
Model-Checking Timed Temporal Logics

Patricia Bouyer

LSV – CNRS & ENS de Cachan – France

Oxford University Computing Laboratory – UK

Based on joint works with Fabrice Chevalier, Nicolas Markey,
Joël Ouaknine and James Worrell

1/40

Introduction

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

2/40

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)

model-checking

algorithm

yes/no

3/40

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)

model-checking

algorithm

yes/no

3/40

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

3/40

Introduction

Model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

3/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

|= F • ≡ ttU •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

|= F • ≡ ttU •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

|= X •

|= •U •

|= F • ≡ ttU •

|= G • ≡ ¬F¬•

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

I response property:

G (• → F •)

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

I response property:

G (• → F •)
I liveness property:

GF •

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

I response property:

G (• → F •)
I liveness property:

GF •
I safety property:

G¬•

4/40

Introduction

The untimed (linear-time) framework

[Pnu77] Pnueli. The temporal logic of programs (FOCS’77).

Linear-time temporal logic [Pnu77]

LTL 3 ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

I response property:

G (• → F •)
I liveness property:

GF •
I safety property:

G¬•
I a more complex property:

(• ∧ (F • ∨G •))U •

4/40

Introduction

Adding timing requirements

I Need for timed models
I the behaviour of most systems depends on time;
I faithful modelling has to take time into account.

+ timed automata, time(d) Petri nets, timed process algebras...

I Need for timed specification languages
I the behaviour of most systems depends on time;
I untimed specifications are not sufficient

(for instance, bounded response timed, etc...)

+ TCTL, MTL, TPTL, timed µ-calculus...

5/40

Introduction

Adding timing requirements

I Need for timed models
I the behaviour of most systems depends on time;
I faithful modelling has to take time into account.

+ timed automata, time(d) Petri nets, timed process algebras...

I Need for timed specification languages
I the behaviour of most systems depends on time;
I untimed specifications are not sufficient

(for instance, bounded response timed, etc...)

+ TCTL, MTL, TPTL, timed µ-calculus...

5/40

Definition of the logics

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

6/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

I This is a timed extension of LTL

I Can be interpreted over timed words, or over signals
I this distinction is fundamental

I Can be interpreted over finite or infinite behaviours
I this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

I This is a timed extension of LTL

I Can be interpreted over timed words, or over signals
I this distinction is fundamental

I Can be interpreted over finite or infinite behaviours
I this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

I This is a timed extension of LTL

I Can be interpreted over timed words, or over signals
I this distinction is fundamental

I Can be interpreted over finite or infinite behaviours
I this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]

MTL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I is an interval with integral bounds.

I This is a timed extension of LTL

I Can be interpreted over timed words, or over signals
I this distinction is fundamental

I Can be interpreted over finite or infinite behaviours
I this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

8/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

8/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

8/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

0 1 2 3 4

(•, .6)(•, 1.1)(•, 1.2)(•, 1.3) . . .

+ the system is observed only when actions happen

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

8/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

t∈[0,.6] 7→ � t∈(.6,1.1) 7→ � t∈[1.1,1.2) 7→ �

···

+ the system is observed continuously

0 1 2 3 4
|= •U[1,2] •

∈[1,2]

0 1 2 3 4
6|= G[2,3] •

[2,3]

9/40

Definition of the logics

Some examples

I “Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

I “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

I F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

I in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
I in the continuous semantics, F=2 • ≡ F=1 F=1 •

10/40

Definition of the logics

Some examples

I “Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

I “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

I F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

I in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
I in the continuous semantics, F=2 • ≡ F=1 F=1 •

10/40

Definition of the logics

Some examples

I “Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

I “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

I F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

I in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
I in the continuous semantics, F=2 • ≡ F=1 F=1 •

10/40

Definition of the logics

Some examples

I “Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

I “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

I F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

I in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
I in the continuous semantics, F=2 • ≡ F=1 F=1 •

10/40

Definition of the logics

Some examples

I “Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

I “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

I F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

I in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
I in the continuous semantics, F=2 • ≡ F=1 F=1 •

10/40

Definition of the logics

Some examples

I “Every problem is followed within 56 time units by an alarm”

G (problem→ F656 alarm)

I “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem→ (F615 repair ∨G[12,15) alarm))

I F=2 repair vs F=1 (F=1 repair)

0 1 2

|=F=2 • 6|=F=1 (F=1 •)

0 1 2

|=F=2 • |=F=1 (F=1 •)

I in the pointwise semantics, F=2 • 6≡ F=1 F=1 •
I in the continuous semantics, F=2 • ≡ F=1 F=1 •

10/40

Definition of the logics

Some further extensions

I Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

I MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

11/40

Definition of the logics

Some further extensions

I Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

I MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

11/40

Definition of the logics

Some further extensions

I Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

I MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).

[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

11/40

Definition of the logics

Some further extensions

I Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

I MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

11/40

Definition of the logics

Some further extensions

I Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints

G (problem→ F656 alarm) ≡ G (problem→ x .F (alarm∧x 6 56))

G (problem→ x .F (alarm ∧ F (failsafe ∧ x 6 56)))

I MTL+Past: add past-time modalities [AH92]

G (alarm→ F−1
656 problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS’89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS’92).

11/40

Definition of the logics

A note on the expressiveness

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

I This is true in the pointwise semantics.

I This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).

[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

12/40

Definition of the logics

A note on the expressiveness

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

I This is true in the pointwise semantics.

I This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

12/40

Definition of the logics

A note on the expressiveness

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

I This is true in the pointwise semantics.

I This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

12/40

Definition of the logics

A note on the expressiveness

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

I This is true in the pointwise semantics.

I This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

12/40

Definition of the logics

A note on the expressiveness

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Theorem

MTL is strictly less expressive than MTL+Past and TPTL [BCM05].

Conjecture in 1990: the TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

I This is true in the pointwise semantics.

I This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS’05).

12/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •
∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)

∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

Definition of the logics

The TPTL formula

G (• → x .F (• ∧ F (• ∧ x 6 2)))

can be expressed in MTL in the continuous semantics

0 1 2

F=1 •

61

G • →

F61 • ∧ F[1,2] •

∨

F61 (• ∧ F61 •)
∨

F61 (F61 • ∧ F=1 •)

13/40

The timed automaton model

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

14/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0

23 0 15.6 15.6 17.9 17.9 40 40

y 0

23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0

23 0 15.6 15.6 17.9 17.9 40 40

y 0

23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23

0 15.6 15.6 17.9 17.9 40 40

y 0 23

23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0 23 0

15.6 15.6 17.9 17.9 40 40

y 0 23 23

38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23 0 15.6

15.6 17.9 17.9 40 40

y 0 23 23 38.6

0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0 23 0 15.6 15.6

17.9 17.9 40 40

y 0 23 23 38.6 0

2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23 0 15.6 15.6 17.9

17.9 40 40

y 0 23 23 38.6 0 2.3

0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

x 0 23 0 15.6 15.6 17.9 17.9

40 40

y 0 23 23 38.6 0 2.3 0

22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

x 0 23 0 15.6 15.6 17.9 17.9 40

40

y 0 23 23 38.6 0 2.3 0 22.1

22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 2.3 0 22.1 22.1

Can be viewed:

I as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

I as the signal

0 10 20 30 40 50 60 70

safe alarm failsafe repairing safe

15/40

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

16/40

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

16/40

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

+ It can be extended to model-check TCTL [ACD93].

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (I&C, 1993).

16/40

The model-checking problem

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

17/40

The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n MTL formula

18/40

The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n

MTL formula

18/40

The model-checking problem

Back to the model-checking problem

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n MTL formula

18/40

The model-checking problem

Results

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

I Model-checking linear-time timed temporal logics is hard!

I The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

19/40

The model-checking problem

Results

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

I Model-checking linear-time timed temporal logics is hard!

I The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

19/40

The model-checking problem

Results

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

I Model-checking linear-time timed temporal logics is hard!

I The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

19/40

The model-checking problem

Results

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

I Model-checking linear-time timed temporal logics is hard!

I The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

+ we will explain this high complexity, following [Che07]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS’05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).
[Che07] Chevalier. Logiques pour les systèmes temporisés : contrôle et expressivité (PhD Thesis ENS Cachan, June 2007).

19/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • ••••• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

•

• ••••• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• •

••••• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1 s2

s2 s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • •

•••• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2 s3

s3 s4

s4

s5

s5

•! •? •!

•! •? •? •?

•

• •

•

••• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2 s3

s3 s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • ••

•

•• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • ••••• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3 s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3

s4

s4 s5

s5

•! •? •!

•! •? •? •?

• • ••••

• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

•! •? •!

•! •? •? •?

• • •••

•

• •

s5 is not reachable

I insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

Proposition

I The halting problem is undecidable for channel machines [BZ83].

I The halting problem is NPR for channel machines with insertion
errors [Sch02].

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

21/40

The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

Proposition

I The halting problem is undecidable for channel machines [BZ83].

I The halting problem is NPR for channel machines with insertion
errors [Sch02].

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

21/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.

=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable

iff Auniv 6|= ¬ϕ

? possibly with insertion errors

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(q0, ε)
a!−→ (q1, a)

b!−→ (q2, ab)
a?−→ (q3, b)

c!−→ (q4, bc)
b?−→ (q5, c) · · ·

=1 t.u.
=1 t.u.

q0

0

a!

.25

q1

.6

b!

.7

q2

.85

a?

1.25

q3

1.4

c!

1.5

q4

1.6

b?

1.7

q5

1.9

···

We will give a formula ϕ such that

the channel machine? halts iff the formula ϕ is satisfiable
iff Auniv 6|= ¬ϕ

? possibly with insertion errors

22/40

The model-checking problem

Constraints satisfied by the timed word

I states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

I the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

23/40

The model-checking problem

Constraints satisfied by the timed word

I states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

I the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

23/40

The model-checking problem

Constraints satisfied by the timed word

I states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

I the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

23/40

The model-checking problem

Constraints satisfied by the timed word

I states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

I the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

23/40

The model-checking problem

Constraints satisfied by the timed word

I states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

I the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!

+ model-checking MTL is NPR

23/40

The model-checking problem

Constraints satisfied by the timed word

I states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

I the channel is FIFO: for every letter a,

G (a! → F=1 a?)

� This formula is not sufficient!

=1 t.u.
=1 t.u.

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

+ only encodes a channel machine with insertion errors!
+ model-checking MTL is NPR

23/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics

I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)

I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)

q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

We need to express the property:

“Every a?-event is preceded one time unit earlier by an a!-event”

I Why not reverse the previous implication?

G ((F=1 a?) → a!)

I correct in the continuous semantics
I not correct in the pointwise semantics

I Why not look back in the past?

G (a? → F−1
=1 a!)

I correct for MTL+Past (in the continuous and in the pointwise sem.)
I no direct translation into MTL

I A more tricky way:

¬
(
F x .X y .F (x > 1 ∧ y < 1 ∧ c?)

)
q0 a! q1 b! q2 a? q3 c? q4 b? q5 ···

=1 t.u.

I this formula is in TPTL (pointwise sem.), not in MTL

24/40

The model-checking problem

What we have proved so far

What remains to be proved

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.

MTL

decidable,

NPR [OW07] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

25/40

The model-checking problem

What remains to be proved

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.

MTL decidable, NPR [OW07] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

25/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Büchi) automata

G (a → F b)

q0

q1

¬a

a

¬b
b

¬a

a

a

b

26/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Büchi) automata

G (a → F b) q0

q1

¬a

a

¬b
b

¬a

a

a

b

26/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Büchi) automata

G (a → F b) q0

q1

¬a

a

¬b
b

¬a

a

a

b

26/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Büchi) automata

G (a → F b) q0

q1

¬a

a

¬b
b

¬a

a

a

b

26/40

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b)

q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5

4.2

¬a,1.2

a,2.6

a,3.5

b,4.2

27/40

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b) q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5

4.2

¬a,1.2

a,2.6

a,3.5

b,4.2

27/40

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G (a → F[1,2] b) q0

q1

¬a

a

x :=0

b
x∈[1,2]

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

27/40

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

28/40

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

28/40

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

28/40

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

28/40

The model-checking problem

An abstract transition system

0

1.2

2.6 0

3.5 0 0.9

0.74.2

¬a,1.2

a,2.6

a,3.5

b,4.2

0 3 0

We order elements in a slice of the tree

w.r.t. their fractional part, and we forget

the precise values of the fractional parts.

+ this defines an abstract (infinite) transition system

+ it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

+ there is a well quasi-order on the set of abstract configurations
(subword relation):

higman v highmountain

28/40

The model-checking problem

Summary

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

29/40

The model-checking problem

What about infinite behaviours?

I the previous algorithm cannot be lifted to the infinite behaviours
framework

I there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

30/40

The model-checking problem

What about infinite behaviours?

I the previous algorithm cannot be lifted to the infinite behaviours
framework

I there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

30/40

The model-checking problem

What about infinite behaviours?

I the previous algorithm cannot be lifted to the infinite behaviours
framework

I there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Theorem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OW06]? undecidable [AFH96]

MTL+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

? by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on ω-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS’06).

30/40

Some interesting fragments

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

31/40

Some interesting fragments

The fragment without punctuality

I The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

I What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

I Examples:
I G (• → F=1 •) is not in MITL

I G (• → F[1,2] •) is in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

I The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

I What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

I Examples:
I G (• → F=1 •) is not in MITL

I G (• → F[1,2] •) is in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

I The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

I What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

I Examples:
I G (• → F=1 •) is not in MITL

I G (• → F[1,2] •) is in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

I The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

I What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

I Examples:
I G (• → F=1 •) is not in MITL

I G (• → F[1,2] •) is in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

I The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

I What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

I Examples:
I G (• → F=1 •) is not in MITL

I G (• → F[1,2] •) is in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

I The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (• → F=1 •) is undecidable”

I What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]

MITL 3 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I a non-punctual interval

I Examples:
I G (• → F=1 •) is not in MITL
I G (• → F[1,2] •) is in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

Model-checking MITL is “easy”

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
I each time an • occurs within the first time unit, start a new clock,

and check that a • occurs between 1 and 2 time units afterwards

I this requires an unbounded number of clocks

+ something more clever needs to be done

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

Model-checking MITL is “easy”

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
I each time an • occurs within the first time unit, start a new clock,

and check that a • occurs between 1 and 2 time units afterwards

I this requires an unbounded number of clocks

+ something more clever needs to be done

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

Model-checking MITL is “easy”

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)

I each time an • occurs within the first time unit, start a new clock,
and check that a • occurs between 1 and 2 time units afterwards

I this requires an unbounded number of clocks

+ something more clever needs to be done

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

Model-checking MITL is “easy”

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
I each time an • occurs within the first time unit, start a new clock,

and check that a • occurs between 1 and 2 time units afterwards

I this requires an unbounded number of clocks

+ something more clever needs to be done

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

Model-checking MITL is “easy”

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
I each time an • occurs within the first time unit, start a new clock,

and check that a • occurs between 1 and 2 time units afterwards

I this requires an unbounded number of clocks

+ something more clever needs to be done

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

Model-checking MITL is “easy”

Theorem

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

+ we can bound the variability of the signals

+ an MITL formula defines a timed regular language

Example: consider the formula ϕ = G(0,1) (• → F[1,2] •)
I each time an • occurs within the first time unit, start a new clock,

and check that a • occurs between 1 and 2 time units afterwards

I this requires an unbounded number of clocks

+ something more clever needs to be done

[HR04] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

34/40

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2

t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

34/40

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

34/40

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

34/40

Some interesting fragments

ϕ = G(0,1) (a → F[1,2] b)

0 1 2 3

¬bb b

t1 t2t1−1 t2−2

¬a

z=0 z<1

z<1

z<1

z<2 1<z<2
x=1 z<3 2<z<3

y=2

x :=
0

y :=0

x,y :=0

y :=0

x :=
0

+ This idea can be extended to any formula in MITL

34/40

Some interesting fragments

A co-flat fragment of MTL

I Do punctual constraints really need to be banned?

I Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOW07]

coFlat-MTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

I Examples:
I G (• → F=1 •) is in coFlat-MTL

I FG61 • is not in coFlat-MTL
I coFlat-MTL contains Bounded-MTL (all modalities are

time-bounded)

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

35/40

Some interesting fragments

A co-flat fragment of MTL

I Do punctual constraints really need to be banned?

I Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOW07]

coFlat-MTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

I Examples:
I G (• → F=1 •) is in coFlat-MTL

I FG61 • is not in coFlat-MTL
I coFlat-MTL contains Bounded-MTL (all modalities are

time-bounded)

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

35/40

Some interesting fragments

A co-flat fragment of MTL

I Do punctual constraints really need to be banned?

I Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOW07]

coFlat-MTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

I Examples:
I G (• → F=1 •) is in coFlat-MTL

I FG61 • is not in coFlat-MTL
I coFlat-MTL contains Bounded-MTL (all modalities are

time-bounded)

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

35/40

Some interesting fragments

A co-flat fragment of MTL

I Do punctual constraints really need to be banned?

I Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOW07]

coFlat-MTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

I Examples:
I G (• → F=1 •) is in coFlat-MTL

I FG61 • is not in coFlat-MTL
I coFlat-MTL contains Bounded-MTL (all modalities are

time-bounded)

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

35/40

Some interesting fragments

A co-flat fragment of MTL

I Do punctual constraints really need to be banned?

I Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOW07]

coFlat-MTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

I Examples:
I G (• → F=1 •) is in coFlat-MTL
I FG61 • is not in coFlat-MTL

I coFlat-MTL contains Bounded-MTL (all modalities are
time-bounded)

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

35/40

Some interesting fragments

A co-flat fragment of MTL

I Do punctual constraints really need to be banned?

I Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOW07]

coFlat-MTL 3 ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

where I unbounded ⇒ ψ ∈ LTL

I Examples:
I G (• → F=1 •) is in coFlat-MTL
I FG61 • is not in coFlat-MTL
I coFlat-MTL contains Bounded-MTL (all modalities are

time-bounded)

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).

35/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

Theorem

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOW07]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

I The variability of a Bounded-MTL formula can be high
(doubly-exp.):

ϕn ≡ •∧G[0,2n] ϕD with ϕD = (• → F=1 (• ∧ F61 •))
∧ (• → F=1 (• ∧ F61 •))

I A Bounded-MTL formula may define a non timed-regular language:

G61 (• → F=1 •) ∧G61 • ∧G(1,2] •

defines the context-free language {•n•m | n 6 m}.

36/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all ‘relevant’ time units and use a sliding window:

3 t.u. = useful duration

37/40

Some interesting fragments

Algorithm for coFlat-MTL

ϕ alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

I active fragment = cycle-bounded computation in a channel machine

I pure LTL part = finite automaton computation

38/40

Some interesting fragments

Algorithm for coFlat-MTL

ϕ alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

I active fragment = cycle-bounded computation in a channel machine

I pure LTL part = finite automaton computation

38/40

Some interesting fragments

Algorithm for coFlat-MTL

ϕ alternating timed automata B¬ϕ for ¬ϕ with a ‘flatness’ property

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

I active fragment = cycle-bounded computation in a channel machine

I pure LTL part = finite automaton computation

38/40

Conclusion

Outline

1. Introduction

2. Definition of the logics

3. The timed automaton model

4. The model-checking problem

5. Some interesting fragments

6. Conclusion

39/40

Conclusion

Conclusion

I Recent advances have raised a new interest for linear-time timed
temporal logics

I Not everything is undecidable
I Some rather ‘efficient’ subclasses

I non-punctual formulas
I structurally (co-)flat formulas

I A recent result: coFlat-MTLMITL unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOW08]!

I No real data structures do exist for these logics.

I An interesting phenomenon (in the continuous semantics):

TCTL MTL Bounded-TCTL Bounded-MTL

m.-c. PSPACE NPR/undec. PSPACE PSPACE
sat. undec. NPR/undec. non-elem.? PSPACE

? ongoing work with Jenkins, Ouaknine, Worrell.

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. A small-model theorem for real-time logics.

40/40

Conclusion

Conclusion

I Recent advances have raised a new interest for linear-time timed
temporal logics

I Not everything is undecidable
I Some rather ‘efficient’ subclasses

I non-punctual formulas
I structurally (co-)flat formulas

I A recent result: coFlat-MTLMITL unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOW08]!

I No real data structures do exist for these logics.

I An interesting phenomenon (in the continuous semantics):

TCTL MTL Bounded-TCTL Bounded-MTL

m.-c. PSPACE NPR/undec. PSPACE PSPACE
sat. undec. NPR/undec. non-elem.? PSPACE

? ongoing work with Jenkins, Ouaknine, Worrell.

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. A small-model theorem for real-time logics.

40/40

Conclusion

Conclusion

I Recent advances have raised a new interest for linear-time timed
temporal logics

I Not everything is undecidable
I Some rather ‘efficient’ subclasses

I non-punctual formulas
I structurally (co-)flat formulas

I A recent result: coFlat-MTLMITL unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOW08]!

I No real data structures do exist for these logics.

I An interesting phenomenon (in the continuous semantics):

TCTL MTL Bounded-TCTL Bounded-MTL

m.-c. PSPACE NPR/undec. PSPACE PSPACE
sat. undec. NPR/undec. non-elem.? PSPACE

? ongoing work with Jenkins, Ouaknine, Worrell.

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. A small-model theorem for real-time logics.

40/40

Conclusion

Conclusion

I Recent advances have raised a new interest for linear-time timed
temporal logics

I Not everything is undecidable
I Some rather ‘efficient’ subclasses

I non-punctual formulas
I structurally (co-)flat formulas

I A recent result: coFlat-MTLMITL unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOW08]!

I No real data structures do exist for these logics.

I An interesting phenomenon (in the continuous semantics):

TCTL MTL Bounded-TCTL Bounded-MTL

m.-c. PSPACE NPR/undec. PSPACE PSPACE
sat. undec. NPR/undec. non-elem.? PSPACE

? ongoing work with Jenkins, Ouaknine, Worrell.

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. A small-model theorem for real-time logics.

40/40

	Introduction
	Definition of the logics
	The timed automaton model
	The model-checking problem
	Some interesting fragments
	Conclusion

