On the reduction of energy consumption

Patricia Bouyer

LSV - CNRS & ENS de Cachan - France

Oxford University Computing Laboratory - UK

On the reduction of energy consumption — A timed automaton approach —

Patricia Bouyer

LSV - CNRS & ENS de Cachan - France

Oxford University Computing Laboratory - UK

Outline

1. Introduction

- 2. Timed automata with costs
- 3. Optimal timed games
- 4. Conclusion

A starting example

Introduction

Natural questions

Introduction

Natural questions

Dxford

Can I reach Pontivy from Oxford?

What is the minimal time to reach Pontivy from Oxford?

Natural questions

Oxford

- Can I reach Pontivy from Oxford?
- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?

Natural questions

Oxford

- Can I reach Pontivy from Oxford?
- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?
- What if there is an unexpected event?

A first model of the system

Can I reach Pontivy from Oxford?

This is a reachability question in a finite graph: Yes, I can!

A second model of the system

How long will that take?

It is a reachability (and optimization) question in a timed automaton: at least 350mn = 5h50mn!

Timed automata

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed automata.

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed automata.

The region abstraction

Time-optimal reachability

Theorem [CY92]

The time-optimal reachability problem is decidable (and PSPACE-complete) for timed automata.

A third model of the system

How much fuel will I use?

It is a *quantitative* (optimization) problem in a priced timed automaton: at least 68 anti-planet units!

Outline

1. Introduction

- 2. Timed automata with costs
- 3. Optimal timed games
- 4. Conclusion

Timed automata with costs

2001: the space odyssey

2001: the space odyssey of weighted

timed automata

2001: the space odyssey of weighted/priced timed automata

Question: what is the optimal cost for reaching ©?

Question: what is the optimal cost for reaching ©?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

Question: what is the optimal cost for reaching ©?

min (5t + 10(2 - t) + 1, 5t + (2 - t) + 7)

Question: what is the optimal cost for reaching ©?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$

Question: what is the optimal cost for reaching ©?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$

→ strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

The idea "go through corners" extends in the general case.

Theorem

Optimal reachability is decidable in timed automata.

The idea "go through corners" extends in the general case.

Theorem

Optimal reachability is decidable in timed automata. It is PSPACE-complete.

The region abstraction is not fine enough

The corner-point abstraction

Mean-Cost Optimization

Question: How to minimize $\lim_{n\to+\infty} \frac{\operatorname{accumulated cost}(\pi_n)}{\operatorname{accumulated reward}(\pi_n)}$?

An example

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$ and $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$. An operator O(4).

Mean-cost optimization

Theorem [BBL04]

The mean-cost optimization problem is decidable (and PSPACE-complete) for priced timed automata.

☞ The corner-point abstraction is sound and complete.

Uppaal Cora

A branch of Uppaal for cost optimal reachability

1. Introduction

- 2. Timed automata with costs
- 3. Optimal timed games
- 4. Conclusion

What if an unexpected event happens?

What if an unexpected event happens?

What if an unexpected event happens?

modelled as timed games

A simple example of timed games

A simple example of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and $\ensuremath{\mathsf{EXPTIME}}$ -complete.

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and $\ensuremath{\mathsf{EXPTIME}}$ -complete.

(the attractor is computable...)

Safety and reachability control in timed automata are decidable and $\ensuremath{\mathsf{EXPTIME}}$ -complete.

(the attractor is computable...)

classical regions are sufficient for solving such problems

Uppaal Tiga

A forward on-the-fly algorithm for solving reachability timed games ¹³⁷ implemented as a branch of Uppaal

Uppaal Tiga

A forward on-the-fly algorithm for solving reachability timed games ¹³⁷ implemented as a branch of Uppaal

$$5t + 10(2 - t) + 1$$
, $5t + (2 - t) + 7$

max
$$(5t + 10(2 - t) + 1, 5t + (2 - t) + 7)$$

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

$$\Rightarrow \text{ strategy: wait in } \ell_0, \text{ and when } t = \frac{4}{3}, \text{ go to } \ell_1$$

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

$$\Rightarrow \text{ strategy: wait in } \ell_0, \text{ and when } t = \frac{4}{3}, \text{ go to } \ell_1$$

How to automatically compute such optimal costs?

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

- How to automatically compute such optimal costs?
- How to synthesize optimal strategies (if one exists)?

optimal time is computable in timed games

optimal time is computable in timed games

case of acyclic games

optimal time is computable in timed games

case of acyclic games

- general case
 - complexity of k-step games
 - under a strongly non-zeno assumption, optimal cost is computable

optimal time is computable in timed games

case of acyclic games

- general case
 - complexity of k-step games
 - under a strongly non-zeno assumption, optimal cost is computable
- general case
 - structural properties of strategies (e.g. memory)
 - under a strongly non-zeno assumption, optimal cost is computable

general case

- with five clocks, optimal cost is not computable!
- with one clock and one stopwatch cost, optimal cost is computable

general case

- with five clocks, optimal cost is not computable!
- with one clock and one stopwatch cost, optimal cost is computable
- general case

with three clocks, optimal cost is not computable

general case

- with five clocks, optimal cost is not computable!
- with one clock and one stopwatch cost, optimal cost is computable
- general case
 - with three clocks, optimal cost is not computable
- the single-clock case
 - with one clock, optimal cost is computable

y = 1, y := 0

z=1, z:=0

Why is that hard?

► In
$$\bigcirc$$
, cost = 2x₀ + (1 - y₀) + 2
In \bigcirc , cost = 2(1 - x₀) + y₀ + 1

Given two clocks x and y, we can check whether y = 2x

► In
$$\textcircled{C}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{C} , cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

Given two clocks x and y, we can check whether y = 2x

► In
$$\textcircled{O}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{O} , cost = $2(1 - x_0) + y_0 + 1$

if y₀ < 2x₀, player 2 chooses the first branch: cost > 3 if y₀ > 2x₀, player 2 chooses the second branch: cost > 3

Given two clocks x and y, we can check whether y = 2x

► In
$$\textcircled{O}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{O} , cost = $2(1 - x_0) + y_0 + 1$

if y₀ < 2x₀, player 2 chooses the first branch: cost > 3 if y₀ > 2x₀, player 2 chooses the second branch: cost > 3 if y₀ = 2x₀, in both branches, cost = 3

► In
$$\textcircled{O}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{O} , cost = $2(1 - x_0) + y_0 + 1$

- if y₀ < 2x₀, player 2 chooses the first branch: cost > 3 if y₀ > 2x₀, player 2 chooses the second branch: cost > 3 if y₀ = 2x₀, in both branches, cost = 3
- ▶ Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Outline

1. Introduction

- 2. Timed automata with costs
- 3. Optimal timed games
- 4. Conclusion

Conclusion

Priced timed automata, a model and framework to represent quantitative constraints on timed systems.

Conclusion

Priced timed automata, a model and framework to represent quantitative constraints on timed systems.

Not mentioned here

- all works on model-checking issues (extensions of CTL, LTL)
 - very few decidability results

Conclusion

Priced timed automata, a model and framework to represent quantitative constraints on timed systems.

Not mentioned here

- all works on model-checking issues (extensions of CTL, LTL)
 - very few decidability results

Further work

 approximate optimal timed games to circumvent undecidability results