framework inspired by [Tom98]
- proposed an abstraction called the epistemic game abstraction, which allows to detect deviators and tocharacterize Nash equilibria in the original game
- used it to show several decidability results.

Conclusion

We have:

- proposed a framework for games over graphs with a public signal monitoring Note: framework inspired by [Tom98]
- proposed an abstraction called the epistemic game abstraction, which allows to detect deviators and tocharacterize Nash equilibria in the original game
- used it to show several decidability results.

We want to:

- work out the precise complexities
- understand whether one can extend the approach to other communication architectures ([RT98]??)
- understand whether other multiagent frameworks (like fragments of Strategy Logic) can be handled under the assumption of public signal