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e etc...

=» notion of strong robustness defined in [DDR04]

@ In a model, only few traces may violate the correctness property:
they may hence not be relevant...

=» topological notion of tube acceptance in [GHJ97]

=» notion of fair correctness in [VV06] based on probabilities
(for untimed systems) + topological characterization

Use probabilities to “relax” the semantics of timed automata

Our aim: J
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A maybe less intuitive example

Does it almost-surely satisfy “G green”?
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Plr(s o)) = [ p@)P(n(s 2 =) duslt)
€l(s,er)
@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

Wc(si"'l):{sﬂS]_"'Msn‘(T:l?"'77-’7)'20}

Definition over sets of infinite runs:
e Cyl(ﬂ'c(se—1>e—">)):{g‘gl ‘ Qeﬂ-c(se_1>...e_"))}
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Property: P is a probability measure over sets of infinite runs

@ Example:
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A probabilistic semantics

An example of computation (with uniform distributions)

€y, X = 1 ‘lll[:::::
e, x<1 e, x <2
x:=0 .Q

x<1 x <2

e, x<1

The probability of the symbolic path 7(sy <> ) is 1.
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A probabilistic semantics

An example of computation (with uniform distributions)

* = @D @D
e, x<1 e3, x <2
f_ : o)

x<1 x <2

The probability of the symbolic path 7(sp =52 ) is %.

1P(n(s1 )

B(rtoo 22)) = [ B(rtn = ane(+ [ 0D
0 2

1

B Al Al (Wd“51(“)> dprs, (1)
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A probabilistic semantics

Almost-sure model-checking

If ¢ is an LTL (or w-regular) property,

ske € P({oeRuns(s) o)) =1

We want to decide the almost-sure model-checking...
(This is a qualitative model-checking question)
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Solving the qualitative model-checking problem

An example
e, x<1 e7, x<1
&, x<1 e, x>3, x:=0
x<1 — x<1 x<1
e3, x=1 es, x<1

A = G(green = F red) but A R G(green = F red)

w
Indeed, almost surely, paths are of the form efeg(e4e5)
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Result

Theorem

For single-clock timed automata, the almost-sure model-checking
@ of LTL is PSPACE-Complete
o of w-regular properties is NLOGSPACE-Complete

o Complexity:
o size of single-clock region automata = polynomial [LMS04]
o apply result of [CSS03] to the finite Markov chain

o Correctness: the proof is rather involved

e requires the definition of a topology over the set of paths

o notions of largeness (for proba 1) and meagerness (for proba 0)

o link between probabilities and topology thanks to the topological
games called Banach-Mazur games
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Solving the qualitative model-checking problem

An example with two clocks

o If the previous algorithm was correct, A = GF red A GF green

@ However, we can prove that ]P’(G —|red) >0

@ There is a strange convergence phenomenon: along an execution, if
d; > 0 is the delay in location /4, then we have that ). 6; <1
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A note on Zeno behaviours

@ The set of Zeno behaviours is measurable:

Zeno(s) = U ﬂ U Cyl(r(s = -+ =)

MeN neN (e, ,e,)EE"

@ In single-clock timed automata, we can decide in NLOGSPACE
whether }P’(Zeno(s)) =0:

o check whether there is a purely Zeno BSCC in MC(A)

[
4

x<1 OQ“«

e an interesting notion of non-Zeno timed automata
x<1, x:=0

¥
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“unlikely” (sequences of) events
~ extend continuous-time Markov chains

@ qualitative model-checking has a topological interpretation
e algorithm for qualitative of LTL (and w-regular) properties

What else have we done so far?

o (restricted) quantitative model-checking for w-regular properties
~» to appear at QEST'08

Ongoing work
@ our semantics can be viewed as a %—player game
11- and 23-player games
~> further interesting (un)decidability results
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