Robust control of timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Nicolas Markey, Pierre-Alain Reynier and Ocan Sankur.
Acknowledgment to Nicolas and Ocan for slides.
Support from ERC project EQualIS.
Outline

1. Introduction

2. Robust “black-box” model-checking
 - Parameterized enlarged semantics
 - Parameterized shrunk semantics

3. Robust guided model-checking
 - Excess semantics
 - Conservative semantics

4. Conclusion
Time-dependent systems

- We are interested in timed systems
Time-dependent systems

- We are interested in timed systems
Model-checking and control

system:

property:

[http://www.embedded.com]
Model-checking and control

system:

property:

\[\text{AG}(\neg B.\text{overfull} \land \neg B.\text{dried}_\text{up}) \]
Model-checking and control

system:

![Diagram of a system with tanks and a pump showing states such as Full and Empty, with transitions labeled a! and b? and ¬B.overfull ∧ ¬B.dried_up as properties.]

property:

![Diagram of a property with states Full and Empty, with ¬B.overfull ∧ ¬B.dried_up as a label for the algorithm.]

Algorithm:

\[AG(\neg B\text{.overfull} \land \neg B\text{.dried_up}) \]
Model-checking and control

system:

property:

[http://www.embedded.com]

AG(¬B.overfull ∧ ¬B.dried_up)

model-checking algorithm

yes/no
Model-checking and control

system:

property:

control/synthesis algorithm:

AG(¬B.overfull ∧ ¬B.dried_up)
Reasoning about real-time systems

Timed automata [AD94]

A timed automaton is made of
- a finite automaton-based structure

Example (A computer mouse)

Reasoning about real-time systems

Timed automata [AD94]

A timed automaton is made of

- a finite automaton-based structure
- a set of clocks

Example (A computer mouse)

Reasoning about real-time systems

Timed automata [AD94]

A timed automaton is made of

- a finite automaton-based structure
- a set of clocks
- timing constraints on states and transitions

Example (A computer mouse)

Discrete-time semantics

...because computers are digital!

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

• under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:
Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under continuous-time, the output can be 1:

Continuous-time semantics

...real-time models for real-time systems!
Continuous-time semantics

...real-time models for real-time systems!

Example

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[x = 1 \quad y := 0 \]
\[x \leq 2, \quad x := 0 \]
\[y \geq 2 \quad y := 0 \]

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 x &\leq 2, \; x := 0 \\
 y &\geq 2, \; y := 0 \\
 x &= 0 \land y \geq 2
\end{align*}
\]
Continuous-time semantics

...real-time models for real-time systems!

Example

\[
\begin{align*}
x & = 1 \\
y & = 0
\end{align*}
\]

\[
\begin{align*}
x & \leq 2, \quad x := 0 \\
y & \geq 2, \quad y := 0
\end{align*}
\]

\[
\begin{align*}
x & = 0 \land y \geq 2 \\
y & = 0
\end{align*}
\]

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\begin{align*}
 x &= 1 \\
 y &= 0
\end{align*}

\begin{align*}
 x \leq 2, & \ x := 0 \\
 y \geq 2, & \ y := 0
\end{align*}

\begin{align*}
 x &= 0 \land \\
 y &\geq 2
\end{align*}

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[x = 1 \]
\[y := 0 \]

\[x \leq 2, \; x := 0 \]
\[y \geq 2, \; y := 0 \]

\[x = 0 \land y \geq 2 \]

Theorem [AD94] Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[
\begin{align*}
 x &= 1, \\ y &= 0, \\
 x &\leq 2, x := 0, \\
 y &\geq 2, y := 0 \\
 x &= 0 \land y \geq 2, \\
 y &= 0
\end{align*}
\]

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[x = 1 \]
\[y := 0 \]
\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]

Theorem \[AD94 \]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[
\begin{align*}
x &= 1 \\
y &= 0
\end{align*}
\]

\[
\begin{align*}
x &\leq 2, \ x := 0 \\
y &\geq 2, \ y := 0 \\
x &= 0 \land y \geq 2
\end{align*}
\]

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

Example

\[
x = 1,
\quad y := 0
\]

\[
x \leq 2,
\quad x := 0
\]

\[
y \geq 2,
\quad y := 0
\]

Theorem [AD94] Reachability in timed automata is decidable (as well as many other important properties).

Technical tool: region abstraction
Introduction

Continuous-time semantics

...real-time models for real-time systems!

Example

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties).

- Technical tool: region abstraction
Are we doing the right job?

The continuous-time semantics is an *idealization* of a physical system.
Are we doing the right job?

The continuous-time semantics is an **idealization** of a physical system.

- It might not be proper for *implementation*:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
Are we doing the right job?

The continuous-time semantics is an **idealization** of a physical system.

- It might not be proper for **implementation**: it assumes zero-delay transitions, it assumes infinite precision of the clocks, it assumes immediate communication between systems.
- It may generate **timing anomalies**.
Are we doing the right job?

The continuous-time semantics is an **idealization** of a physical system.

- It might not be proper for **implementation**:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
- It may generate **timing anomalies**
- It does not exclude **non-realizable behaviours**:
 - not only Zeno behaviours
 - many **convergence phenomena** are hidden

\[\sim \] this requires infinite precision and might not be realizable
Are we doing the right job?

The continuous-time semantics is an **idealization** of a physical system.

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
- It may generate **timing anomalies**
- It does not exclude **non-realizable behaviours**:
 - not only Zeno behaviours
 - many **convergence phenomena** are hidden

 \(\sim \) this requires infinite precision and might not be realizable

Important questions

- Is the real system correct when it is proven correct on the model?
- Does actual work transfer to real-world systems? To what extent?
Example 1: Imprecision on clock values

Frame capture [ACS10]

Example 1: Imprecision on clock values

Frame capture [ACS10]

\[2 \text{ t.u.} \]

\[
\begin{array}{cccccc}
\text{frame 0} & \text{frame 1} & \text{frame 2} & \text{frame 3} & \text{frame 4} & \text{frame 5} \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{encod. 0} & \text{encod. 1} & \text{encod. 2} & \text{encod. 3} & \text{encod. 4} \\
\end{array}
\]

\[2 + \epsilon \]

\[\leadsto \text{A frame will eventually be skipped} \]

Example 2: Strict timing constraints

Mutual exclusion protocol [KLL+97]

When P_1 and P_2 run in parallel (sharing variable r), the state where both of them are in is not reachable. This property is lost when $x_{id} > 2$ is replaced with $x_{id} \geq 2$.

Example 2: Strict timing constraints

Mutual exclusion protocol [KLL+97]

\[P_{\text{id}} \]

- When \(P_1 \) and \(P_2 \) run in parallel (sharing variable \(r \)), the state where both of them are in is not reachable.

Example 2: Strict timing constraints

Mutual exclusion protocol [KLL+97]

- When \mathcal{P}_1 and \mathcal{P}_2 run in parallel (sharing variable r), the state where both of them are in \square is not reachable.
- This property is lost when $x_{id} > 2$ is replaced with $x_{id} \geq 2$.

Example 3: Scheduling and timing anomaly

- Scheduling analysis with timed automata [AAM06]
- **Goal**: analyze a *work-conserving* scheduling policy on given scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td></td>
<td>A</td>
<td></td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₂</td>
<td>C</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

with the dependency constraints: $A \rightarrow B$ and $C \rightarrow D, E$.

1. A, D, E must be scheduled on machine $M₁$
2. B, C must be scheduled on machine $M₂$
3. C starts no sooner than 2 time units

Example 3: Scheduling and timing anomaly

Example of a scenario

\[M_1 \]

\[M_2 \]

\[\sim \] Schedulable in 6 time units

\[\sim \] Standard analysis does not capture this timing anomaly.
Example 3: Scheduling and timing anomaly

Example of a scenario

\[\begin{array}{c|c|c|c|c|c|c|c} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline M_1 & A & & D & E \\ M_2 & & C & B & & & & & \\ \end{array} \]

\[\sim \text{ Schedulable in 6 time units} \]

- Unexpectedly, the duration of A drops to 1.999
Example 3: Scheduling and timing anomaly

Example of a scenario

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & D & E & \\
M_2 & C & B & & & \\
\end{array}
\]

\(\sim\) Schedulable in 6 time units

- Unexpectedly, the duration of A drops to 1.999

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & D & E & & \\
M_2 & C & B & & & \\
\end{array}
\]

is not work-conserving
Example 3: Scheduling and timing anomaly

Example of a scenario

∼ Schedulable in 6 time units
- Unexpectedly, the duration of A drops to 1.999

is not work-conserving

is work-conserving and completes in 7.999 t.u.
Example 3: Scheduling and timing anomaly

Example of a scenario

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

〜 Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

is not work-conserving

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

is work-conserving and completes in 7.999 t.u.

〜 Standard analysis does not capture this **timing anomaly**
Example 4: Zeno behaviours

\[x < 1 \land y < 1 \]
\[x := 0 \]
\[y = 1 \]

Those are easy to detect and can be handled; [HS11] They are easy to remove by construction.
Example 4: Zeno behaviours

Those are easy to detect and can be handled;

Example 4: Zeno behaviours

Those are easy to detect and can be handled;
They are easy to remove by construction.

Example 5: More complex convergence phenomena

\[x = 1 \]
\[y = 0 \]

- \(x \leq 2, \ x := 0 \)
- \(y \geq 2, \ y := 0 \)
- \(x = 0 \wedge y \geq 2 \)

Value of clock `x` when hitting `y := 0` is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[
x = 1 \quad y = 0
\]

\[
x \leq 2, \; x := 0
\]

\[
x = 0 \land y \geq 2
\]

\[
y \geq 2, \; y := 0
\]

Value of clock x when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[
\begin{align*}
 x & = 1 \\
 y & = 0 \\
 x & \leq 2, \quad x := 0 \\
 y & \geq 2, \quad y := 0 \\
 x & = 0 \land y \geq 2
\end{align*}
\]

Value of clock x when hitting y is converging, even though global time diverges.
Example 5: More complex convergence phenomena

$x \leq 2, \ x := 0$

$y \geq 2, \ y := 0$

$x = 0 \land y \geq 2$

Value of clock x when hitting $y := 0$ is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \]
\[y = 0 \]
\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]
\[x = 0 \land y \geq 2 \]

Value of clock when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[\begin{align*}
x & = 1 \\
y & := 0
\end{align*} \]

\[\begin{align*}
x \leq 2, & \quad x := 0 \\
y \geq 2, & \quad y := 0
\end{align*} \]

Value of clock when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[
\begin{align*}
&x = 1, \quad y := 0 \\
&x \leq 2, \quad x := 0 \\
&y \geq 2, \quad y := 0 \\
&x = 0 \land y \geq 2
\end{align*}
\]

Value of clock \(x\) when hitting \(y\) is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]

\[x \leq 2, \; x := 0 \]

\[y \geq 2, \; y := 0 \]

\[x = 0 \land y \geq 2 \]
Example 5: More complex convergence phenomena

\(x = 1 \) \\
\(y := 0 \)

\(x \leq 2, \ x := 0 \)

\(x = 0 \land \ y \geq 2 \)

\(y \geq 2, \ y := 0 \)

Value of clock is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[\begin{align*}
 x &\leq 2, \quad x := 0 \\
 y &\geq 2
\end{align*} \]

Value of clock when hitting is converging, even though global time diverges
Example 5: More complex convergence phenomena

$x = 1$
$y := 0$

$x \leq 2, \ x := 0$

$y \geq 2, \ y := 0$

$x = 0 \land y \geq 2$

The value of the clock is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]

\[x \leq 2, \quad x := 0 \]

\[y \geq 2, \quad y := 0 \]

\[x = 0 \land y \geq 2 \]

Value of clock when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \]
\[y := 0 \]
\[x \leq 2, x := 0 \]
\[y \geq 2, y := 0 \]
\[x = 0 \land y \geq 2 \]
Example 5: More complex convergence phenomena

\[x = 1 \]
\[y = 0 \]
\[x \leq 2, \; x := 0 \]
\[y \geq 2, \; y := 0 \]

Value of clock is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\begin{align*}
x &\leq 2, \quad x := 0 \\
y &\geq 2, \quad y := 0 \\
x & = 0 \land y \geq 2
\end{align*}

\[x = 0 \land y \geq 2 \]

\[y = 0 \]

\[x = 1 \land y = 0 \]

\[x = 1 \land y \geq 2 \]

\[\sim \quad \text{Value of clock } x \text{ when hitting } \bigcirc \text{ is converging, even though global time diverges} \]
The goal

Add robustness to the theory of timed automata
The goal

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
The goal

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.

- **Aim**: provide frameworks to build correct systems
The goal

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- **Aim:** provide frameworks to build robustly correct systems
The goal

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.

- **Aim:** provide frameworks to build robustly correct systems
 \[\rightsquigarrow\] Robustness calls for specific theories for each application area
The goal

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.

- **Aim:** provide frameworks to build robustly correct systems
 \[\rightsquigarrow\] Robustness calls for specific theories for each application areas

Rest of the talk

We present a couple of frameworks that have been developed recently in this context
Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
Robust “black-box” model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process.
Robust “black-box” model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process.

Due to imprecisions,

\[
\text{“standard” correctness of } \mathcal{A} \not\Rightarrow \text{ correctness of } \mathcal{A}_{\text{real}}
\]
Robust “black-box” model-checking approach

Idea
Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

"standard" correctness of $A \not\Rightarrow$ correctness of A_{real}

\sim We aim at proposing frameworks in which we will ensure the correctness of the real behaviour of the system
Robust “black-box” model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process.

Due to imprecisions,

\[
\text{“standard” correctness of } A \not\Rightarrow \text{ correctness of } A_{\text{real}}
\]

\[\leadsto\text{ We aim at proposing frameworks in which we will ensure the correctness of the real behaviour of the system}\]

We describe two such frameworks:

1. either we implement \(A \) and we prove:

 \[
 \text{“robust” correctness of } A \Rightarrow \text{ correctness of } A_{\text{real}}
 \]
Robust “black-box” model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process.

Due to imprecisions,

\[\text{“standard” correctness of } A \not\Rightarrow \text{ correctness of } A_{\text{real}} \]

\[\sim \text{ We aim at proposing frameworks in which we will ensure the correctness of the real behaviour of the system} \]

We describe two such frameworks:

1. either we implement \(A \) and we prove:
 \[\text{“robust” correctness of } A \Rightarrow \text{ correctness of } A_{\text{real}} \]

2. or we build and implement \(B \), and we prove:
 \[\text{correctness of } A \Rightarrow \text{ “robust” correctness of } B \Rightarrow \text{ correctness of } B_{\text{real}} \]
Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
Parameterized enlarged semantics for timed automata

A transition can be taken at any time in \([t - \delta; t + \delta]\)
A transition can be taken at any time in $[t - \delta; t + \delta]$.

Example

Given a parameter δ,

- $x = 1, y := 0$
- $x \leq 2, x := 0$
- $y \geq 2, y := 0$

is transformed into

- $1 - \delta \leq x \leq 1 + \delta, y := 0$
- $x \leq 2 + \delta, x := 0$
- $y \geq 2 - \delta, y := 0$
- $x \leq \delta \land y \geq 2 - \delta$
Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$A \subseteq \text{program}_\epsilon(A) \subseteq A_f(\epsilon)$$

ϵ: parameters of the semantics

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$A \subseteq \text{program}_\epsilon(A) \subseteq A_{f(\epsilon)}$$

ϵ: parameters of the semantics

Methodology

- Design A
- Verify A_δ (better if δ is a parameter)
- Implement A
Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

\[\mathcal{A} \subseteq \text{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)} \]

ϵ: parameters of the semantics

Methodology

- Design \mathcal{A}
- Verify \mathcal{A}_δ (better if δ is a parameter)
- Implement \mathcal{A}

\leadsto This is good for designing systems with simple timing constraints (e.g. equalities).
Parameterized enlarged semantics – Algorithmics

\[\leadsto \text{It adds extra behaviours, however small may be parameter } \delta \]
Parameterized enlarged semantics – Algorithmics

Let it adds extra behaviours, however small may be parameter δ

Example

![Diagram]

$y = 0$

$x = 1$

$y := 0$

$x \leq 2$, $x := 0$

$y \geq 2$, $y := 0$

$x = 0 \land y \geq 2$
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$,

$A_\delta |\models \phi$.

When δ is small, truth of ϕ is independent of δ

It can be computed using a simple extension of the region automaton

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties

is decidable. Complexities are those of standard non robust

model-checking problems.
Parameterized enlarged semantics – Algorithmics

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]

Example

\[\begin{align*}
 x &= 1 \\
 y &= 0
\end{align*}\]

\[\begin{align*}
 x &\leq 2, \ y := 0 \\
 y &\geq 2, \ y := 0
\end{align*}\]

\[\begin{align*}
 x &= 0 \land y \geq 2
\end{align*}\]
Parameterized enlarged semantics – Algorithmics

\[\text{It adds extra behaviours, however small may be parameter } \delta \]

Example

The (parameterized) robust model-checking problem

It asks whether there is some \(\delta_0 > 0 \) such that for every \(0 \leq \delta \leq \delta_0 \),

\[A_\delta | = \varphi. \]

When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)

It can be computed using a simple extension of the region automaton

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties

is decidable. Complexities are those of standard non robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

↔ It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta |\phi$.

When δ is small, truth of ϕ is independent of δ.

It can be computed using a simple extension of the region automaton.

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non-robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

〜 It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta \models \varphi$.

When δ is small, truth of φ is independent of δ.

It can be computed using a simple extension of the region automaton.

Theorem: Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non-robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter \(\delta \)

Example

The (parameterized) robust model-checking problem

It asks whether there is some \(\delta_0 > 0 \) such that for every \(0 \leq \delta \leq \delta_0 \),

\[A_{\delta} \models \varphi. \]

When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)

It can be computed using a simple extension of the region automaton

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

〜 It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta |= \phi$.

When δ is small, truth of ϕ is independent of δ.

It can be computed using a simple extension of the region automaton.

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

→ It adds extra behaviours, however small may be parameter δ

Example

\[
\begin{align*}
1 - \delta & \leq x \leq 1 + \delta, \quad y := 0 \\
& x \leq 2 + \delta, \quad x := 0 \\
& x \leq \delta \land y \geq 2 - \delta \\
& y \geq 2 - \delta, \quad y := 0
\end{align*}
\]
Parameterized enlarged semantics – Algorithmics

〜 It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta |_\phi$.

When δ is small, truth of ϕ is independent of δ.

It can be computed using a simple extension of the region automaton.

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

\[\sim \text{It adds extra behaviours, however small may be parameter } \delta \]

Example

The (parameterized) robust model-checking problem asks whether there is some \(\delta_0 > 0 \) such that for every \(0 \leq \delta \leq \delta_0 \), \(A_{\delta} \models \varphi \).

When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \). It can be computed using a simple extension of the region automaton.

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non-robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

\[\text{It adds extra behaviours, however small may be parameter } \delta \]

Example

\begin{align*}
1 - \delta \leq x \leq 1 + \delta, \quad & y := 0 \\
1 - \delta \leq x \leq 1 + \delta, \quad & y := 0 \\
x \leq 2 + \delta, \quad & x := 0 \\
x \leq \delta \land y \geq 2 - \delta \\
y \geq 2 - \delta, \quad & y := 0
\end{align*}
Parameterized enlarged semantics – Algorithmics

\[\text{It adds extra behaviours, however small may be parameter } \delta \]

\textbf{Example}

\begin{align*}
&1 - \delta \leq x \leq 1 + \delta, \quad y := 0 \\
x \leq 2 + \delta, \quad x := 0 \\
x \leq \delta \land y \geq 2 - \delta \\
y \geq 2 - \delta, \quad y := 0
\end{align*}
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta |= \varphi$.

When δ is small, truth of φ is independent of δ. It can be computed using a simple extension of the region automaton.

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

\(\sim \) It adds extra behaviours, however small may be parameter \(\delta \)

Example

The (parameterized) robust model-checking problem asks whether there is some \(\delta_0 > 0 \) such that for every \(0 \leq \delta \leq \delta_0 \),

\[A_\delta | \phi \]

When \(\delta \) is small, truth of \(\phi \) is independent of \(\delta \).
It can be computed using a simple extension of the region automaton.

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non-robust model-checking problems.
Parameterized enlarged semantics – Algorithmics

→ It adds extra behaviours, however small may be parameter δ

Example

\[
\begin{align*}
y &= 0 \\
x &\leq 2 + \delta, \ x := 0 \\
y &\geq 2 - \delta, \ y := 0
\end{align*}
\]

\[
\begin{align*}
1 - \delta &\leq x \leq 1 + \delta \\
y &:= 0
\end{align*}
\]
Parameterized enlarged semantics – Algorithmics

〜 It adds extra behaviours, however small may be parameter δ

Example

![Diagram](image-url)

$1 - \delta \leq x \leq 1 + \delta$, $y := 0$

$x \leq 2 + \delta$, $x := 0$

$x \leq \delta \land y \geq 2 - \delta$

$y \geq 2 - \delta$, $y := 0$
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

$$
\begin{align*}
1 - \delta & \leq x \leq 1 + \delta \\
y & := 0
\end{align*}
$$

$$
\begin{align*}
x & \leq 2 + \delta, \\x & := 0
\end{align*}
$$

$$
\begin{align*}
x & \leq \delta \land y \geq 2 - \delta
\end{align*}
$$

$$
\begin{align*}
y & \geq 2 - \delta, \\y & := 0
\end{align*}
$$
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

```
1 - \delta \leq x \leq 1 + \delta
y := 0

x \leq 2 + \delta, x := 0

x \leq \delta \land y \geq 2 - \delta
y \geq 2 - \delta, y := 0
```
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

\[
\begin{align*}
1 - \delta \leq x & \leq 1 + \delta, \quad y := 0 \\
x \leq 2 + \delta, \quad x := 0 \\
x \leq \delta \land y \geq 2 - \delta \\
y \geq 2 - \delta, \quad y := 0
\end{align*}
\]
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta \models \varphi$.
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta \models \varphi$.

- When δ is small, truth of φ is independent of δ
Parameterized enlarged semantics – Algorithmics

\[\Delta \text{ It adds extra behaviours, however small may be parameter } \delta \]

The (parameterized) robust model-checking problem

It asks whether there is some \(\delta_0 > 0 \) such that for every \(0 \leq \delta \leq \delta_0 \),

\[A_\delta \models \varphi. \]

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)
- It can be computed using a simple extension of the region automaton
Parameterized enlarged semantics – Algorithmics

\[\text{It adds extra behaviours, however small may be parameter } \delta \]

The (parameterized) robust model-checking problem

It asks whether there is some \(\delta_0 > 0 \) such that for every \(0 \leq \delta \leq \delta_0 \),
\[A_\delta \models \varphi. \]

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)
- It can be computed using a simple extension of the region automaton

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.

Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
Parameterized shrunk semantics for timed automata

A constraint $[a, b]$ is shrunk to $[a + k\delta; b - h\delta]$
Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + k\delta; b - h\delta]\)

Why should we do that?

Abstract model

Real-world model

1 \leq x \leq 2

Parameterized shrunk semantics for timed automata

A constraint $[a, b]$ is shrunk to $[a + k\delta; b - h\delta]$

Why should we do that?

Abstract model

Real-world model

1 $\leq x \leq 2$

$1 - \Delta \leq x \leq 2 + \Delta$

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + k\delta; b - h\delta]\)

Why should we do that?

Abstract model

1 \leq x \leq 2

\[1 + \delta' \leq x \leq 2 - \delta\]

Real-world model

1 - \Delta \leq x \leq 2 + \Delta

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + k\delta; b - h\delta]\)

Why should we do that?

<table>
<thead>
<tr>
<th>Abstract model</th>
<th>Real-world model</th>
</tr>
</thead>
<tbody>
<tr>
<td>([1, x, 2])</td>
<td>([1 - \Delta, x, 2 + \Delta])</td>
</tr>
<tr>
<td>([1 + \delta', x, 2 - \delta])</td>
<td>([1 + \delta' - \Delta, x, 2 - \delta + \Delta])</td>
</tr>
</tbody>
</table>

Why should we do that?

It is fine as soon as \([1 + \delta' - \Delta; 2 - \delta + \Delta]\) ⊆ \([1, 2]\)
which is the case when \(\delta, \delta' \geq \Delta\).

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + k\delta; b - h\delta]\)

Why should we do that?

Abstract model

\[1 \leq x \leq 2\]

\[1 + \delta' \leq x \leq 2 - \delta\]

Real-world model

\[1 - \Delta \leq x \leq 2 + \Delta\]

\[1 + \delta' - \Delta \leq x \leq 2 - \delta + \Delta\]

It is fine as soon as \([1 + \delta' - \Delta; 2 - \delta + \Delta]\) \(\subseteq [1; 2]\), which is the case when \(\delta, \delta' \geq \Delta\).

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + k\delta; b - h\delta]\)

Summary of the approach

Shrink the clock constraints in the model, to prevent additional behaviour in the implementation

- If \(B = A_{-k\delta}\), then

\[
B \subseteq \text{program}_\epsilon(B) \subseteq B_{f(\epsilon)} = A_{-k\delta + f(\epsilon)} \subseteq A
\]

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?
Anticipate imprecisions to prevent additional behaviours in the real-world
Parameterized shrunk semantics – Discussion

What is the relevance of that approach?
Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology
- Design and verify \mathcal{A}
- Implement $\mathcal{A}_{-k\delta}$ (parameters are k and δ)
Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- Design and verify \mathcal{A}
- Implement $\mathcal{A}_{-k\delta}$ (parameters are k and δ)

\sim This is good for designing systems with strong/hard timing constraints
Parameterized shrunk semantics – Discussion

What is the relevance of that approach?
Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology
- Design and verify \mathcal{A}
- Implement $\mathcal{A}_{-k\delta}$ (parameters are k and δ)

\sim This is good for designing systems with strong/hard timing constraints

⚠️ Problem
Make sure that no important behaviours are lost in $\mathcal{A}_{-k\delta}$!!
Parameterized shrunk semantics – Algorithmics

The (parameterized) shrinkability problem

Find parameters k and δ such that:

- $A \sqsubseteq_{t.a.} A_{-k\delta}$ (or $F \sqsubseteq_{t.a.} A_{-k\delta}$ for some finite automaton F)
 \[\text{[shrinkability w.r.t. untimed simulation]}\]

- $A_{-k\delta}$ is non-blocking whenever A is non-blocking
 \[\text{[shrinkability w.r.t. non-blockingness]}\]
Parameterized shrunk semantics – Algorithmics

The (parameterized) shrinkability problem

Find parameters k and δ such that:

- $A \subseteq_{t.a.} A_{-k\delta}$ (or $F \subseteq_{t.a.} A_{-k\delta}$ for some finite automaton F) [shrinkability w.r.t. untimed simulation]
- $A_{-k\delta}$ is non-blocking whenever A is non-blocking [shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

- Challenge: take care of the accumulation of perturbations
- Technical tools: parameterized shrunk DBM, max-plus equations
- Tool Shrinktech developed by Ocan Sankur [San13]

 http://www.lsv.ens-cachan.fr/Software/shrinktech/

Example

The largest shrunk automaton which is correct w.r.t. untimed simulation and non-blockingness is:

\[
\begin{align*}
\delta & \leq x \land y \leq 1 - \delta \land u \geq \delta \\
y - x & \leq 1 - 4\delta \land u \geq \delta \land u, y := 0 \\
u, x := 0 & \\
y \leq 1 - 2\delta \land 1 + \delta & \leq x \land u \geq \delta \land x - y \geq 3\delta \\
u, y := 0 & \\
u, x, y := 0 \\
\end{align*}
\]
The largest shrunk automaton which is correct w.r.t. untimed simulation and non-blockingness is:

\[
\begin{align*}
3\delta \leq x \land y \leq 1 - \delta \land u \geq \delta \\
y - x \leq 1 - 4\delta \land u \geq \delta
\end{align*}
\]

\[
\begin{align*}
y \leq 1 - 2\delta \land 1 + \delta \leq x \\
u \geq \delta \land x - y \geq 3\delta
\end{align*}
\]

\[
\begin{align*}
y \leq 1 - \delta \land u \geq \delta \\
u, y := 0
\end{align*}
\]
Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism
Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location \(\bigcirc \) with value \(x \), delay \(\frac{2-x}{2} \)
Robust guided model-checking

Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

\[x = 1 \]
\[y := 0 \]
\[x \leq 2, x := 0 \]
\[y \geq 2, y := 0 \]

Strategy: in location \(\bigcirc \) with value \(x \), delay \(\frac{2-x}{2} \)

- This strategy requires infinite precision
Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location \(\textcircled{1} \) with value \(x \), delay \(\frac{2-x}{2} \)

- This strategy requires infinite precision
- In practice, when \(x \) is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking
Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking
- And that is unavoidable
Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism.

Idea

Add robustness to strategies, and adapt the behaviour of the system to previous imprecisions.

〜 develop a theory of robust strategies that tolerate errors/imprecisions and avoid convergence.
Game semantics $G_\delta(\mathcal{A})$ of timed automaton \mathcal{A}...

... between **Controller** and **Perturbator**:
- from (ℓ, v), **Controller** suggests a delay $d \geq \delta$ and a next edge $e = (\ell \xrightarrow{g,Y} \ell')$ that is available after delay d
- **Perturbator** then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

A δ-robust strategy for **Controller** is then a strategy that satisfies the expected property, whatever plays **Perturbator**.
Game semantics of a timed automaton

Game semantics $G_\delta(A)$ of timed automaton A...

... between Controller and Perturbator:

- from (ℓ, v), Controller suggests a delay $d \geq \delta$ and a next edge $e = (\ell \xrightarrow{g,Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.
Game semantics of a timed automaton

Game semantics $G_\delta(A)$ of timed automaton A...

... between Controller and Perturbator:

- from (ℓ, v), Controller suggests a delay $d \geq \delta$ and a next edge $e = (\ell \xrightarrow{g,Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

A δ-robust strategy for Controller is then a strategy that satisfies the expected property, whatever plays Perturbator.
Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
The excess game semantics

Constraints may not be satisfied after the perturbation: that is, only $v + d$ should satisfy g
The excess game semantics

Constraints may not be satisfied after the perturbation: that is, only $v + d$ should satisfy g

Example

The excess game semantics

Constraints may not be satisfied after the perturbation: that is, only $v + d$ should satisfy g

Example

The excess game semantics

Constraints may not be satisfied after the perturbation: that is, only $v + d$ should satisfy g

Example

The excess game semantics

Constraints may not be satisfied after the perturbation: that is, only $v + d$ should satisfy g.

Example

Example

$\text{Constraints may not be satisfied after the perturbation: that is, only } v + d \text{ should satisfy } g$

The excess game semantics

Constraints may not be satisfied after the perturbation: that is, only \(v + d \) **should satisfy** \(g \)**

Example

\[x = y = 1 \]
\[y := 0 \]

\[\sim \text{ Allows simple design of constraints, ensures divergence of time, avoids convergence phenomena} \]

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Two challenges

- **Accumulation of perturbations:**

![Diagram](image-url)
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Two challenges

- Accumulation of perturbations:

\[x \leq 2 \]
\[y := 0 \]
\[1 \leq x - y \]

\[x = 2 \]

\[y \]

\[y \]

\[x \]

\[x \]

\[x \]

\[y \]

\[y \]

\[x \]

\[x \]
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Two challenges

1. Accumulation of perturbations:

 $$x \leq 2$$
 $$y := 0$$
 $$1 \leq x - y$$

2. New regions become reachable

 $$x = y = 1$$
 $$y := 0$$

$$2\delta$$
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tool: a region-based refined game abstraction
- ☑ Extends to two-player games (i.e. to real control problems)
- ☹ Only valid for reachability properties
Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
The conservative game semantics

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$.

The conservative game semantics

Constraints have to be satisfied after the perturbation: that is,
\(v + d + \epsilon \) should satisfy \(g \) for every \(\epsilon \in [-\delta; +\delta] \)

Example

\[1 < x < 2 \]
\[y := 0 \]
The conservative game semantics

Constraints have to be satisfied after the perturbation: that is, \(v + d + \epsilon \) should satisfy \(g \) for every \(\epsilon \in [-\delta; +\delta] \)

Example

Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The conservative game semantics

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

Example

\[y := 0 \]

\[1 < x < 2 \]

Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The conservative game semantics

Constraints have to be satisfied after the perturbation: that is,
$v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

Example

\[y := 0 \]

Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.
The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Theorem

The synthesis problem for Büchi properties is decidable and PSPACE-complete. Furthermore, δ is at most doubly-exponential, and uniform winning strategies (w.r.t. δ) can be computed.
The problem consists in finding cycles that do not become blocked.
The problem consists in finding cycles that do not become blocked.

- A converging phenomena:
The problem consists in finding cycles that do not become blocked.

- A converging phenomena:

- No convergence:

No such constraining half-spaces.
The problem consists in finding cycles that do not become blocked.

- **A converging phenomena:**

- **No convergence:**

 No such constraining half-spaces.

Tools for solving the synthesis problem

- Orbit graphs, forgetful cycles \[AB11\]
- Forgetful (that is, strongly connected) orbit graph \(\Leftrightarrow\) no convergence phenomena
 \(\leadsto\) strong relation with thick automata.

Example

Robust guided model-checking

A region cycle:

Delay

The corresponding (folded) orbit graph:
Example

A region cycle:

\[x = 1, \quad y = 0 \]

\[x \leq 2, \quad x := 0 \]

\[y \geq 2, \quad y := 0 \]
Example

Robust guided model-checking

A region cycle:

The corresponding (folded) orbit graph:
Example

The cycle is not forgetful (that is, not strongly connected), Perturbator can enforce convergence:
Outline

1. Introduction

2. Robust “black-box” model-checking
 Parameterized enlarged semantics
 Parameterized shrunk semantics

3. Robust guided model-checking
 Excess semantics
 Conservative semantics

4. Conclusion
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.

- Not always easy to transfer correctness proven in this model to real behaviours of the system.

- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.

- Extension of these works to richer models seems unfortunately hard [BMS13]
- A quantitative approach to robustness: Perturbator plays randomly
- Symbolic algorithms?
Conclusion

- **Timed automata:** a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for **robustness** that can be used to ensure correctness in the real-world.

- Extension of these works to richer models seems unfortunately hard [BMS13]
- A quantitative approach to robustness: Perturbator plays randomly
- Symbolic algorithms?

- This list of possible approaches is not exhaustive:
 - tube acceptance [GHJ97]
 - turn any automaton into a robust one [BLM+11]
 - sampling approach [KP05, BLM+11]
 - probabilistic approach [BBB+08, BBJM12]
 - ...