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Introduction

Can I reach Pontivy from Oxford?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

This is a reachability question in a finite graph: Yes, I can!
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Introduction

A second model of the system
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Introduction

How long will that take?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!
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Introduction

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)
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Introduction

The region abstraction

time elapsing

reset to 0
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Introduction

Time-optimal reachability

Theorem [CY92]

The time-optimal reachability problem is decidable (and PSPACE-
complete) for timed automata.
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Introduction

A third model of the system
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Introduction

How much fuel will I use?
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It is a quantitative (optimization) problem
in a priced timed automaton: at least 68 anti-planet units!
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Timed automata with costs

A simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7 ) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.
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(`0, (0, 0))
1.3−−→ (`0, (1.3, 1.3))

c−→ (`1, (1.3, 0))
u−→ (`3, (1.3, 0))

0.7−−→ (`3, (2, 0.7))
c−→ ,

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2
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Timed automata with costs

The idea “go through corners” extends in the general case.

Theorem

Optimal reachability is decidable in timed automata.
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Timed automata with costs

The idea “go through corners” extends in the general case.

Theorem

Optimal reachability is decidable in timed automata. It is PSPACE-
complete.
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Timed automata with costs

The region abstraction is not fine enough

time elapsing

reset to 0
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Timed automata with costs

The corner-point abstraction

3
0 0

0

0 0
3

7

7
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Timed automata with costs

Mean-Cost Optimization

Low
Ċ=p

Ṙ=g

High
x≤D

Ċ=P

Ṙ=G

att?

x :=0

x=D

att?
x :=0

Op

att!
z:=0z≥S

Question: How to minimize limn→+∞
accumulated cost(πn)

accumulated reward(πn)
?
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Timed automata with costs

An example

Two machines M1(D = 3,P = 3,G = 4, p = 5, g = 3) and
M2(D = 6,P = 3,G = 2, p = 5, g = 2).
An operator O(4).

Time

1 1 2 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio 1.455

Time

1 1 1 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio 1.478
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Timed automata with costs

Mean-cost optimization

Theorem [BBL04]

The mean-cost optimization problem is decidable (and PSPACE-complete)
for priced timed automata.

+ The corner-point abstraction is sound and complete.
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Timed automata with costs

Uppaal Cora

A branch of Uppaal for cost optimal

reachability
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Optimal timed games

What if an unexpected event happens?
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Flight
cancelled!

On strike!!!

+ modelled as timed games
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Optimal timed games

A simple example of timed games

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7
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Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

+ classical regions are sufficient for solving such problems
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Optimal timed games

Uppaal Tiga

A forward on-the-fly algorithm for
solving reachability timed games

+ implemented as a branch of

Uppaal
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Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7 ) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?
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Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games

I case of acyclic games

I general case

I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case

I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable
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0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)
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Priced timed automata, a model and framework to represent quantitative
constraints on timed systems.

Not mentioned here

I all works on model-checking issues (extensions of CTL, LTL)
I very few decidability results

Further work

I approximate optimal timed games to circumvent undecidability
results
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