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Introduction
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We are interested in timed systems
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Introduction

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

Timed automata [AD94]

A timed automaton is made of

a finite automaton-based structure

a set of clocks

timing constraints on states and transitions

Example (A computer mouse)

idleleft

x≤300

right

x≤300

left button?

x := 0

right button?

x := 0

x = 300

left click!

x ≤ 300

left button?

left double click!

x = 300

right click!

x ≤ 300

right button?

right double click!

x
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Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i
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Introduction

Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties).

Technical tool: region abstraction
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Introduction

Are we doing the right job?

The continuous-time semantics is
an idealization of a physical system.

It might not be proper for implementation:

it assumes zero-delay transitions
it assumes infinite precision of the clocks
it assumes immediate communication between systems

It may generate timing anomalies

It does not exclude non-realizable behaviours:

not only Zeno behaviours
many convergence phenomena are hidden

; this requires infinite precision and might not be realizable

Important questions

Is the real system correct when it is proven correct on the model?

Does actual work transfer to real-world systems? To what extent?
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Introduction

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

Frame capture [ACS10]

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 + ε

; A frame will eventually be skipped
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Introduction

Example 2: Strict timing constraints

[KLL+97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol. TAPSOFT, 1997.

Mutual exclusion protocol [KLL+97]

Pid

xid≤2

r==0

xid:=0

r :=id

xid:=0

r :=0

xid:=0 r=id

xid>2

r :=0

When P1 and P2 run in parallel (sharing variable r), the state where
both of them are in is not reachable.

This property is lost when xid > 2 is replaced with xid ≥ 2.
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Introduction

Example 3: Scheduling and timing anomaly

[AAM06] Abdeddaim, Asarin, Maler. Scheduling with timed automata. Theor. Comp. Science, 2006.

Scheduling analysis with timed automata [AAM06]

Goal: analyze a work-conserving scheduling policy on given
scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

0 1 2 3 4 5 6 7

M2

M1 A

C B

D E

with the dependency constraints: A→ B and C → D,E .

1 A,D,E must be scheduled on machine M1

2 B,C must be scheduled on machine M2

3 C starts no sooner than 2 time units

; Standard analysis does not capture this timing anomaly
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Introduction

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

x<1∧ y<1

x :=0

y=1

y

0
x

1

1

Those are easy to detect and can be handled; [HS11]

They are easy to remove by construction.
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Introduction

Example 5: More complex convergence phenomena

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges
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Introduction

The goal

Add robustness to the theory of timed automata

We need to understand what is the real system behind the
mathematical model, and also which implementation we have in
mind, if any.

Aim: provide frameworks to build

robustly

correct systems

; Robustness calls for specific theories for each application areas

Rest of the talk
We present a couple of frameworks that have been developed recently in
this context
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Robust “black-box” model-checking

Robust “black-box” model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation)
in the verification process

Due to imprecisions,

“standard” correctness of A 6⇒ correctness of Areal

; We aim at proposing frameworks in which we will ensure the
correctness of the real behaviour of the system

We describe two such frameworks:

1 either we implement A and we prove:

“robust” correctness of A ⇒ correctness of Areal

2 or we build and implement B, and we prove:

correctness of A ⇒ “robust” correctness of B
⇒ correctness of Breal
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Robust “black-box” model-checking

Parameterized enlarged semantics for timed automata

A transition can be taken at any time in [t − δ; t + δ]

Example

Given a parameter δ,

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

is transformed into

1−δ≤x≤1+δ

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ
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Robust “black-box” model-checking

Parameterized enlarged semantics – Discussion

[DDR04] De Wulf, Doyen, Raskin. Almost ASAP semantics: From timed models to timed implementations HSCC, 2004.
[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

What is the relevance of this semantics?
This is a worst-case approach

This captures approximate behaviours of the system

One can define program semantics such that for every ε > 0:

A ⊆ programε(A) ⊆ Af (ε)

ε: parameters of the semantics

Methodology

Design A
Verify Aδ (better if δ is a parameter)

Implement A

; This is good for designing systems
with simple timing constraints (e.g. equalities).

19/38



Robust “black-box” model-checking

Parameterized enlarged semantics – Discussion

[DDR04] De Wulf, Doyen, Raskin. Almost ASAP semantics: From timed models to timed implementations HSCC, 2004.
[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

What is the relevance of this semantics?
This is a worst-case approach

This captures approximate behaviours of the system

One can define program semantics such that for every ε > 0:

A ⊆ programε(A) ⊆ Af (ε)

ε: parameters of the semantics

Methodology

Design A
Verify Aδ (better if δ is a parameter)

Implement A

; This is good for designing systems
with simple timing constraints (e.g. equalities).

19/38



Robust “black-box” model-checking

Parameterized enlarged semantics – Discussion

[DDR04] De Wulf, Doyen, Raskin. Almost ASAP semantics: From timed models to timed implementations HSCC, 2004.
[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

What is the relevance of this semantics?
This is a worst-case approach

This captures approximate behaviours of the system

One can define program semantics such that for every ε > 0:

A ⊆ programε(A) ⊆ Af (ε)

ε: parameters of the semantics

Methodology

Design A
Verify Aδ (better if δ is a parameter)

Implement A

; This is good for designing systems
with simple timing constraints (e.g. equalities).

19/38



Robust “black-box” model-checking

Parameterized enlarged semantics – Algorithmics

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.
[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata. LATIN, 2006.
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines. FoSSaCS, 2008.

; It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some δ0 > 0 such that for every 0 ≤ δ ≤ δ0,
Aδ |= ϕ.

When δ is small, truth of ϕ is independent of δ

It can be computed using a simple extension of the region automaton

Theorem
Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties
is decidable. Complexities are those of standard non robust
model-checking problems.
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Robust “black-box” model-checking

Outline

1. Introduction

2. Robust “black-box” model-checking
Parameterized enlarged semantics
Parameterized shrunk semantics

3. Robust guided model-checking
Excess semantics
Conservative semantics

4. Conclusion
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Robust “black-box” model-checking

Parameterized shrunk semantics for timed automata

[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

A constraint [a, b] is shrunk to [a + kδ; b − hδ]
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Why should we do that?

Abstract model Real-world model

1≤x≤2

1+δ′≤x≤2−δ

1−∆≤x≤2+∆

1+δ′−∆≤x≤2−δ+∆

It is fine as soon as [1 + δ′ −∆; 2− δ + ∆] ⊆ [1; 2],

which is the case when δ, δ′ ≥ ∆.
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Robust “black-box” model-checking

Parameterized shrunk semantics for timed automata

[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata. FSTTCS, 2011.

A constraint [a, b] is shrunk to [a + kδ; b − hδ]

Summary of the approach

; Shrink the clock constraints in the model, to prevent additional
behaviour in the implementation

If B = A−kδ, then

B ⊆ programε(B) ⊆ Bf (ε) = A−kδ+f (ε) ⊆ A
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Robust “black-box” model-checking

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

Design and verify A
Implement A−kδ (parameters are k and δ)

; This is good for designing systems
with strong/hard timing constraints

B Problem

Make sure that no important behaviours are lost in A−kδ!!
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Robust “black-box” model-checking

Parameterized shrunk semantics – Algorihmics

[San13] Sankur. Shrinktech: A tool for the robustness analysis of timed automata. CAV, 2013.

The (parameterized) shrinkability problem

Find parameters k and δ such that:

A vt.a. A−kδ (or F vt.a. A−kδ for some finite automaton F)
[shrinkability w.r.t. untimed simulation]

A−kδ is non-blocking whenever A is non-blocking
[shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

Challenge: take care of the accumulation of perturbations

Technical tools: parameterized shrunk DBM, max-plus equations

Tool Shrinktech developed by Ocan Sankur [San13]

http://www.lsv.ens-cachan.fr/Software/shrinktech/
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Robust “black-box” model-checking

Example

y≤1∧u≥0

u,y :=0

y≤1∧1≤x

u≥0, u,x :=0

u≥0∧y≤1

u,y :=0

u,x,y :=0

The largest shrunk automaton which is correct w.r.t. untimed simulation
and non-blockingness is:

3δ≤x∧y≤1−δ∧u≥δ

y−x≤1−4δ∧u≥δ
u,y :=0

y≤1−2δ∧1+δ≤x

u≥δ∧x−y≥3δ
u,y :=0

u≥δ∧y≤1−δ

u,y :=0

u,x,y :=0
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Robust guided model-checking

Outline

1. Introduction

2. Robust “black-box” model-checking
Parameterized enlarged semantics
Parameterized shrunk semantics

3. Robust guided model-checking
Excess semantics
Conservative semantics

4. Conclusion
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Robust guided model-checking

Robust strategy synthesis

In this talk, a strategy in a timed automaton is a way to resolve (time
and action) non-determinism

Idea
Add robustness to strategies, and adapt the behaviour of the system to
previous imprecisions

; develop a theory of robust strategies that tolerate
errors/imprecisions and avoid convergence
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Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Strategy: in location with value x , delay 2−x
2

This strategy requires infinite precision

In practice, when x is close to 2, no additional delay is supported:
the run is theoretically infinite, but it is actually blocking

And that is unavoidable

Idea
Add robustness to strategies, and adapt the behaviour of the system to
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Robust guided model-checking

Game semantics of a timed automaton

Game semantics Gδ(A) of timed automaton A...
... between Controller and Perturbator:

from (`, v), Controller suggests a delay d ≥ δ and a next edge

e = (`
g ,Y−−→ `′) that is available after delay d

Perturbator then chooses a perturbation ε ∈ [−δ; +δ]

Next state is (`′, (v + d + ε)[Y ← 0])

Note: when δ = 0, this is the standard semantics of timed automata.

A δ-robust strategy for Controller is then a strategy that satisfies the
expected property, whatever plays Perturbator.
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Outline

1. Introduction

2. Robust “black-box” model-checking
Parameterized enlarged semantics
Parameterized shrunk semantics

3. Robust guided model-checking
Excess semantics
Conservative semantics
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Robust guided model-checking

The excess game semantics

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP, 2012.

Constraints may not be satisfied after the perturbation: that is,
only v + d should satisfy g

Example

x=y=1

y :=0

; Allows simple design of constraints, ensures divergence of time,
avoids convergence phenomena
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Robust guided model-checking

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.
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1 Accumulation of perturbations:

x≤2
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Robust guided model-checking

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The parameterized synthesis problem for reachability properties is
decidable and EXPTIME-complete. Furthermore, uniform winning
strategies (w.r.t. δ) can be computed.

Technical tool: a region-based refined game abstraction

, Extends to two-player games (i.e. to real control problems)

/ Only valid for reachability properties
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Robust guided model-checking

The conservative game semantics

[SBMR13] Sankur, Bouyer, Markey, Reynier. Robust Controller Synthesis in Timed Automata. Under submission.

Constraints have to be satisfied after the perturbation: that is,
v + d + ε should satisfy g for every ε ∈ [−δ; +δ]

Example

1<x<2

y :=0

; Strongly ensures timing constraints, ensures divergence of time,
prevents converging phenomena
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Robust guided model-checking

The conservative game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The synthesis problem for Büchi properties is decidable and
PSPACE-complete. Furthermore, δ is at most doubly-exponential, and
uniform winning strategies (w.r.t. δ) can be computed.
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Robust guided model-checking

[AB11] Asarin, Basset. Thin and Thick Timed Regular Languages. FORMATS, 2011.

The problem consists in finding cycles that do not become blocked.

A converging phenomena:

×

No convergence:

No such constraining half-spaces.

Tools for solving the synthesis problem

Orbit graphs, forgetful cycles [AB11]

Forgetful (that is, strongly connected) orbit graph ⇔ no
convergence phenomena
; strong relation with thick automata.
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Robust guided model-checking

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

A region cycle:
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The corresponding (folded) orbit graph:
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Robust guided model-checking

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

The cycle is not forgetful (that is, not strongly connected), Perturbator
can enforce convergence:

≥ ε
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Conclusion

Conclusion

Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.

Not always easy to transfer correctness proven in this model to real
behaviours of the system.

We have shown several frameworks for robustness that can be used
to ensure correctness in the real-world..

Extension of these works to richer models seems unfortunately hard
[BMS13]

A quantitative approach to robustness: Perturbator plays randomly

Symbolic algorithms?

This list of possible approaches is not exhaustive:
tube acceptance [GHJ97]
turn any automaton into a robust one [BLM+11]
sampling approach [KP05,BLM+11]
probabilistic approach [BBB+08,BBJM12]
. . .

38/38



Conclusion

Conclusion

Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.

Not always easy to transfer correctness proven in this model to real
behaviours of the system.

We have shown several frameworks for robustness that can be used
to ensure correctness in the real-world..

Extension of these works to richer models seems unfortunately hard
[BMS13]

A quantitative approach to robustness: Perturbator plays randomly

Symbolic algorithms?

This list of possible approaches is not exhaustive:
tube acceptance [GHJ97]
turn any automaton into a robust one [BLM+11]
sampling approach [KP05,BLM+11]
probabilistic approach [BBB+08,BBJM12]
. . .

38/38



Conclusion

Conclusion

Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.

Not always easy to transfer correctness proven in this model to real
behaviours of the system.

We have shown several frameworks for robustness that can be used
to ensure correctness in the real-world..

Extension of these works to richer models seems unfortunately hard
[BMS13]

A quantitative approach to robustness: Perturbator plays randomly

Symbolic algorithms?

This list of possible approaches is not exhaustive:
tube acceptance [GHJ97]
turn any automaton into a robust one [BLM+11]
sampling approach [KP05,BLM+11]
probabilistic approach [BBB+08,BBJM12]
. . .

38/38


	Introduction
	Robust ``black-box'' model-checking
	Parameterized enlarged semantics
	Parameterized shrunk semantics

	Robust guided model-checking
	Excess semantics
	Conservative semantics

	Conclusion

