
Nash equilibria in games on graphs
with a public signal monitoring

Patricia Bouyer

LSV, CNRS & ENS Paris-Saclay
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What this talk is about

pure Nash equilibria in game graphs

imperfect information monitoring

public signals

epistemic abstraction

computability issues
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Two-player turn-based zero-sum games

v0 v1 v2

v3 v4 ,

Objective of 3: Reach ,

σ3(v0) = v3,
σ3(v2) = σ3(v4) = , is a
winning strategy

Game graph G = (V ,E )

V partitioned into V3 and V2

Strategy for player i :

σi : V ∗Vi → V

out(σ3): all paths compatible
with σ3

Objective for 3: Ω ⊆ V ω

σ3 winning strat. if
out(σ3) ⊆ Ω

Determinacy: Either 3 has a winning strategy for Ω, or 2 has a
winning strategy for V ω \ Omega
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Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria
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Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (σA)A∈Agt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.
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Boolean Nash equilibria in turn-based games

Player A1 loses along that play

ψA: objective of player A

Recipe

for every A ∈ Agt, compute the set of winning states WA

find a path witness for the formula:

ΦNE =
∧

A∈Agt

(
¬ψA ⇒ G¬WA

)
(valid for tail or reachability objectives)
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Existing results in the framework of turn-based games

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (RWTH Aachen University)

[UW11,Umm11]

There always exists a Nash equilibrium for Boolean ω-regular
objectives

One can decide the constrained existence of a Nash equilibrium (and
compute one!)

One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

; this is why we restrict to pure equilibria
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What about concurrent games?

[BBMU15] Bouyer, Brenguier, Markey, Ummels. Pure Nash equilibria in concurrent games (LMCS)

The matching-penny game:

v0

v1 (1,0)

v2 (0,1)

〈a,a〉,〈b,b〉

〈a,b〉,〈b,a〉

There is no pure Nash eq.

v0

v1

v2

v3

〈a,a,a〉

〈a,b,a〉

〈a,a,b〉
〈b,a,a〉

〈b,b,a〉

susp
(

(v0, v3), 〈a, a, a〉
)

= {A1}

susp
(

(v0, v2), 〈a, a, a〉
)

= {A2,A3}

Solution via the suspect game abstraction,
a structure to track suspect players

Can we add more partial information to that framework?
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Concurrent games with signals

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)

v0

v1

v2

v3

〈a,a〉,〈a,b〉

〈b,b〉

〈b,a〉

Signal for player A1: • and •
Signal for player A2: •, • and •

On playing a, player A1 will receive •
On playing b, player A1 will receive either• or •
On playing a, player A2 will receive either• or •
On playing b, player A2 will receive •

Public signal

Same signal to every player!
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Our specific framework

v0 v1 v2 v3 v4 ···
〈a1,a2,a3〉 〈b1,b2,b3〉 〈c1,c2,c3〉 〈d1,d2,d3〉

What player Ai sees:

ai • bi • ci • di • · · ·

; induces undistinguishability relation ∼Ai

Strategy of player Ai has to respect ∼Ai

Privately visible payoff: based on

ai • bi • ci • di • · · ·
Publicly visible payoff: based on sequences of colors

• • • • · · ·
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Payoff functions of interest

Boolean ω-regular payoff function (for Ω):

payoff(ρ) =

ß
1 if ρ ∈ Ω
0 otherwise

Mean-payoff (limsup or liminf) w.r.t. weight function w : MPw (ρ) = lim infn→∞
∑n

i=0 w
(
vi

mi−→ vi+1

)
MPw (ρ) = lim supn→∞

∑n
i=0 w

(
vi

mi−→ vi+1

)

For public visibility, we will assume that atomic propositions/atomic
weights are defined w.r.t. the signal alphabet Σ.
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An example

v0

v1

v2

v3

v4

v5

1,2,0

1,1,0

0,1,0

3,3,3

2,0,0

0,0,0

1,0,0

0,0,1

〈a,a,a〉

〈a,b,a〉

〈b,a,a〉

〈b,b,a〉

〈−,−,b〉

〈a,−
,−〉

〈b,−,−〉

〈b,−,
−〉

〈a,−,−〉

〈−,a,b〉

〈a,a,a〉
〈b,a,−〉

Three players concurrent game with public
signal
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proceeds to v4, A3 can help A2 punishing
A1, and if the game proceeds to v5, A1
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What we learn from that example

The main outcome of a Nash equilibrium has to be robust to
invisible deviations

Visible deviations may induce some uncertainty on possible deviators
(no common knowledge)

How to systematically track all individual deviations and uncertainty
induced by imperfect information monitoring?

Is that always possible?

Can we build a finite epistemic structure?
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The epistemic game abstraction

[Rei84] Reif. The complexity of two-player games of incomplete information (J. Comp. and Syst. Sc.)
[BKP11] Berwanger, Kaiser, Puchala. Perfect-information construction for coordination in games (FSTTCS’11)
[BBMU15] Pure Nash equilibria in concurrent games (Log. Meth. in Comp. Sc.)
[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS’16)

Inspired by:

the standard powerset construction [Rei84]

the epistemic unfolding for coordination/distributed synthesis
[BKP11]

the suspect game [BBMU15]

the deviator game [Bre16]

The idea is to track all possible undistinguishable
behaviours, including the single-player deviations
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Epistemic states

⊥ 7→ {v}

A1 7→ VA1

A2 7→ VA2

A3 7→ VA3

s

⊥ 7→ {v}

A1 7→ VA1

A2 7→ VA2

A3 7→ VA3

s
vertex the game is in
if no deviation has occurred

vertices the game might be in
if A2 has deviated (invisible deviation)

⊥ 7→ ∅

A1 7→ VA1

A2 7→ VA2

A3 7→ VA3

s

⊥ 7→ ∅

A1 7→ VA1

A2 7→ VA2

A3 7→ VA3

s

a visible deviation has for sure occurred

vertices the game might be in
if A2 has deviated (visible deviation)
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Properties of the epistemic game

To every history H in the epistemic game, one can associate sets

concrete⊥(H): at most one concrete real history (if no deviation)

concreteA(H): all possible A-deviations

concrete(H) =
⋃

A∈Agt∪{⊥} concreteA(H)

H history in the epistemic game. For every h1 6= h2 ∈ concrete(H),

h1 ∼A h2 iff h1, h2 /∈ concreteA(H)
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Properties of the epistemic game (cont’d)

Winning condition for Eve

A strategy σEve is said winning for payoff p ∈ RAgt from s0 whenever
payoff(concrete⊥(out⊥(σEve, s0))) = p, and for every R ∈ out(σEve, s0),
for every A ∈ Agt, for every ρ ∈ concreteA(R), payoffA(ρ) ≤ pA.

Winning condition for Eve (publicly visible payoffs)

A strategy σEve is said winning for p from s0 whenever
payoff′(out⊥(σEve, s0)) = p, and for every R ∈ out(σEve, s0), for every
A ∈ susp(R), payoff′A(R) ≤ pA.

Proposition

There is a Nash equilibrium in G with payoff p from v0 if and only if Eve
has a winning strategy for p in EG from s0.
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Application to ω-regular objectives

Player A1 loses along that play

ψA: objective of player A
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. . .
Player A1 loses along that play

Coalition {A2,A3}
prevents A1 from winning
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Application to ω-regular objectives

ψA: objective of player A

...
Players A1,A2 lose along that ⊥-play

A1 7→VA1

A2 7→VA2

A3 7→∅

•

A3 does not know whether
A1 or A2 deviated; he should
try to punish both

everyone knows A1 deviated;
A2 and A3 will try to punish A1

A1 7→V ′
A1

A2 7→∅

A3 7→∅
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Application to ω-regular objectives (cont’d)

[BK10] Berwanger, Kaiser. Information Tracking in Games on Graphs (Journal of Logic, Language and Information)

This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) ω-regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible payoff functions associated
with parity conditions in EXPSPACE. It is EXPTIME-hard.

By reduction from the distributed synthesis problem (proof of
[BK10]):

Theorem
One cannot decide the existence of a Nash equilibrium in a game with
private signals and publicly visible ω-regular payoff functions. Even for
three players.
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Application to mean-payoff functions

[BR15] Brenguier, Raskin. Pareto curves of multidimensional mean-payoff games (CAV’15)
[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS’16)

[DDG+10] Degorre, Doyen, Gentilini, Raskin, Toruńczyk. Energy and Mean-Payoff Games with Imperfect Information (CSL’10)

Using results on the polyhedron problem [BR15,Bre16]:

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible mean-payoff functions, in NP,
with a coNEXPTIME oracle. This in particular can be solved in
EXPSPACE. It is EXPTIME-hard.

By reduction from blind mean-payoff games (proven undecidable in
[DDG+10])

Theorem
One cannot decide the constrained existence of a Nash equilibrium in a
game with public signal and privately visible mean-payoff functions. Even
for two players.
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Application to mean-payoff functions: decidability

The polyhedron problem

In a multi-dimensional mean-payoff two-player turn-based game, the
polyhedron problem aks, given a polyhedron π, whether there is a
strategy for Eve which ensures a payoff vector which belongs to π.

π

valueG

valueG = {v ∈ Rd | ∃σ∀ρ ∈ out(σ), ∀i , MPi (ρ) ≥ vi}

Theorem [BR15]

If there is a solution to the polyhedron problem, there is one solution
with a payoff of polynomial size.
The polyhedron problem is Σ2P-complete (Σ2P = NPNP)
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polyhedron problem aks, given a polyhedron π, whether there is a
strategy for Eve which ensures a payoff vector which belongs to π.

Theorem [BR15]

If there is a solution to the polyhedron problem, there is one solution
with a payoff of polynomial size.
The polyhedron problem is Σ2P-complete (Σ2P = NPNP)
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Application to mean-payoff functions: decidability

. . .• •
•

••

Original weight functions: wAi

New weight functions: ui , uN+i , u2N+i

ß
ui = 2wAi

uN+i = u2N+i = −2wAi ui = uN+i = 2W

u2N+i =

ß
−2wAi if Ai suspect
2W otherwise
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Application to mean-payoff functions: decidability

. . .• •
•

••
Original weight functions: wAi

New weight functions: ui , uN+i , u2N+i

ß
ui = 2wAi

uN+i = u2N+i = −2wAi ui = uN+i = 2W

u2N+i =

ß
−2wAi if Ai suspect
2W otherwise

There is a Nash equilibrium in the original game with payoff p if and only
if there is a strategy for Eve in the epistemic game such that for every
outcome ρ, for every 1 ≤ i ≤ N,

MPui (ρ) ≥ pAi

MPuN+i
(ρ) ≥ −pAi

MPu2N+i
(ρ) ≥ −pAi

23/25



Application to mean-payoff functions: decidability

. . .• •
•

••
Original weight functions: wAi

New weight functions: ui , uN+i , u2N+i

ß
ui = 2wAi

uN+i = u2N+i = −2wAi ui = uN+i = 2W

u2N+i =

ß
−2wAi if Ai suspect
2W otherwise

There is a Nash equilibrium in the original game with a payoff ν ≤ p ≤ ν′
(ν and ν′ are fixed thresholds) if and only if there is a strategy for Eve in
the epistemic game solving the polyhedron problem for the polyhedron∧

1≤i≤N

(
xi = −xN+i = −x2N+i

)
∧

∧
1≤i≤N

(νi ≤ xi ≤ ν′i )
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Application to mean-payoff functions: undecidability

G a

w(e1)

a

w(e2)

is blind

H

lost

〈a, a〉
(0,−w(e1))

〈a, b〉 (a 6= b)

〈−,−〉
(0,−W − 1)

〈−, a〉
(0,−w(e2))

the public signal only reveals lost

but player A2 has full information
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〈a, b〉 (a 6= b)

〈−,−〉
(0,−W − 1)

〈−, a〉
(0,−w(e2))

the public signal only reveals lost
but player A2 has full information

has a winning strategy in G ensuring MP > 0
iff

there is an NE in H such that player A2 has a payoff < 0
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Conclusion

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)
[RT98] Renault, Tomala. Repeated proximity games (International Journal of Game Theory)

We have:

proposed a framework for games over graphs with a public signal
monitoring Note: framework inspired by [Tom98]

proposed an abstraction called the epistemic game abstraction,
which allows to detect deviators and tocharacterize Nash equilibria
in the original game

used it to show several decidability results.

We want to:

work out the precise complexities

understand whether one can extend the approach to other
communication architectures ([RT98]??)

understand whether other multiagent frameworks (like fragments of
Strategy Logic) can be handled under the assumption of public signal
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