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Introduction

Natural questions

» Can | reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

v

v

What is the minimal fuel consumption to
reach Pontivy from Oxford?

v

What if there is an unexpected event?
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Introduction

Can | reach Pontivy from Oxford?

: /o)
=8

This is a reachability question in a finite graph: Yes, | can!
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second model of the system

10<x<12

14<x<15
x:=0

27<x<30

21<x<24

9<x<15
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12<x<15
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Introduction

How long will that take?

12<x<15

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!
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Timed automata
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Theorem [AD90]
The reachability problem is decidable (and PSPACE-complete) for timed

‘&

automata.
m finite bisimulation
timed automaton large (but finite) automaton

(region automaton)
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Introduction

The region abstraction

- == reset to 0

..... > l/ RN -.-:» time elapsing
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2
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Introduction

Time-optimal reachability

Theorem [CY92]

The time-optimal reachability problem is decidable (and PSPACE-
complete) for timed automata.
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Introduction

A third model of the system

21<x<24

10<x<12 12<x<15

14<x<15
x:=0
2

27<x<30
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Introduction

How much fuel will | use?

03

9<x<15

[ London B2

It is a quantitative (optimization) problem
in a priced timed automaton: at least 68 anti-planet units!
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Timed automata with costs
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2. Timed automata with costs
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Timed automata with costs

2001: the space odyssey of weighted/priced timed automata
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Timed automata with costs

A simple example

dcost __
=10

x<2,c,y:=0

4’[0

dcost __
dt =5
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Timed automata with costs

A simple example

dcost =10

x<2,c,y:=0

— 4

dcost
Tdt =5

dcost __
dt =1

(0. (0,0)) 2 (£, (13,1.3)) = (f1,(1.3,0)) % (45, (13,0)) =5 (£, (2,0.7)) & ©
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142
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Timed automata with costs

A simple example

dcost __
=10

x<2,c,y:=0

4’[0

dcost __
dt =5

dcost __
dt 1

Question: what is the optimal cost for reaching ©7?

og”lfg min (5t + 102 —¢t)+1, 5t+(2—t)+7)=9

=¥ strategy: leave immediately ¢y, go to ¢3, and wait there 2 t.u.
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Timed automata with costs

The idea “go through corners” extends in the general case.

Theorem J

Optimal reachability is decidable in timed automata.

N
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Timed automata with costs

The idea “go through corners” extends in the general case.

Theorem

Optimal reachability is decidable in timed automata. It is PSPACE-
complete.
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Timed automata with costs

The region abstraction is not fine enough

- == reset to 0
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Timed automata with costs

The corner-point abstraction

4 7t ,[7 o
A V7
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Timed automata with costs

Mean-Cost Optimization

att?
<D Ox::O
¢c=p High
R=G att!
o z>S Oz::O
x=D Op
att?
C=p
e Low

. e . accumulated cost(m
Question: How to minimize lim,_, ;o sccumulated rewan(j(;)n)?
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An example

Timed automata with costs

Two machines My(D=3,P=3,G=4,p=5,g=3) and

My(D=6,P=3,G=2,p=5,g =2).

An operator O(4).

Y ‘ i
M, ’Z—j—i— 4
N il
L
Time T T

4 8 12 16
Schedule with ratio 1.455

T =
~I—~I
1
|

Time

1 : I

voDe
Zf é 112 116
Schedule with ratio 1.478
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Timed automata with costs

Mean-cost optimization

Theorem [BBL04]

The mean-cost optimization problem is decidable (and PSPACE-complete)
for priced timed automata.

1= The corner-point abstraction is sound and complete.
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Uppaal Cora

‘000 "
 BIETEIRVENEY = CIRIRS

Simutator Verfer
(T Name: Fight Parameters it e, const it | constnt d, const nt ype
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> Srigne
= system decratons
time <=T

T @on-time

demres YDt < %

landitypelt

done

Timed automata with costs

A branch of Uppaal for cost optimal
reachability
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3. Optimal timed games
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What if an unexpected event happens?
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Optimal timed games

What if an unexpected event happens?

3
10<x<12 12<x<15
9<x<15

14<x<15
x:=0
2

27<x<30

15 modelled as timed games
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Optimal timed games

A simple example of timed games

dcost __
@ =10

x<2,c,y:=0

_>£0

dcost __
dt =5
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A simple example of timed games

dcost __
@ =10

x<2,c,y:=0 -

_>£0

dcost __
dt =5
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Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

= classical regions are sufficient for solving such problems
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Optimal timed games

Uppaal Tiga

‘806 "
inlajmlalala Fal-]

L Project
Declrations

S van
System decirations

A forward on-the-fly algorithm for
solving reachability timed games

= implemented as a branch of
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Optimal timed games

Back to the simple example
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Optimal timed games

Back to the simple example

dcost __
@ =10

U/ -
x<2,c,y:=0 -7
— b b
=5 (y=0) "~

dcost __
dt =1

Question: what is the optimal cost we can ensure in state /5?
1
inf2 max (5t +102—t)+1,5t+(2—-t)+7)=14+ =

0<t< 3

-» strategy: wait in (g, and when t = 3, go to {;
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Back to the simple example

dcost __
@ =10

x<2,c,y:=0 -7
—> ZO 21

deest 5 r=0) -

dcost __
dt =1

Question: what is the optimal cost we can ensure in state /5?

. 1
og”g];z max ( 5t +10(2 —t)+ 1, 5t+(27t)+7)—14+§

-» strategy: wait in (g, and when t = 3, go to {;

» How to automatically compute such optimal costs?

» How to synthesize optimal strategies (if one exists)?
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Optimal timed games

A fairly hot topic!

» optimal time is computable in timed games
> case of acyclic games
> general case ‘ ?
> complexity of k-step games
> under a strongly non-zeno assumption, optimal cost is computable
\J
» general case N

> structural properties of strategies (e.g. memory)
> under a strongly non-zeno assumption, optimal cost is computable
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Optimal timed games

A fairly hot topic!

» general case

> with five clocks, optimal cost is not computable!
» with one clock and one stopwatch cost, optimal cost is computable

» general case n

> with three clocks, optimal cost is not computable

> the single-clock case m ﬂ !

> with one clock, optimal cost is computable
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Optimal timed games

Why is that hard?

Given two clocks x and y, we can check whether y = 2x

Add™* (x) Add™ (x)
y=1l,y:=0 y=1,y:=0 y=1,y:=0 y=1,y:=0
z=0 O x=1,x:=0 O z=1,z:=0 zi=0 O x=1,x:=0 O z=1,z:=0
0 1 i 1 0

The cost is increased by xo The cost is increased by 1—xg
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Optimal timed games

Why is that hard?

Given two clocks x and y, we can check whether y = 2x

VAL

L S S
-
-
<

SN e e oA e s

S~o =0
=™ —» Add™ (x) ; —» Add™ (x) mm—— Add* () —»@
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Optimal timed games

Why is that hard?

Given two clocks x and y, we can check whether y = 2x

+2

+1

> In@, cost = 2xp + (1 — yo) + 2
In@, cost =2(1—xp) +y+1

> if yo < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost = 3

> Player 1 has a winning strategy with cost < 3 iff yp = 2xg
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Conclusion

Conclusion

Priced timed automata, a model and framework to represent quantitative
constraints on timed systems.

Not mentioned here
» all works on model-checking issues (extensions of CTL, LTL)
> very few decidability results

Further work

> approximate optimal timed games to circumvent undecidability
results
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