Almost-Sure Model Checking of Infinite Paths in One-Clock Timed Automata

Christel Baier¹ Nathalie Bertrand² Patricia Bouyer³ Thomas Brihaye⁴ Marcus Größer¹

¹Technische Universität Dresden, Germany ²IRISA, INRIA, Rennes, France ³LSV, CNRS, ENS Cachan, France ⁴Université de Mons-Hainaut, Belgium

Outline

1. Introduction

2. A probabilistic semantics

3. Solving the qualitative model-checking problen

Conclusion

Timed automata, an idealized mathematical model for real-time systems

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - etc...

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - etc...

→ notion of strong robustness defined in [DDR04]

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - etc...

- → notion of strong robustness defined in [DDR04]
- In a model, only few traces may violate the correctness property: they may hence not be relevant...

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - etc...

- → notion of strong robustness defined in [DDR04]
- In a model, only few traces may violate the correctness property: they may hence not be relevant...
 - → topological notion of tube acceptance in [GHJ97]

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - etc...

- → notion of strong robustness defined in [DDR04]
- In a model, only few traces may violate the correctness property: they may hence not be relevant...
 - → topological notion of tube acceptance in [GHJ97]
 - → notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - etc...

- → notion of strong robustness defined in [DDR04]
- In a model, only few traces may violate the correctness property: they may hence not be relevant...
 - → topological notion of tube acceptance in [GHJ97]
 - → notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

Our aim:

Use probabilities to "relax" the semantics of timed automata

Initial example

Intuition: from the initial state,

this automaton almost-surely satisfies "G green"

A maybe less intuitive example

Does it almost-surely satisfy "G green"?

Outline

1. Introduction

- 2. A probabilistic semantics
- 3. Solving the qualitative model-checking problem

Conclusion

• $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \dots, e_n

- $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \dots, e_n
- Example:

$$\pi\big(s_0 \xrightarrow{e_1} \xrightarrow{e_2}\big) = \big\{s_0 \xrightarrow{\tau_1,e_1} s_1 \xrightarrow{\tau_2,e_2} s_2 \ | \ \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\big\}$$

- $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \dots, e_n
- Example:

Idea:

From state s_0 :

- $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \dots, e_n
- Example:

Idea:

From state s_0 :

randomly choose a delay

- $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \dots, e_n
- Example:

Idea:

From state s_0 :

- randomly choose a delay
- then randomly select an edge

- $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \dots, e_n
- Example:

Idea:

From state s_0 :

- randomly choose a delay
- then randomly select an edge
- then continue

Symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s, e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})) d\mu_s(t)$$

$$\mathsf{Symbolic} \ \mathsf{path} \colon \ \pi \big(s \xrightarrow{\mathsf{e}_1} \cdots \xrightarrow{\mathsf{e}_n} \big) = \big\{ s \xrightarrow{\tau_1, \mathsf{e}_1} s_1 \cdots \xrightarrow{\tau_n, \mathsf{e}_n} s_n \big\}$$

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \, \mathbb{P}\left(\pi\left(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \, \mathrm{d}\mu_s(t)$$

• $I(s, e_1) = \{ \tau \mid s \xrightarrow{\tau, e_1} \}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$

Symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \, \mathbb{P}\left(\pi\left(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \, \mathrm{d}\mu_s(t)$$

• $I(s,e_1)=\{\tau\mid s\xrightarrow{\tau,e_1}\}$ and μ_s distribution over $I(s)=\bigcup_e I(s,e)$

Symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$
- p_{s+t} distribution over transitions enabled in s+t (given by weights on transitions)

Symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}\right)\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \,\mathbb{P}\left(\pi\left(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n}\right)\right) \mathrm{d}\mu_s(t)$$

- $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$
- p_{s+t} distribution over transitions enabled in s+t (given by weights on transitions)

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

Definition over sets of infinite runs:

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- Definition over sets of infinite runs:
 - $\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$

$$\mathbb{P}\Big(\pi\big(s\xrightarrow{e_1}\cdots\xrightarrow{e_n}\big)\Big)=\int_{t\in I(s,e_1)}p_{s+t}\big(e_1\big)\mathbb{P}\Big(\pi\big(s_t^{e_1}\xrightarrow{e_2}\cdots\xrightarrow{e_n}\big)\Big)\,\mathrm{d}\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- Definition over sets of infinite runs:
 - $\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
 - $\bullet \ \mathbb{P}\big(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))\big) = \mathbb{P}\big(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\big)$

$$\mathbb{P}\Big(\pi\big(s\xrightarrow{e_1}\cdots\xrightarrow{e_n}\big)\Big)=\int_{t\in I(s,e_1)}p_{s+t}\big(e_1\big)\mathbb{P}\Big(\pi\big(s_t^{e_1}\xrightarrow{e_2}\cdots\xrightarrow{e_n}\big)\Big)\,\mathrm{d}\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- Definition over sets of infinite runs:
 - $\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
 - $\bullet \ \mathbb{P}\big(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))\big) = \mathbb{P}\big(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\big)$
 - ullet unique extension of ${\Bbb P}$ to the generated σ -algebra

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- Definition over sets of infinite runs:
 - $\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
 - $\bullet \ \mathbb{P}\big(\mathsf{Cyl}\big(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\big)\big) = \mathbb{P}\big(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\big)$
 - unique extension of \mathbb{P} to the generated σ -algebra
- Property: P is a probability measure over sets of infinite runs

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t^{e_1} \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$

- Definition over sets of infinite runs:
 - $\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
 - $\bullet \ \mathbb{P}\big(\mathsf{Cyl}\big(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\big)\big) = \mathbb{P}\big(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\big)$
 - unique extension of \mathbb{P} to the generated σ -algebra
- Property: P is a probability measure over sets of infinite runs
- Example:

•
$$\mathsf{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \dots, e_n) \in E^n} \mathsf{Cyl}(\pi_{\Sigma_i \tau_i \leq M}(s \xrightarrow{e_1} \dots \xrightarrow{e_n}))$$

An example of computation (with uniform distributions)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $\frac{1}{4}$.

An example of computation (with uniform distributions)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $\frac{1}{4}$.

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\left(\pi(s_2)\right)}{2} d\mu_{s_1}(u)\right) d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{1}{2} \frac{du}{2}\right) dt = \frac{1}{4}$$

Back to the first example

Back to the first example

$$\bullet \ \mathbb{P} \big(\pi \big(\mathit{s}_0 \xrightarrow{e_1} \xrightarrow{e_2} \big) \big) = 1$$

Back to the first example

$$\bullet \ \mathbb{P}(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})) = 1$$

$$\bullet \ \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 0$$

Back to the first example

- $\bullet \ \mathbb{P}(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})) = 1$
- $\bullet \ \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 0$
- $\mathbb{P}(\mathbf{G} \text{ green}) = 1$

$$\bullet \ \mathbb{P} \Big(\pi \big(s_0 \xrightarrow{e_1} \xrightarrow{e_2} \big) \Big) = 0$$

$$\bullet \ \mathbb{P} \Big(\pi \big(s_0 \xrightarrow{e_1} \xrightarrow{e_2} \big) \Big) = 0$$

$$\bullet \ \mathbb{P} \Big(\pi \big(\mathit{s}_0 \xrightarrow{e_1} \xrightarrow{e_3} \big) \Big) = 1$$

$$\bullet \ \mathbb{P} \left(\pi (s_0 \xrightarrow{e_1} \xrightarrow{e_2}) \right) = 0$$

$$\bullet \ \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 1$$

•
$$\mathbb{P}(\mathbf{G} \text{ green}) = 1$$

Almost-sure model-checking

If φ is an LTL (or ω -regular) property,

$$s
ot\models arphi \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \mathbb{P} \Big(\{ arrho \in \mathsf{Runs}(s) \mid arrho \models arphi \} \Big) = 1$$

Almost-sure model-checking

If φ is an LTL (or ω -regular) property,

$$s
otpprox arphi \stackrel{\mathrm{def}}{\Leftrightarrow} \ \mathbb{P}ig(\{arrho \in \mathsf{Runs}(s) \mid arrho \models arphi\}ig) = 1$$

We want to decide the almost-sure model-checking...

(This is a qualitative model-checking question)

Outline

1 Introduction

2. A probabilistic semantics

3. Solving the qualitative model-checking problem

4. Conclusion

$$\mathcal{A} \not\models \mathbf{G}(green \Rightarrow \mathbf{F} \operatorname{red})$$

$$\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$$
 but $\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$

Indeed, almost surely, paths are of the form $e_1^*e_2ig(e_4e_5ig)^\omega$

The classical region automaton

... viewed as a finite Markov chain MC(A)

... viewed as a finite Markov chain MC(A)

Theorem

For single-clock timed automata,

$$\mathcal{A} \models \varphi$$
 iff $\mathbb{P}(MC(\mathcal{A}) \models \varphi) = 1$

Result

Theorem

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- ullet of ω -regular properties is NLOGSPACE-Complete

Result

Theorem

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths
 - notions of largeness (for proba 1) and meagerness (for proba 0)
 - link between probabilities and topology thanks to the topological games called Banach-Mazur games

 \bullet If the previous algorithm was correct, $\mathcal{A} \approx \mathbf{G}\,\mathbf{F}$ red \wedge $\mathbf{G}\,\mathbf{F}$ green

- ullet If the previous algorithm was correct, $\mathcal{A} pprox \mathbf{G} \, \mathbf{F} \, \operatorname{\mathsf{red}} \wedge \, \mathbf{G} \, \mathbf{F}$ green
- ullet However, we can prove that $\mathbb{P}ig(\mathbf{G} \neg \mathsf{red}ig) > 0$

- ullet If the previous algorithm was correct, $\mathcal{A} pprox \mathbf{G} \, \mathbf{F} \, \operatorname{\mathsf{red}} \wedge \, \mathbf{G} \, \mathbf{F}$ green
- ullet However, we can prove that $\mathbb{P}ig(\mathbf{G} \neg \mathsf{red}ig) > 0$
- There is a *strange* convergence phenomenon: along an execution, if $\delta_i > 0$ is the delay in location ℓ_4 , then we have that $\sum_i \delta_i \leq 1$

• The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl} \big(\pi \big(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \big) \big)$$

• The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \ = \ \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

• In single-clock timed automata, we can decide in NLOGSPACE whether $\mathbb{P}\big(\mathsf{Zeno}(s)\big)=0$:

• The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl} \big(\pi \big(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \big) \big)$$

- In single-clock timed automata, we can decide in NLOGSPACE whether $\mathbb{P}(\mathsf{Zeno}(s)) = 0$:
 - ullet check whether there is a purely Zeno BSCC in $MC(\mathcal{A})$

• The set of Zeno behaviours is measurable:

$$\mathsf{Zeno}(s) \; = \; \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \mathsf{Cyl} \big(\pi \big(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \big) \big)$$

- In single-clock timed automata, we can decide in NLOGSPACE whether $\mathbb{P}(\mathsf{Zeno}(s)) = 0$:
 - check whether there is a purely Zeno BSCC in MC(A)

• an interesting notion of non-Zeno timed automata

Outline

1. Introduction

2. A probabilistic semantics

- 3. Solving the qualitative model-checking problem
- 4. Conclusion

Conclusions

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
 - → extend continuous-time Markov chains
- qualitative model-checking has a topological interpretation
- algorithm for qualitative of LTL (and ω -regular) properties

Conclusions

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
 - → extend continuous-time Markov chains
- qualitative model-checking has a topological interpretation
- algorithm for qualitative of LTL (and ω -regular) properties

What else have we done so far?

- (restricted) quantitative model-checking for ω -regular properties
 - \sim to appear at QEST'08

Conclusions

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
 - → extend continuous-time Markov chains
- qualitative model-checking has a topological interpretation
- algorithm for qualitative of LTL (and ω -regular) properties

What else have we done so far?

- ullet (restricted) quantitative model-checking for ω -regular properties
 - → to appear at QEST'08

Ongoing work

- our semantics can be viewed as a $\frac{1}{2}$ -player game
 - $1\frac{1}{2}$ and $2\frac{1}{2}$ -player games
 - → further interesting (un)decidability results