On the verification of timed systems...
... and beyond

Patricia Bouyer-Decitre

LSV, CNRS & ENS Paris-Saclay, France

1/123

Time-dependent systems

@ We are interested in timed systems

2/123

Time-dependent systems

@ We are interested in timed systems

@ ... and in their analysis and control

2/123

Model-checking and control

system:
— —
Pump
Full Full
Empty ot Empty
Tenk A Terk B

property:

3/123

Model-checking and control

system: property:

AG(—B.overfull
A —B.dried_up)

3/123

Model-checking and control

system: property:

b
/ a7 — D AG(—B.overfull
L (algorithm A —B.dried_up)

3/123

Model-checking and control

system: property:

b!
a = model-checking - AG(—B.overfull

al (algorithm A —B.dried_up)
B e

3/123

Model-checking and control

system: property:

- AG(—B.overfull
A —B.dried_up)

3/123

An example: The task graph scheduling problem

COmpUte DX (Cx(A+B))+(A+B)+(CxD) using two processors: A B c D
P, (fast): P, (slow): - -
time time c
+ | 2 picoseconds =F | 5 picoseconds \
X | 3 picoseconds 7 picoseconds T T
3 4
energy energy D\
ide [10 Watt idle [20 Watts
in use | 90 Watts in use | 30 Watts Ts Te

BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
g
(Communication of the ACM).
4/123

An example: The task graph scheduling problem

COmpUte Dx(Cx(A+B))+(A+B)+(CxD) using two processors: A B c D
Py (fast): Py (slow): - -
time time c
+ | 2 picoseconds =F | 5 picoseconds \
@ X | 3 picoseconds 7 picoseconds A A
) energy energy D\
ide [10 Watt idle [20 Watts
in use | 90 Watts in use | 30 Watts Ts Te
0 5 10 15 20 25
I |
P- T 7 T T
T T raan
inlm Al |

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

4/123

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

y

Py (fast): Py (slow): -
time time c
+ ‘ 2 picoseconds =F ‘ 5 picoseconds \
@ X ‘ 3 picoseconds 7 picoseconds T
3
; energy energy Dx
ide [10 Watt idle [20 Watts
in use ‘ 90 Watts in use ‘ 30 Watts Ts
0 10 15 20 25
T
P 2 || | T T B ‘
£ 1 2 3 5 6 7.3 0secy, ‘7
0 Py T T4 ‘ ‘ | Jouj,
L p—
T
Pl T ‘ T T, Ty | T I
e 3 5 4 6 1,59 ecop ‘7
Sl R TTTT] o
‘ p—

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

‘ﬁ
Ko

4/123

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

‘ﬁ
Ko

y

Py (fast): Py (slow): - -

time time c
+ ‘ 2 picoseconds =F ‘ 5 picoseconds \
X ‘ 3 picoseconds 7 picoseconds T3 T,
- energy energy D\
ide [10 Watt idle [20 Watts
in use ‘ 90 Watts in use 30 Watts Ts Te
0 5 10 15 20 25
T
P T, ‘ ‘ T. ‘ T, i ! \
2 2 3 5 6 L3 080, ‘7
» P, T Ty ‘ ‘ ‘ [oujeg
T
=N U [B [Ts T4 | To \
o o
] .39 a::.CO"ds
e E [1111 || s
T 29 T
P: 1 T- T,
ehfm [[T [L[[[[[] " apeme, ||
S Nang;ds
< Py T2 Ts T6 | | oules

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata

(Communication of the ACM).
4/123

Timed automata

Outline

© Timed automata

5/123

Timed automata

The model of timed automata

repairing

- repair
2<yAX<56

problem, x:=0

y:=0

failsafe

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).
6/123

Timed automata

The model of timed automata

2y <2

repairing

Y- repair
2<y AX<56

problem, x:=0

y:=0

safe
X 0
y 0

6/123

Timed automata

The model of timed automata

2y <2

repairing

- repair
2<yAX<56

problem, x:=0

y:=0

23

safe —> safe
X 0 23
y 0 23

6/123

Timed automata

The model of timed automata

2y <2

repairing

- repair
2<yAX<56

problem, x:=0

y:=0

23 problem

safe —> safe alarm
X 0 23 0
y 0 23 23

6/123

Timed automata

The model of timed automata

2y <2

repairing

- repair
2<yAX<56

problem, x:=0

y:=0

23 problem 15.6
safe —> safe —— alarm —— alarm
X 0 23 0 15.6
y 0 23 23 38.6

6/123

Timed automata

The model of timed automata

<y®

aome: 2

repairing

- repair
2<yAX<56

problem, x:=0

y:=0

safe i) safe ﬂ) alarm i} alarm
X 0 23 0 15.6
y 0 23 23 38.6
failsafe
15.6
0

delayed

failsafe
15.6
0

6/123

Timed automata

The model of timed automata

2y<®

aone: 22

repairing

problem, x:=0

y:=0

23 problem 15.6
safe —> safe — alarm ——

X 0 23 0

y 0 23 23

2.3
failsafe — failsafe
15.6 17.9
0 2.3

- repair
2<yAX<56

delayed
alarm

15.6
38.6

failsafe
15.6
0

6/123

Timed automata

The model of timed automata

<y®

aome: 2

repairing

- repair
2<yAX<56

problem, x:=0

y:=0

23 problen 15.6

safe —> safe —— alarm —— alarm
X 0 23 0 15.6
y 0 23 23 38.6

2.3 repair
failsafe ~—— failsafe ~——— repairing
15.6 17.9 17.9
0 2.3 0

delayed)
failsafe

15.6
0

6/123

Timed automata

The model of timed automata

<y®

aome: 2

repairing

¥y repair
2<yAX<56

problem, x:=0

y:=0

23 problen 15.6
safe —> safe —— alarm —— alarm
X 0 23 0 15.6
y 0 23 23 38.6
2.3 repair 22.1
failsafe ~—— failsafe ~———> repairing ——
15.6 17.9 17.9
0 2.3 0

delayed

failsafe
15.6
0
repairing
40
22.1

6/123

Timed automata

The model of timed automata

<y®

aome: 2

repairing

¥y repair
2<yAX<56

problem, x:=0

y:=0

23 problen 15.6
safe —> safe —— alarm —— alarm
X 0 23 0 15.6
y 0 23 23 38.6
2.3 repair 22.1
failsafe ~—— failsafe ~———> repairing ——
15.6 17.9 17.9
0 2.3 0

delayed

repairing
40
22.1

failsafe
15.6
0

done

safe
40
22.1

6/123

Timed automata

The model of timed automata

<y®

aome: 2

repairing

¥y repair
2<yAX<56

problem, x:=0

y:=0

23 problen 15.6
safe —> safe —— alarm —— alarm
X 0 23 0 15.6
y 0 23 23 38.6
2.3 repair 22.1
failsafe ~—— failsafe ——— repairing ——
15.6 17.9 17.9
0 2.3 0

(clock) valuation

delayed

repairing
40
22.1

failsafe
15.6
0

done

e

safe
40
22.1

6/123

Timed automata

The model of timed automata

2y <2

3one

repairing

problem, x:=0
2<yAx<56

y:=0

23 problen 15.6 delayed

safe —> safe —— alarm —— alarm ——
X 0 23 0 15.6
y 0 23 23 38.6
2.3 repair 22.1

failsafe ~—— failsafe ——— repairing —> repairing

15.6 17.9 17.9 40
0 2.3 0 22.1

This run reads the timed word
(problem,23)(delayed, 38.6)(repair, 40.9)(done, 63)

failsafe
15.6
0

done

—_—

e
v repair (clock) valuation

safe
40
22.1

6/123

Timed automata

The train crossing example

Exit!

C_ s GoUp?

GoDown?

between 20 and 30 t.u. between 10 and 20 t.u.

App? Exit?
GoUp! GoDown!

7/123

Timed automata

Modelling the train crossing example
Train; with / =12 ...

Before, x; < 30

Far 20 < x; < 30,a,x; :=0

(:)r1, X < 20

8/123

Timed automata

The train crossing example — cont'd

The gate:
GoDown?,H, :=0
Open Lowering, H,10
Hy < 10,a Hy <10,a
Raising,H, < 10 Close

GoUp?,H, :=0

9/123

Timed automata

The train crossing example — cont'd

The controller:

App?
Exit? PP Exit?
@) Exit?,H, == 0 App?,f/C::*O
¢, Ho. <20 Co ¢, H. <10

/4‘/0

H. = 20,GoUp! H. < 10,GoDown! App?

10/123

Timed automata

The train crossing example — cont'd

We use the synchronization function f:

Trainy | Trainy Gate Controller
App! . App? App
. App! App? App
Exit! . Exit? Exit
. Exit! Exit? Exit
a . a
a . a
a . a
GoUp? GoUp! GoUp
GoDown? | GoDown! || GoDown

to define the parallel composition (Trainy || Trainy || Gate || Controller)

NB: the parallel composition does not add expressive power!

11/123

Timed automata

The train crossing example — cont'd

Some properties one could check:

@ Is the gate closed when a train crosses the road?

12/123

Timed automata

The train crossing example — cont'd

Some properties one could check:

@ Is the gate closed when a train crosses the road?

@ Is the gate always closed for less than 5 minutes?

12/123

Timed automata

Back to the task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

py (fast): P, (slow): -
time time c
i ‘ 2 picoseconds + ‘ 5 picoseconds \
X ‘ 3 picoseconds 7 picoseconds T
3
; energy energy Dx
ide [10 Watt idle [20 Watts
in use ‘ 90 Watts in use ‘ 30 Watts
0 5 10 15 20
T
nl 7w ‘ ‘ T3 ‘ s T 83 picogy |
-
S L3 na, s:.cc’"ds
D Py LG Ty ‘ ‘ |, Joules
T
|l ‘ T3 ‘ Ts T, | Te [
2 139 eecong
@ Py Ty ‘ ‘ ‘ [Joujeg
T " T
P: T T- T,
Pl B [m] [[[]][] 5
S L3 na,,s:.co”ds
O Py T2 Ts T6 |, oules

13/123

Timed automata

Modelling the task graph scheduling problem

14/123

Timed automata

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3

(x=<2) x:=0 x:=0 (x<3)
Py y=5 y=T

v<5) oo =0 (<)

14/123

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, t ::i:
done; done; < :1 2 () !
addy Idle multy add; S done;
(x<2) (x<3) Ts: .
000
y=b y=7 add; J done;

Py
doney . doney

<5 o o (<7)

14/123

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2)) T5.O £ ~ tS:Zb
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata
(PullP) s (Ta | T2 [-+ |l Te)

14/123

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2)) T5.O £ ~ ts:zlo
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata

(PullP) s (Ta | T2 [-+ |l Te)
A schedule: a path in the global system which reaches t; A--- A tg

14/123

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2)) T5.O £ ~ ts:zlo
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata

(PullP) s (Ta | T2 [-+ |l Te)
A schedule: a path in the global system which reaches t; A--- A tg

Questions one can ask
@ Can the computation be made in no more than 10 time units?
@ Is there a scheduling along which no processor is ever idle?

14/123

Timed automata

What we have so far

@ A model which can adequately represent systems with real-time
constraint...

@ ... on which we can ask relevant questions

15/123

Timed automata

What we have so far

@ A model which can adequately represent systems with real-time
constraint...

@ ... on which we can ask relevant questions

Interesting problems

@ Which semantics?
(and be aware of the limits of the choice)

@ Algorithms for automatic verification

15/123

Timed automata

Discrete-time semantics

...because computers are digital! J

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
16/123

Timed automata

Discrete-time semantics

...because computers are digital! J

Example [Alur91]

172] 01
NOT

] 1,2] 0 1]
NOT
! OR Og
1 72] 03
NOT

1 1 1 1 1 1 t

4

[A\urglj Alur. lechniques Tor automatic verirication ot real-time systems. FhLU thesis, 19Y1.
16/123

Timed automata

Discrete-time semantics

...because computers are digital! J

Example [Alur91]

172] 01
NOT

] 1,2] 0 1]
NOT
! OR Og
1 72] 03
NOT

e under discrete-time, the output is always O:

1 1 1 1 1 1 t

4

[A\urglj Alur. lechniques Tor automatic verirication ot real-time systems. FhLU thesis, 19Y1.
16/123

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

172] 01
NOT

12 o,

I NOT
1¢2] 03

NOT

e under discrete-time, the output is always O:

Og

y

[Alur91) Alur. Tecnniques Tor automatic verification of real-time systems. FnL thesis, 1991.

16/123

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

172] 01
NOT

] 1,2] 0 1]
i NOT on
1 72] 03
NOT

e under discrete-time, the output is always O:

Og

y

[Alur91) Alur. Tecnniques Tor automatic verification of real-time systems. FnL thesis, 1991.

16/123

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

172] 01
NOT

] 1,2] 0 1]
i NOT on
1 72] 03
NOT

e under discrete-time, the output is always O:

[Alur91) Alur. Tecnniques Tor automatic verification of real-time systems. FnL thesis, 1991.

16/123

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

172] 01
NOT

121 o,

I NOT

172] 03
NOT

e under continuous-time, the output can be 1:

1]

OR

[Alur91) Alur. Tecnniques Tor automatic verification of real-time systems. FnL thesis, 1991.

16/123

Timed automata

Discrete-time semantics

...because computers are digital! J

Example [Alur91]

1¢2] 01
NOT

12 o) 1
[NOT
! OR Og
172] 03
NOT

Finding the correct granularity (if one exists) is hard!

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

16/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y=>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y=>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y=>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y=>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!

Example

x<2, x:=0

y>2, y:=0

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

x<2, x:=0

y=>2, y:=0

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

17/123

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

x<2, x:=0

y=>2, y:=0

We will focus on the continuous-time semantics, since this
is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

17/123

Timed automata

Analyzing timed automata

x<2, x:=0

x=0A
:: x=1 ::y’ Y y>2
y:=0 AN /:: ::
y=>2, y:=0

Can we reach state O? J

18/123

Timed automata

Analyzing timed automata

x<2, x:=0 X=0 A
C x=1 CD/ N y=>2
y:=0 AN /: :
y=>2, y:=0
Can we reach state O? J

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

18/123

Timed automata

Crux idea: Region abstraction

clock y

clock x

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
19/123

Timed automata

Crux idea: Region abstraction

clock y
only constraints: x ~ ¢ with ¢ € {0,1,2}
y ~ ¢ with ¢ € {0,1,2}
2 ° °
1 ° °
0 clock x
0 1 2

@ ‘“compatibility” between regions and constraints

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
19/123

Timed automata

Crux idea: Region abstraction

clock y
4
'O
. =1
The path O——QO O
Pa L4
JOER - can be fired from ®
4 .
L Rl - cannot be fired from @
2 o ——ri—o—
P ne
D" o"
O" "
1 —;l—o—' e @
ANy
O"
[
0 clock x
0 1 2

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
19/123

Timed automata

Crux idea: Region abstraction

|
Vavd

clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

19/123

Timed automata

Crux idea: Region abstraction

clock y

Ndvd
ydvd

0 clock x
0 1 2

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

~» an equivalence of finite index

AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
19/123

Timed automata

Crux idea: Region abstraction

|
Vavd

clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

~» an equivalence of finite index
a time-abstract bisimulation

[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

19/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
—_—

v e
o

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
V @ —m7m @
1 1
1 1
1 a 1
Q— 0

3

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

Ve— e vd >0
I
o——— o

3

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a 5(d)
V @ — @ Vd >0 e ——— 0
L, s(d) !
i @ —— @ 3d’' >0 o—>0

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

Ve— e vd >0
Je—2 -0 34" >0

.. and vice-versa (swap e and e).

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

v

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

| l l

(51, R1) i>(£2, Rg) i(ﬁ& R3) l -+ with vy € R;

v

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

| l l

(51, R1) i>(£2, Rg) i(ﬁ& R3) l -+ with vy € R;

VV{ €R;

v

20/123

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
V @ — @ vd >0 ()
| | |
1 a 1 1
i @— @ id’ >0 [

.. and vice-versa (swap e and e).

Consequence

di,a1 dy,a2 ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

1

(01, Ry) —~ (L2, Ry) —=~ ({3, R3) —~

T

dl,al d2,32
Vvi € R 3 (€1, vi) — (b2, v3) — (63, v3) —

with v; € R;

with v/ € R;

v

20/123

Timed automata

The region abstraction

clock y
- region R defined by:
0<xx1
O<y<x1
2 e ° °
/ / y <x
1 o/o/o

° clock x

21/123

Timed automata

The region abstraction

clock y

- region R defined by:
0<xx1
O<yxl1
y<x

/

()

A

N
(]

- time successors of R

|d

0 1

clock x

21/123

Timed automata

The region abstraction

clock y

- region R defined by:
0<xx1
O<yxl1
y<x

N
(]

/

1 ‘/0/|_ - time successors of R
// 0 c‘v ° clock x
\ 0 1 2

"> image of R when resetting clock x

21/123

Timed automata

The construction of the region graph

It “mimicks” the behaviours of the clocks.

22/123

Timed automata

The construction of the region graph

It “mimicks” the behaviours of the clocks.

22/123

Timed automata

Region automaton = finite bisimulation quotient

: ::I: :) y<l,a,x:=0 <:::::I:::: (§§>]EEEE;:iii::::i>\\; ‘ -Tf-: _ a:I"l,

JEN AN S

timed automaton region graph

23/123

Timed automata

Region automaton = finite bisimulation quotient

~:() y<l,a,x:=0 @’
. RN

timed automaton

S1

o - A

JEN AN S

region graph

S1

Y |

region automaton

23/123

Timed automata

Region automaton = finite bisimulation quotient

: ::I: :) y<1l,a,x:=0 <:::::1: ::: (:E;)]EEEEE:iii=::::"\\\; ‘ -tf_:, _ “‘|| _

JEN AN S

timed automaton region graph
S1
. <Q
M L4
a
S1 52 I
. 2 A
e
s ‘ region automaton

language(reg. aut.) = UNTIME(language(timed aut.))]

23/123

Timed automata

An example [AD94]

y=1b/ 1.6 \x<lec

x>0,a
-9»(::::)k------>» x>1,d
y:=0

y<1l,a,y:=0

24/123

Timed automata

An example [AD94]

y=1b/ 1.6 \x<lec

x>0,a
-9»(::::)k------>» x>1,d
y:=0

y<1l,a,y:=0 y

24/123

Timed automata

An example [AD94]

y=1,b x<1,c \ x<1,c
x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0 y
S0
—_—
x=y=0 [
, b b ——e
y i |/|
/ * : x
s1 s1 b s1 b)
0=y<x<1 l=y<x
C £’
s3 d s3
O<y<x<1 O<y<1l<x l1=y<x x>1,y>1

<

24/123

Timed automata

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

25/123

Timed automata

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

o large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

LM, +2)- 1|2
xeX

25/123

Timed automata

finite bisimulation

quotient

timed automaton

large (but finite) automaton
(region automaton)

o large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T @M, +2)- x| 21X

xeX

@ It can be used to check for:
o reachability/safety properties

o liveness properties (Biichi/w-regular properties)
o LTL properties

25/123

Timed automata

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

o large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

LM, +2)- 1|2
xeX

@ It can be used to check for:
o reachability/safety properties
o liveness properties (Biichi/w-regular properties)
o LTL properties
@ Problems with Zeno behaviours?
(infinitely many actions in bounded time)

25/123

Timed automata

Back to the example

y=1b/ 1.6 \x<lec

x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0

26/123

Timed automata

Back to the example

y=1,b x<1,c x<1,c

x>0,a
-)»(::::)b-----i» x>1,d
y:=0

y<1l,a,y:=0

26/123

Timed automata

Back to the example

y=1,b x<1,c \ x<1,c
x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0 y
S0
—_—
x=y=0 [
, b b ——e
y i |/|
/’sza”"—‘ * : x
s1 s1 b s1 b s
0=y<x<1 l=y<x
C £
s3 d s3
O<y<x<1 O<y<1<x 1=y <x x>1,y>1

<

26/123

Timed automata

Back to the example

.@. _/@Q x>1d

—

-

x=y=0

x<1,c

y<1l,a,y:=0

S1

S1

S1

O=y<x<1 y=0,x=1 y=0,x>1 1=y<x

c Od
s3 S3 S3

O0<y<x<1 O0<y<l<x 1=y<x x>1,y>1

A

Zeno cycles

X

26/123

Timed automata

Back to the example

-

x>0,a
O y:=0

—
x=y=0

=1,b \x<1,c

%

‘&____,—a”(::::}::::::) o

y<l,a,y:=0

S1

S1

S1

O=y<x<1 y=0,x=1 y=0,x>1 1=y<x

C L)’
s3 S3 S3

O0<y<x<1 O0<y<l<x 1=y<x x>1,y>1

y

/

Cycles with
non-Zeno behaviours

26/123

Timed automata

Complexity issues

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).

[ADO4] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04).

[FJ13] Fearnley, Jurdziriski. Reachability in two-clock timed automata is PSPACE-complete (/CALP'13). /
27/123

Timed automata

Complexity issues

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

@ PSPACE upper bound: guess a path in the region automaton

27/123

Timed automata

Complexity issues

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

@ PSPACE upper bound: guess a path in the region automaton

y
| | region R defined by:
By A N 0<x<1
0 1
A e
A/l

27/123

Timed automata

Complexity issues

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

@ PSPACE upper bound: guess a path in the region automaton

@ PSPACE lower bound: by reduction from a linearly-bounded Turing
machine M

27/123

Timed automata

Complexity issues

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete. It even holds for two-clock timed automata [FJ13].
It is NLOGSPACE-complete for one-clock timed automata [LMS04].

@ PSPACE upper bound: guess a path in the region automaton

@ PSPACE lower bound: by reduction from a linearly-bounded Turing
machine M

maximal number of cells in use: N

cell G cell G
tape of M | [al [5]

Y A\
xi <1 xj > 2

27/123

Timed automata

Example of the simulation of a rule (g, a, b, ¢, —):

x1<4,x1:=0 xn <4,xn:=0
u:=0 u=2 xi <4 u=3
2@=Q0 - 070 - G0
x1 >4 xn >4

28/123

Timed automata

Example of the simulation of a rule (g, a, b, ¢, —):

x1<4,x1:=0 xn<4,xn:=0
u:=0 u=2 xi <4 u=3
@00 - O—0 - O O0=ED
x1 >4 xn >4

constraint x; < 4: cell j contains an a

28/123

Timed automata

Example of the simulation of a rule (g, a, b, ¢, —):

x1<4,x1:=0 xn<4,xn:=0
u:=0 u=2 xi <4 u=3
@00 - O—0 - O O0=ED
x1 >4 xn >4

constraint x; < 4: cell j contains an a
constraint x; > 4: cell j contains a b

28/123

Timed automata

Example of the simulation of a rule (g, a, b, ¢, —):

x1<4,x1:=0 xn<4,xn:=0
u:=0 u=2 xi <4 u=3
@00 - O—0 - O O0=ED
x1 >4 xn >4

constraint x; < 4: cell j contains an a
constraint x; > 4: cell j contains a b

reset of clock x;: the new content is an a

28/123

Timed automata

Example of the simulation of a rule (g, a, b, ¢, —):

x1<4,x1:=0 xn<4,xn:=0
u:=0 u=2 xi <4 u=3
@00 - O—0 - OO0=ED
x1 >4 xn >4

constraint x; < 4: cell j contains an a
constraint x; > 4: cell j contains a b

reset of clock x;: the new content is an a
no reset of clock x;: the new content is a b

28/123

Timed automata

The case of single-clock timed automata

WV

e
—e
Ne
w
=N
(65]

29/123

Timed automata

The case of single-clock timed automata

WV

e
Ne
(651

if only constants 0, 2 and 5 are used

29/123

Timed automata

Discussion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
e various extensions of timed automata

30/123

Timed automata

Discussion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
e various extensions of timed automata

e model-checking of branching-time properties (TCTL, timed
p-calculus)

30/123

Timed automata

Discussion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
e various extensions of timed automata

e model-checking of branching-time properties (TCTL, timed
p-calculus)

o weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

30/123

Timed automata

Discussion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
e various extensions of timed automata

e model-checking of branching-time properties (TCTL, timed
p-calculus)

o weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

e o-minimal hybrid systems

30/123

Timed automata

Discussion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
e various extensions of timed automata

e model-checking of branching-time properties (TCTL, timed
p-calculus)

o weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

e o-minimal hybrid systems

30/123

Timed automata

Discussion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
e various extensions of timed automata

e model-checking of branching-time properties (TCTL, timed
p-calculus)

o weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)

e o-minimal hybrid systems

@ Note however that it might be hard to prove there is a finite
bisimulation quotient!

30/123

Timed automata

What about the practice?

@ the region automaton is never computed
@ instead, symbolic computations are performed

@ Symbolic representation: zones

Z = (a>3) A (<5 A (xi—x <4)

Xo X1 X2
X0 oo -3 o
X1 oo oo 4
X2 5 o o©

DBM: Difference Bound
Matrice [BM83,Dill89]

31/123

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

@ Symbolic representation: zones

Z = (x123) AN (<5 A (x1 —x2 <4)

31/123

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

@ Symbolic representation: zones

Z = (x123) AN (<5 A (x1 —x2 <4)

0 0

31/123

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

@ Symbolic representation: zones

7 = (X123) A (XQSS) N (XI_X2§4)

X0
X1
X2

X0 X1 X2
0 -3 0
9 0 4
5 2 0

“normal form”

31/123

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

@ Symbolic representation: zones

@ Needs of (correct) extrapolation operators... [Bou04,BBLP06]

[Bou04] Bouyer. Forward analysis of updatable timed (Formal Methods in System Design).
[BBLPO6] Behrmann, Bouyer, Larsen, Pelanek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International
Journal on Software Tools for Technology Transfer).

31/123

Timed automata

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

Symbolic representation: zones

Needs of (correct) extrapolation operators... [Bou04,BBLP0G|
. or clever inclusion tests [HSW12,HSW13]

[Bou04] Bouyer. Forward analysis of updatable timed (Formal Methods in System Design).

[BBLPO6] Behrmann, Bouyer, Larsen, Pelanek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International
Journal on Software Tools for Technology Transfer).

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).

[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13)

31/123

Timed automata

Before going further...

Which hypotheses did we make?

@ timestamps taken in R} (continuous-time semantics): only density
is important, and they can be taken in Q4

32/123

Timed automata

Before going further...

Which hypotheses did we make?

@ timestamps taken in R} (continuous-time semantics): only density
is important, and they can be taken in Q4

@ constants in clock constraints x ~ ¢: ¢ € N; they could be taken in
Q, but not in R, !

32/123

Timed automata

Before going further...

Which hypotheses did we make?

@ timestamps taken in R} (continuous-time semantics): only density
is important, and they can be taken in Q4

@ constants in clock constraints x ~ ¢: ¢ € N; they could be taken in
Q, but not in R, !

@ clock constraints of the form x ~ ¢

32/123

Timed automata

Before going further...

Which hypotheses did we make?
@ timestamps taken in R} (continuous-time semantics): only density
is important, and they can be taken in Q4
@ constants in clock constraints x ~ ¢: ¢ € N; they could be taken in
Q, but not in R, !
@ clock constraints of the form x ~ ¢

e x —y ~ c are fine as well
e no other kind of clock constraints!

32/123

Timed automata

Before going further...

Which hypotheses did we make?
@ timestamps taken in R} (continuous-time semantics): only density
is important, and they can be taken in Q4
@ constants in clock constraints x ~ ¢: ¢ € N; they could be taken in
Q, but not in R, !
@ clock constraints of the form x ~ ¢

e x —y ~ c are fine as well
e no other kind of clock constraints!

@ resets of clocks to 0 only; we can reset to integral values as well

32/123

Timed automata

Before going further...

Which hypotheses did we make?
@ timestamps taken in R} (continuous-time semantics): only density
is important, and they can be taken in Q4
@ constants in clock constraints x ~ ¢: ¢ € N; they could be taken in
Q, but not in R, !
@ clock constraints of the form x ~ ¢
e x —y ~ c are fine as well
e no other kind of clock constraints!
@ resets of clocks to 0 only; we can reset to integral values as well

e more involved updates can be used as well, but they don't interact
very well with diagonal constraints. So one needs to be careful

32/123

Timed automata

Limits of the model

@ Any slight extension of the model is undecidable:

e Richer clock constraints x +y =c¢, 2x <y
o Richer updates: x . =x+1
o ...

33/123

Timed automata

Limits of the model

@ Any slight extension of the model is undecidable:

e Richer clock constraints x +y =c¢, 2x <y
o Richer updates: x . =x+1
o ...

@ The inclusion problem

L(A) € L(B)
is undecidable [AD94]

33/123

Timed automata

Limits of the model

@ Any slight extension of the model is undecidable:

e Richer clock constraints x +y =c¢, 2x <y
o Richer updates: x . =x+1
o ...

@ The inclusion problem

L(A) € L(B)
is undecidable [AD94]

@ One cannot complement, determinize timed automata
a

a
a,x:=0 Q x=1a
—>(Sp @ 59

33/123

Timed automata

An important issue: Robustness and implementability

x<2, x:=0
x=1
y:=0

y>2, y:=0

34/123

Timed automata

An important issue: Robustness and implementability

x<2, x:=0

y>2, y:=0

~> Value of clock x when hitting O is converging,
even though global time diverges

34/123

Timed automata

An important issue: Robustness and implementability

x<2, x:=0

y=>2, y:=0

~> Value of clock x when hitting O is converging,
even though global time diverges

Can we implement such a strategy??

34/123

Timed automata

An important issue: Robustness and implementability

x<2, x:=0

y=>2, y:=0

~> Value of clock x when hitting O is converging,
even though global time diverges
Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP'13).

34/123

Timed automata

An important issue: Robustness and implementability

x<2, x:=0

y=>2, y:=0

~> Value of clock x when hitting O is converging,
even though global time diverges
Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for
implementations!

A survey: [BMS13]

[BMS13] Bouyer, Markey, Sankur. Robustness in timed automata (RP'13).
34/123

Timed automata

Theoretical recent developments

@ Tree automata technics for timed automata analysis
[AGK16,AGKS17]

o Write behaviours as graphs with timing constraints
o Realize that those graphs have bounded tree-width
o Express properties using MSO and/or build directly tree automata

[AGK16] Akshay, Gastin, Krishna. Analyzing Timed Systems Using Tree Automata (CONCUR'16).
[AGKS17] Akshay, Gastin, Krishna, Sarkar. Towards an Efficient Tree Automata based technique for Timed Systems (CONCUR'17).

35/123

Timed automata

Theoretical recent developments

@ Tree automata technics for timed automata analysis
[AGK16,AGKS17]

o Write behaviours as graphs with timing constraints
o Realize that those graphs have bounded tree-width
o Express properties using MSO and/or build directly tree automata

e Compute and use the reachability relation [CJ99,QSW17] J

[AGK16] Akshay, Gastin, Krishna. Analyzing Timed Systems Using Tree Automata (CONCUR'16).

[AGKS17] Akshay, Gastin, Krishna, Sarkar. Towards an Efficient Tree Automata based technique for Timed Systems (CONCUR'17).

[CJ99] Comon, Jurski. Timed Automata and the Theory of Real Numbers (CONCUR'99).

[QSW17] Quaas, Shirmohammadi, Worrell. Revisiting Reachability in Timed Automata (LICS'17).)
35/123

Logic

Outline

9 Timed temporal logics

36/123

Weighted timed automata

Outline

© Weighted timed automata

58/123

Weighted timed automata

Back to the task-graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) Using two processors:

Py (fast): Py (slow):
time time
4F ‘ 2 picoseconds =F ‘ 5 picoseconds
X ‘ 3 picoseconds 7 picoseconds

energy

ide [10 Watt

in use ‘ 90 Watts

energy

idle | 20 Watts

in use ‘ 30 Watts

LA
: .
Yo

0 5 10 15 20 25

P T, ‘ ‘ T T, ¢ 3 [
1 2 9 2 o 1.3, ,,e_c°’7ds ‘i

Py T Ty { Jou
y—

| T ‘ T ‘ T Ty | T Lpio ']
1| 1 3 5 4 6 2.5 Osecey \7

e % RN R

el s [T L [L[] [] e, |

1.3, *Secony,]

Py Ty Ts T "%joyy,
i

59/123

Weighted timed automata

Back to the task-graph scheduling problem

How to model energy consumption?

59/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

60/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

e memory usage,
y & o bandwidth,

60/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

60/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

o ...
~» timed automata are not powerful enough!
@ A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

60/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)

60/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—05T T=2.25—05T

(T>18) (T<22)

60/123

Ok...

Weighted timed automata

61/123

Ok...

Weighted timed automata

61/123

Ok...

Weighted timed automata

61/123

Ok...

Weighted timed automata

Easy...

61/123

Weighted timed automata

Ok... but?

constraint

/\
~—

constraint

61/123

Weighted timed automata

Ok... but?

constraint

/\
~—

constraint

Hard!

61/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).

62/123

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

@ An alternative: weighted/priced timed automata [ALP01,BFH+01]
~ hybrid variables do not constrain the system
hybrid variables are observer variables

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
62/123

Weighted timed automata

Modelling the task graph scheduling problem

done;

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 2 :
add; Idle multy add; S done;
(x<2) (x<3) Ts:
N 53
y:5 y:7 O add; \J O

P2.

doney @ doney
addy multy

v<5) oo a2

63/123

Weighted timed automata

Modelling the task graph scheduling problem

@ Processors

P x=2 x=3
done; done;
add; multy
(x<2) -0 x=0 (x<3)
Py y=5 y=T
donep donep
addy multy
(y<5) yi=0 yi=0 (y<7)

@ Modelling energy

p,: x=2 x=3
1.
done; done;
add; multy
(x=2) x:=0 x:=0 (x<3)
=5 -7
P, y y
donep donep
addy multy
(y<5) 0 x:=0 (y<7)

o Tasks
OO0
add; S done;
T5:: t3 —~ t5:= :
add; S done;

A good schedule is a path in the
product automaton with a low cost J

63/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
0 13 0 0 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
y 0 13 0 0 0.7
cost :

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

5t+10(2—t)+1

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

5t+10(2—t)+1,5t+(2—-t)+7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

min (5t +10(2—t)+1,5t+(2—1t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

~ strategy: leave immediately £y, go to /3, and wait there 2 t.u.
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
64/123

Weighted timed automata

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

@ Technical tool: a refinement of the regions, the corner-point
abstraction

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH-+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).

65/123

Weighted timed automata

Technical tool: the corner-point abstraction

NN
NNE

i

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

y

!

Y
A7

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

y
7| Abstract time successors:

77
A7

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

A7 A

o — X

Concrete time successors:

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Time elapsing '\
Discrete transition —

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Cost rate 3 \
Discrete cost 7 o

66/123

Weighted timed automata

Technical tool: the corner-point abstraction

Cost rate 3 \
Discrete cost 7 o

Optimal cost in the weighted graph
= optimal cost in the weighted timed automaton!

66/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)

67/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)

t1 ty t3 ty ts

67/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

5% t2 t3 ta ts { t+t6<2
o] o] o] o] o] (o] e

67/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)
ty t t3 ty ts { t+t<2

o o o o o o .-
y:=0 x<2 y>5 ty+t3+t3 >5

67/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

T T2 T3 T, Ts
t t t3 ty ts { i+t <2 T,<2
o] o] o] o] o] o] e
y:=0 x<2 y>5 ttt3+ta>5 Ta—T12>5

67/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

T T, T3 T, Ts
t t t3 ty ts { i+t <2 T,<2
o] o] o] o] o] o] e
y:=0 x<2 y>5 ttt3+ta>5 Ta—T12>5
Lemma

Let Z be a bounded zone and f be a function

n
f:(Tl,.,.,Tn)HZc,T,+c

i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

v

67/123

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)
T T T3 Ty Ts
t t t3 ty ts { i+t <2 T,<2
o o o o o o .-
yi=0 x<2 y>5 t+ts+ta>5 Ta—T1>5

Lemma

Let Z be a bounded zone and f be a function

n
f:(T17-~~7Tn)’_>ZCi7—,‘+C

i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
v

~ for every finite path 7 in A, there exists a path [T in A, such that
cost(M) < cost(7)

[is a “corner-point projection” of =]

67/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

"________________\\.

For any path I of A, ,

68/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0,

68/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N —7]leo <&

68/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N —=mlee <€

For every n > 0, there exists € > 0 s.t.

[IN — 7|0 < & = |cost(M) — cost(n:)| <7

68/123

Weighted timed automata

Use of the corner-point abstraction

It is a very interesting abstraction, that can be used in several other

contexts:
o for mean-cost optimization [BBL04,BBLOS]
o for discounted-cost optimization [FLOS]
e for all concavely-priced timed automata [JTO8]
o for deciding frequency objectives [BBBS11,Stal?]
°.

[BBLO4] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC'04).

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

[JT08] Judziriski, Trivedi. Concavely-priced timed automata (FORMATS'08).

[BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP'11).

[Stal2] Stainer. Frequencies in forgetful timed automata (FORMATS'12). 60/123
1

Weighted timed automata

Going further 1: mean-cost optimization

?
att?,x:=0 att!

z>S . z:=0

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs). 20/128

Weighted timed automata

Going further 1: mean-cost optimization

? e
att?,x:=0 D att!
. z>S ' z:=0
(x<D) C=p m
c=pP R=¢g

R=G

xX:=0 att?

~» compute optimal infinite schedules that minimize

t
mean-cost(7) = lim sup _cost(ma)
n—+oo reward(m,)

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

70/123

Weighted timed automata

Going further 1: mean-cost optimization

att?,x:=0

x=D

(x<D)
c=p
R=G

Xi=(Q att?

att!
z>S . z:=0
C=p
R=g

~» compute optimal infinite schedules that minimize

mean-cost(7)

m, = A
- - I
m, H—— 1 £
OL T I
| 0000
Time = —5351¢

Schedule with ratio ~1.455

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

, cost(7,)
= limsup ————
n—+oo reward(m,)

CY i
H —r)r)r)\

MlL
|

Hf— !
L

ES S S |
| |
M, T | |

[s
N ONONORE)
Time — %15 16
Schedule with ratio ~1.478

70/123

Weighted timed automata

Going further 1: mean-cost optimization

N
att?,x:=0 att!
. z>S ' z:=0
(x<D) C=p m
c=pP R=¢g

R=G
att7

~» compute optimal infinite schedules that minimize

t
mean-cost(7) = lim sup _cost(ma)
n—+oo reward(m,)

Theorem [BBLOS]

In weighted timed automata, the optimal mean-cost can be compute in
PSPACE.

~> the corner-point abstraction can be used

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs). 20/128

Weighted timed automata

From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
Do Gitite

VAR

fi(t, ... ta) —

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

71/123

Weighted timed automata

From timed to discrete behaviours
o Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function
27:1 Giti + ¢

VAR

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

f: (tl, ey tn) —

~ for every finite path 7 in A, there exists a path [T in A s.t.
mean-cost(IM) < mean-cost()

71/123

Weighted timed automata

From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
T citi+c
Fo(tr, . tn) — %
Z,’zl riti+r

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

~ for every finite path 7 in A, there exists a path [T in A s.t.
mean-cost(IM) < mean-cost()
@ Infinite behaviours: decompose each sufficiently long projection
into cycles:

W, e, e, ot o

The (acyclic) linear part will be negligible!

71/123

Weighted timed automata

From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
T citi+c
Fi(te, . tn) — 2717”
Z,’zl riti+r

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

~ for every finite path 7 in A, there exists a path [T in A s.t.
mean-cost(IM) < mean-cost()
@ Infinite behaviours: decompose each sufficiently long projection
into cycles:

W, e, e, ot o

The (acyclic) linear part will be negligible!

~ the optimal cycle of A, is better than any infinite path of Al

71/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

!

For any path I of A, ,

72/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0,

72/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

M —mellc <€

72/123

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

M —mellc <€

For every nn > 0, there exists € > 0 s.t.

[IM = 7.]|oo < € = |mean-cost(M) — mean-cost(7.)| < n

72/123

Weighted timed automata

Going further 2: concavely-priced cost functions
~» A general abstract framework for quantitative timed systems

Theorem [JTO08]

In concavely-priced timed automata, optimal cost is computable, if we
restrict to quasi-concave cost functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

@ optimal-time and optimal-cost reachability;
@ optimal discrete discounted cost;

@ optimal mean-cost.

V.

~> the corner-point abstraction can be used

[JT08] Judzinski, Trivedi. Concavely-priced timed automata (FORMATS'08). 73/123
/

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

x<3) x=3,x:=0 (x<3)
X
z>2,x,z:=0 z>2,z:=

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

74/123

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

(x<3) x=3,x:=0 (x<3)

X

ow (Low) 0
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

74/123

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)
x=3,x:=| x=3
(x<3

+9

z>2,x,z:=0 z>2,z:=0

~» compute optimal infinite schedules that minimize
Tn+1 3
discounted-cost, (7) = Z ATo / Mcost(£,) dt+A T cost(£, % £pi1)
n>0 t=0

72,32

ifm= (éo, Vo) Lal) (61, Vl) —% ... and Tn = Z,-Sn’r,'

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08). 74/123
/

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

(x<3) x=3,x:=0 (x<3)

X

ow (Low) 0
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

74/123

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

(x<3) x=3,x:=0 (x<3)

X

ow (Low) 0
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

I I I
I | AN
Vo if A\ = e !, the discounted cost of
| P that infinite schedule is ~ 2.16
I L I
| R
1 1 1 1
0 3 67 09

74/123

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

x=3,x:=0 (x<3) x=3

(x<3)

+9

* *
2 z>2,x,z:=0 ! z>2,z:=0

~» compute optimal infinite schedules that minimize
discounted cost over time

Theorem [FLOS]

In weighted timed automata, the optimal discounted cost is computable
in EXPTIME.

~ the corner-point abstraction can be used

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08). 74/123

Weighted timed automata

And symbolically?

@ Non-obvious in general...

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
75/123

Weighted timed automata

And symbolically?

@ Non-obvious in general...

@ Only for optimal reachability

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
75/123

Weighted timed automata

And symbolically?
@ Non-obvious in general...

@ Only for optimal reachability

Priced zones

priced zone = zone + affine cost function

© efficient representation: DBM + offset cost + affine coefficient for
each clock

y

Represented by: zone Z
offset cost: +4
rate for x: —1

rate for y: +2
(=2—-—x+2

offset

X

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).

75/123

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

76/123

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

@ Development of an (abstract) inclusion test Ly, on priced zones

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).
76/123

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

@ Development of an (abstract) inclusion test Ly, on priced zones

@ ZL 2’ reduces to several bilevel linear optimization problems

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).
76/123

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates
for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

@ Development of an (abstract) inclusion test Ly, on priced zones

@ ZL 2’ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with inclusion test [, is correct and terminates
for timed automata with some conditions on the cost.
It is always better than standard inclusion for bounded timed automata.

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).
76/123

Weighted timed automata

Further problems: Energy management

Example

77/123

Weighted timed automata

Further problems: Energy management

Example

-3 +6 —6 ¢

3

T @ A)

x:=0 x=1 1

0

0 1
“energy is >0"

@ Lower-bound problem (L)

77/123

Weighted timed automata

Further problems: Energy management

Example

-3 +6 —6 ¢

3

T @ A)

x:=0 x=1 1

0

0 1
“energy is >0"

@ Lower-bound problem (L)

77/123

Weighted timed automata

Further problems: Energy management

Example

-3 +6 —6 ¢

3

T @ A)

x:=0 x=1 1

0

0 1
“energy is >0"

@ Lower-bound problem (L)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 6 N
3
T @ 7)
x:=0 x=1 1
0
0

“energy is >0"

@ Lower-bound problem (L)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 6 N
3
T @ 7)
x:=0 x=1 1
0
0 1

“energy is >0"

@ Lower-bound problem (L)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,3]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6 ¢
3—-—-—-—-—-—-
x:=0 x=1 1
0
0 1

“energy is in [0,3]"

@ Lower-bound problem (L)

o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,3]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,3]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,3]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6 !
(‘\ 8
& # /

0 &Y 2 By
x:=0 x=1 1
0

0 1
“energy is in [0,2]"

@ Lower-bound problem (L)

o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,2]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,2]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
lo @ L)
x:=0 x=1
o lost!
“energy is in [0,2]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
x:=0 x=1

“energy is in [0,2]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6)
8
& (1) /
0 1) 2 5
x:=0 x=1 lloocococoo=mooooo
0
0 1
“energy is in [0,1]"

@ Lower-bound problem (L)

o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
Ly @ %
x:=0 x=1 .
- lost!
“energy is in [0,1]"

@ Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)

77/123

Weighted timed automata

Further problems: Energy management

Example
-3 +6 —6
4 (41) t
0 \‘1) 2
x:=0 x=1
0 1
“energy is in [0,1] with a weak upper bound”

o Lower-bound problem (L)
o Lower-and-upper-bound problem (L+U)
o Lower-and-weak-upper-bound problem (L+W)

77/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

lx::O x=1 I

Example

v

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

lx::O x=1 I

Example

v

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Example

v

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

lx::O x=1 I

Example

\ _
(—>[{o},o]—0>[(0,1),o]—3>[(0,1),1]_°>[{1},1]

0

0

0

[{0}70]—0>[(0,1),0]i6>[(0,1),1]—0>[{1

}.1)

0

0

0

0

[{0},0]—0>[(0,1),0];6>[(0,1),1]—0>[{1},1]

v

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Theorem [BFLMS08]

The corner-point abstraction is sound and complete for single-clock WTA
with no discrete costs. Hence the existential L-problem is in PTIME in
that case.

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

2 -3
L) +4

x=1,x:=0

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location

~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

2 -3
—(+2) 4

x=1,x:=0
0 2 0
(000} ——{0n.1}—{1111)
-3 -3 -3

0 +4 0
(0.1).0) [(m)&]—»%@

78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

2 -3
—(+2) 4

x=1,x:=0

v
78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

v
78/123

Weighted timed automata

The L-problem: use the corner-point abstraction?

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

~ requires new developments!
v

78/123

Weighted timed automata

The L-problem: computing optimal delays

Example

=0 +l, N 4l N\ 0 N+ x=1
-»@ = 3 6 8 = (o)
>0 N/ >3 o >7 U >

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example

_)@ x=0 +1 (3\ +1 (6\ 0 (8\ +1 x=1 5
>0 o/ >3 o/ > \ >4 O
1
3

. 2
oy _ 2

@ compute optimal delays topt in €1 to £,_1;

w

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
@ =0+ L 0\ =l @
>0 N/ >3 o >7 U >
P - % % _ _
t*: = _

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0 4l LN 0 A\l x=1
»@ = 3 6 8 = (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: = 0 =

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

.

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0 4l LN 0 A\l x=1
»@ = 3 6 8 = (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: = % 0 =

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

.

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0 4+l L N\ 0 N\HL x=l
»@X 3 6 8 = (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 _

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0 4l LN 0 A\l x=1
»@X 3 6 8 = (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: = % % 0 =

minimal initial credit required: % yields final credit 8.

@ compute optimal delays topt in €1 to £,_1;

@ compute optimal possible delays t* in ¢1 to £,_1;

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0 4l LN 0 A\l x=1
»@X 3 6 8 = (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: = % % 0 =

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

@ compute other points on the energy function curve.

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0+l 1 N 0 O\ L x=1
»@X 3 6 8 a (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 —
initial credit
1
5+0
@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;
@ compute other points on the energy function curve.
w

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0+l 1 N 0 O\ L x=1
»@X 3 6 8 a (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 —
initilal credit 1
s +90 2 3
@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;
@ compute other points on the energy function curve.
w

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0+l 1 N 0 O\ L x=1
»@X 3 6 8 a (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 —
initial credit 1 1
L) 273 2
2
@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;
@ compute other points on the energy function curve.
w

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0+l 1 N 0 O\ L x=1
»@X 3 6 8 a (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 —
initial credit 1 1 5
T+6 273 2 3
@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;
@ compute other points on the energy function curve.
w

79/123

The L-problem: computing optimal delays

Weighted timed automata

Example
=0 Al +l N\ 0 N+l x=l
»@X 3 6 8 —(0)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 —
initial credit 1 s 1 s final credit
1is 273 2 3 8+%

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

@ compute other points on the energy function curve.

79/123

The L-problem: computing optimal delays

Weighted timed automata

Example
=0 +l, /N 4l N\ 0 N+ x=l
»@X 3 6 8 —(0)
>0 o/ >3 o/ > \ >4
t*: % % 0 —
initial credit 0 1 1 final credit
2 g 2 12

@ compute optimal delays topt in €1 to £,_1;

@ compute optimal possible delays t* in ¢1 to £,_1;

@ compute other points on the energy function curve.

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example
=0+l 1 N 0 O\ L x=1
»@X 3 6 8 a (o)
>0 o/ >3 o/ > \ >4
topt: — % % — _
t*: — % % 0 _
initial credit 0 1 s 1.3 final credit
246 27 6 276 1248
@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;
@ compute other points on the energy function curve.
w

79/123

The L-problem: computing optimal delays

Weighted timed automata

Example
=00 —=0:-—0
P — % % _ _
t*: — % % 0 —
initial5credit 0 0 1 finallzredit

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

@ compute other points on the energy function curve.

79/123

The L-problem: computing optimal delays

Weighted timed automata

Example
=00 —=0:-—0
P — % % _ _
t*: — % % 0 —
initi;l_::sedit 0 0 1 finlaé ::Lr%dit

@ compute optimal delays topt in €1 to £,_1;
@ compute optimal possible delays t* in ¢1 to £,_1;

@ compute other points on the energy function curve.

79/123

Weighted timed automata

The L-problem: computing optimal delays

Example

=0 4l 1 N\ 0 N\HL x=l
»@X 3 6 8 —(0)
>0 N/ >3 o >7 \ >4

Wont
16 4
149
12
10 4
54
point [wiy | wou
6 o |12 s
R
n T
9]
0 ; Yin
il 1 2 3 4] 6

v
80/123

Weighted timed automata

The L-problem: concluding

Theorem

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock WTA

81/123

Weighted timed automata

The L-problem: concluding

Theorem

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock WTA

@ transform the automaton into an automaton with energy functions;

81/123

Weighted timed automata

The L-problem: concluding

Theorem

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock WTA

@ transform the automaton into an automaton with energy functions;

81/123

Weighted timed automata

The L-problem: concluding

Theorem

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock WTA

@ transform the automaton into an automaton with energy functions;

81/123

Weighted timed automata

The L-problem: concluding

Theorem

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock WTA

o transform the automaton into an automaton with energy functions;

81/123

Weighted timed automata

The L-problem: concluding

Theorem

Optimization, reachability and existence of infinite runs satisfying the
constraint > 0 can be decided in EXPTIME in single-clock WTA

o transform the automaton into an automaton with energy functions;

@ check if simple cycles can be iterated (or if a Zeno cycle can be
reached...)

81/123

Timed games

Outline

@ Timed games

82/123

Timed games
Why (timed) games?
@ to model uncertainty
Example of a processor in the taskgraph example

x=2 x=3
done done
=2 x:=0 x:=0

(x<3)

83/123

Timed games
Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example

done done
M. mUIt
(x<2)

(x<3)

83/123

Timed games

Why (timed) games?

@ to model uncertainty

Example of a processor in the taskgraph example

x>1 x>1
-~ " done “k “done "=
add mult
2R x:=0 x:=0 =

@ to model an interaction with the environment

Example of the gate in the train/gate example

4

83/123

Timed games
Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example

done done
%dd/. mult
(x<2)

(x<3)

@ to model an interaction with the environment

Example of the gate in the train/gate example

4

83/123

Timed games

Why (timed) games?

@ to model uncertainty

Example of a processor in the taskgraph example

x>1 x>1
-~ " done “k “done "=
add mult
2R x:=0 x:=0 =

@ to model an interaction with the environment

Example of the gate in the train/gate example

OpenGate

4

83/123

Timed games

Modelling the task graph scheduling problem

° Processors @ Tasks
Ty —
add; multy add; S done;
(x<2) (x<3) Ts: ts o
O O—0
y=5 y=7 add; J done;

° Modelling energy

done; done;
add; multy

(x<2)

donep donep
addp multy
y<5 y<7

84/123

Timed games

Modelling the task graph scheduling problem

° Processors o Tasks
Ta: __tint, —~ t ::l:
done; done; ‘ :1 2 :
addy multy add; \J done;
(x<2) (x<3) Ts: e
O—0—-—-—"0
y=5b y=7 add; S done;
P,
donep donep
addy multy
=5 y—o y=0 (=7)
° Modelling energy ° Modelling uncertainty
done; done; &m—er Llonei
add; multy %1/ \miltl/;®
(x<2) (x<3)
donep donep - -
adds multy (loiie> donep
y<5 y<7 addp multy (X<3)

84/123

Timed games

Modelling the task graph scheduling problem

A (good) schedule is a strategy in
the product game (with a low cost)

84/123

Timed games

An example of a timed game

Rule of the game

85/123

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

85/123

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

85/123

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

® ®

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)

.@ v

85/123

Timed games

An example of a timed game

Rule of the game
(XQ @ @ Aim: avoid @ and reach ©
, @ How do we play? According to a
) - strategy:
! xsl,a
1
! f : history — (delay, cont. transition)

. A (memoryless) winning strategy

e from (£, 0), play (0.5, c;)

~> can be preempted by >

.@ v

85/123

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
(&) e from (¢o,0), play (0.5, ¢c1)
~> can be preempted by >
& o from (¢2,%), play (1 — x,)

E v

85/123

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
x<1,c5 e from (¢o,0), play (0.5, ¢c1)
~> can be preempted by >
o from ({2, %), play (1 —x, c)
e from (¢3,1), play (0, c3)

4

85/123

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x>2,¢

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)

~> can be preempted by >

o from (¢2,%), play (1 — x,)
e from (¢3,1), play (0, c3)

e from (¢1,1), play (1, c1)

4

85/123

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

XS].,C;; i
Problems to be considered

85/123

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

XS].,C;; i
Problems to be considered

@ Does there exist a winning strategy?

85/123

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

1
x<1,up,x:=01
1

XS].,C;; i
Problems to be considered

@ Does there exist a winning strategy?

o If yes, compute one (as simple as possible).

85/123

Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
86/123

Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems
a region-closed attractor can be computed

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
86/123

Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems
a region-closed attractor can be computed

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPRO7] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07).
[JTO7] Jurdzifiski, Trivedi. Reachability-time games on timed automata (ICALP’07).
86/123

Timed games

Back to the example: computing winning states

1
x<1,up,x:=01
1

87/123

Timed games

Back to the example: computing winning states

o} : : -
0 1 2 3
1
1
1
x<1,up,x:=01 2 I } } F----
\ 0 1 2 3
\
\
Lo | | Fo---
0 1 2 3
G5 : : Fo---
0 1 2 3

87/123

Timed games

Back to the example: computing winning states

XS].,Cl

X22,C4

1
1
x<1,up,x:=01
1
1

0 1 2
‘x<1l,u
\
\
\
\
A Y
£o F + +
0 1 2
43 t t t
0 1 2

A s —

87/123

Timed games

Back to the example: computing winning states

x<1,up,x:

0

£o

0 1 2 3
s —
0 1 2 3
k : : b ===
0 1 2 3
o) ——+F - - - -
0 1 2 3

87/123

Timed games

Back to the example: computing winning states

£o

£

£o

£3

o
-
N
w

om————————+ - - - -

G —— A ——+ - - - -

87/123

Timed games

Back to the example: computing winning states

x<1,up,x:=0

£o

£

£o

£3

0 1 2 3
0 1 2 3

87/123

Timed games

Back to the example: computing winning states

£o

£

£o

£3

-

87/123

Timed games

Back to the example: computing winning states
Winning states Losing states

4o O —
x<1,up,x:=0

A O ——r—

123 |

£3 (S

87/123

Timed games

Decidability via attractors

88/123

Timed games

Decidability via attractors

o Pred®(X) ={o| o2 ec X}

88/123

Timed games

Decidability via attractors
o Pred®(X) ={o| o2 ec X}
@ controllable and uncontrollable discrete predecessors:

cPred(X) = |J Pred?(X) uPred(X) = |J Pred?(X)

a cont. a uncont.

88/123

Timed games

Decidability via attractors
o Pred®(X) ={o| o2 ec X}
@ controllable and uncontrollable discrete predecessors:

cPred(X) = |J Pred?(X) uPred(X) = |J Pred?(X)
a cont. a uncont.

@ time controllable predecessors:

delay t t.u.
[e Ve Ve Ve VAN) Ve Ve Ve Va Ve VeV aVe VN J

- should be safe

88/123

Timed games

Decidability via attractors
o Pred®(X) ={o| o2 ec X}
@ controllable and uncontrollable discrete predecessors:

cPred(X) = |J Pred?(X) uPred(X) = |J Pred?(X)

a cont. a uncont.

@ time controllable predecessors:

delay t t.u.
[e Ve Ve Ve VAN) Ve Ve Ve Va Ve VeV aVe VN J

» should be safe

Preds(X, Safe) = {o |3t >0, ¢ 2

and V0 < t' < t, oﬂ)oESafe}

88/123

Timed games

Timed games with a reachability objective

We write:
7m(X) = X U Preds(cPred(X), —uPred(—X))

89/123

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

@ The states from which one can ensure) in no more than 1 step is:

Attr1(©) = 7(©)

89/123

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

@ The states from which one can ensure) in no more than 1 step is:

Attr1(©) = 7(©)

@ The states from which one can ensure ©) in no more than 2 steps is:

Attr(©) = 7(Attr1(©))

89/123

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

@ The states from which one can ensure) in no more than 1 step is:

Attr1(©) = 7(©)

@ The states from which one can ensure ©) in no more than 2 steps is:

Attr(©) = 7(Attr1(©))

89/123

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

Attri (©) = 7(©)

Attr(©) = 7(Attr1(©))

Attr, (@) = w(Attr,_1(©))

The states from which one can ensure ©) in no more than 1 step is:

The states from which one can ensure ©) in no more than 2 steps is:

The states from which one can ensure ©) in no more than n steps is:

89/123

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

The states from which one can ensure ©) in no more than 1 step is:

Attri (©) = 7(©)

The states from which one can ensure ©) in no more than 2 steps is:

Attr(©) = 7(Attr1(©))

The states from which one can ensure ©) in no more than n steps is:

Attr, (@) = w(Attr,_1(©))
= m(©)

89/123

Timed games

Stability w.r.t. regions

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

90/123

Stability w.r.t. regions

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

Timed games

/
/

/
/

90/123

Stability w.r.t. regions

Timed games

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

cPred(X)

/
/

/
/

90/123

Stability w.r.t. regions

Timed games

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

cPred(X)
uPred(—X)

£
/

/
/

90/123

Stability w.r.t. regions

Timed games

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

cPred(X)
uPred(—X)

/
[

/
/

90/123

Stability w.r.t. regions

Timed games

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

cPred(X)
uPred(—X)

/
[

/
/

90/123

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

/
[

/
/

(but it generates non-convex unions of regions...)

cPred(X)
uPred(—X)

90/123

Timed games

Stability w.r.t. regions

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

cPred(X)
uPred(—X)

v
A/

(but it generates non-convex unions of regions...)

~> the computation of 7*((©) terminates!

90/123

Timed games

Stability w.r.t. regions

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

cPred(X)
uPred(—X)

v
A/

(but it generates non-convex unions of regions...)

~> the computation of 7*((©) terminates!
. and is correct

90/123

Timed games

And in practice?

@ A zone-based forward algorithm with backtracking
[CDF+-05,BCD+07]

[CDF-+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed Games (CONCUR'05).
[BCD-+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. UPPAAL-Tiga: Time for Playing Games! (CAV'07).
91/123

Weighted timed games

Outline

© Weighted timed games

92/123

Weighted timed games

A simple timed game
x<2,c,y:=0 ,”’
(y=0) °~.

93/123

Weighted timed games

A simple weighted timed game

v o
x<2,c,y:=0 .7
~@ ®
+5 (y=0) AN -
2R

93/123

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -7
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

93/123

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -7
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

5t+10(2—t) +1

93/123

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

5t+102—t)+1,5t+(2—-t)+7

93/123

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

max (5t +10(2—t)+ 1,5t +(2—t)+7)

93/123

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

. 1
Oér:; max (5t +10(2 —¢t)+ 1, 5t+(2—t)+7)—14+§

93/123

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -7
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?
1

i 10(2 — 1 2 — = =

Ogur:; max (5t +10(2—t)+1,5t+(2—t)+7) =14+ 3

~ strategy: wait in {o, and when t = 3, go to {;

93/123

Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).

[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

[BBROS5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).

[BBMO6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11).

[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13).

[BGK-+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR'14). /
94/123

Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK-+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME. J

04/123

Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME.

[ABMO04,BCFL04|

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.)

94/123

Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

95/123

Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

v

95/123

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

96/123

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

... but memoryless almost-optimal strategies will be sufficient.

96/123

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

+2 .
x=
) @) - ©
x<1N
x—0 = x>0

. but memoryless almost-optimal strategies will be sufficient.

@ Key: resetting the clock somehow resets the history...

96/123

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

(x31)\ ®)

... but memoryless almost-optimal strategies will be sufficient.

@ Key: resetting the clock somehow resets the history...

@ By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

96/123

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

(x31)\ ®)

... but memoryless almost-optimal strategies will be sufficient.

@ Key: resetting the clock somehow resets the history...

@ By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

@ Rather involved proofs of correctness

96/123

Weighted timed games

0.7
0.4

o(ca,x) =

o

out

C2
c2

Uz

[N

ES

if0<x<2/5
if2/5 <x<1/2
if1/2<z<1

IN

97/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)
Add™* (x) Add™ (x)
y=1,y:=0 y=1,y:=0 y=L,y:= y=L,y:=0
z:=0 g:;) x=1,x:=0 g:;z z=1,z:=0 z:=0 g:;z x=1,x:=0 g:;z z=1,z:=0
U \J \J U
0 1 _. 1 0

The cost is increased by xy The cost is increased by 1—xg

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

)

2
o O
Y=Yo ;‘

=0

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

=0 'O_" Add " (x) ——— Add" (x) ——— Add" (y) —»@
x=x0 z.- T +2
Y=Y [) ~‘~§A 2=0

¥=0 O—» Add ™ (x) ———> Add™ (x) ——> Add" (y) —1>©

° In@, cost =2xp + (1 — y) +2

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

0 O Add (1) ——— Add () ——— ‘A'aa!(;;;_><+2 D)
- O O R ——» R —— RO —— @
° In@, cost = 2xp + (1 — yp) +2

In @ cost =2(1 —xp) +yo +1

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~~~A 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~\~L 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

z=0 =~ . ; 5 F
L0 'O_’ Add* (x) ———> Add" (x) —— Add~ (y) —(2)
X=Xp C: Ze-" ’ : ’ E y +2
Y=o PREISS z=0 4 ; "
“0(C Y——> Add™ (x) ——> Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

@ Player 1 has a winning strategy with cost < 3 iff yp = 2xg

98/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

Globally, (x<1,y<1,u<1)

x=1,x:=0 x=1,x:=0)
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

A :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

x=1,x:=0 x=1,x:=0)
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

i :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
A
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
O O o
><:2%1
y=55

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0

V y=1,y:=0 V y=1,y:=0 Test, (x=2z)
A
u=0 Q 2=0 Q u=1,u:=0 | (u=0)
U J O
X:z%l x:2%1+a
y:z% y:2%2+oz

zZ=% z=0

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
VvV y=1l,y:=0 V y=1,y:=0 Test, (x=2z)
u:=0 Q 2:=0 Q u=1,u:=0 (u=0)
O O O
=54 x=3i ta X=5e
y:z%2 y:z%Z+a y:z%2

99/123

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:
1

and Y=

The two-counter machine has a halting computation iff player 1 has a J

winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
u:=0 Q z:=0 Q u=1,u:=0 (u=0)
O O O
x_z%l x:z%l+a x:z%l
y=55 y=55+a y=55
z=0 z:zcllA1

Z=%
99/123

Weighted timed games

Shape of the reduction

100/123

Weighted timed games

Shape of the reduction

—/ D
N A
C—D«-
--->-C)
© — \%\O
""" Instruction o

(D Test module (acyclic)

100/123

Weighted timed games

Shape of the reduction

—/ D
N A
C—D«-
--->-C)
© — \%\o
""" Instruction %

(D Test module (acyclic) Cost 0 within the core of the game

100/123

Weighted timed games

Some further subtlety

Value of the game = infimum of all costs of strategies J

101/123

Weighted timed games

Some further subtlety

Value of the game = infimum of all costs of strategies)

The value of the game is 3, but no strategy has cost 3.)

101/123

Weighted timed games

Some further subtlety

Value of the game = infimum of all costs of strategies J

The value of the game is 3, but no strategy has cost 3. J

101/123

Weighted timed games

A snapshot on the undecidability proof

C_"" Instruction

C_"" Test module

102/123

Weighted timed games

A snapshot on the undecidability proof

C_"" Instruction

C_"" Test module

102/123

Weighted timed games

A snapshot on the undecidability proof

Leave

Leave

Leave

Leave <—O

Leave with cost 3+ 1/2" (n: length of the path)

102/123

Weighted timed games

A snapshot on the undecidability proof

Leave

M does not halt iff the
value of Gaq is 3 J

Leave

Leave

Leave <—O

Leave with cost 3+ 1/2" (n: length of the path)

102/123

Weighted timed games

Are we done?

103/123

Weighted timed games

Are we done? No!

103/123

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is kK > 0 s.t. for every region cycle C, for every real run p read on C,

cost(o) > K

Optimal cost is not computable...

. when cost is almost-strongly non-zeno.

There is kK > 0 s.t. for every region cycle C, for every real run g read on C,

cost(g) > Kk or cost(p) =0

103/123

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(o) > K

Optimal cost is not computable... but is approximable!

. when cost is almost-strongly non-zeno. [BIJM15]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(p) > Kk or cost(p) =0

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).

103/123

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(o) > K

Optimal cost is not computable... but is approximable!

. when cost is almost-strongly non-zeno. [BIJM15]

There is k > 0 s.t. for every region cycle C, for every real run p read on C,

cost(p) > Kk or cost(p) =0

@ Almost-optimality in practice should be sufficient

@ Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).
103/123

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that

lv.m —vo|<e and v. <opteostg < v

104/123

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

104/123

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

104/123

Weighted timed games
Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o, such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

104/123

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o, such that

optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences
~> This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the
game of the undecidability proof)

104/123

Weighted timed games

|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game

105/123

Weighted timed games

|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game

First: split the game along regions!

n,Y:=0

g, Y:=0

O o ~

rs, Y =0

105/123

Weighted timed games

|dea of the proof: Semi-unfolding

7N

Only cost 0
Kernel

Only cost 0
Kernel K

)
v

u
u
VAN | 7N

106/123

Weighted timed games

|dea of the proof: Semi-unfolding

Only cost 0
Kernel

Only cost 0
Kernel K

106/123

Weighted timed games

|dea of the proof: Semi-unfolding

Only cost 0
Kernel

Only cost 0
Kernel K

106/123

Weighted timed games

|dea of the proof: Semi-unfolding

Only cost 0
Kernel

Hypothesis:

cost > 0 implies cost > &
Only cost 0
Kernel K

106/123

Weighted timed games

Idea of the proof: Semi-unfolding

Only cost 0
Kernel KC

Hypothesis:

cost > 0 implies cost > &
Only cost 0
Kernel

Conclusion: we can stop unfolding the game after finitely many steps

106/123

Weighted timed games

Approximation scheme

107/123

Weighted timed games

Approximation scheme

107/123

Weighted timed games

Approximation scheme

D) :iR*o . b, b

e ~"'E'>'<‘act computation-.. -

107/123

Weighted timed games

Approximation scheme

T - Exact computatiofi--

107/123

Weighted timed games

Approximation scheme

- R 7R
A S N

T -Exact COMPULALION - esssmrae

107/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

El O El/

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

¢ o(¢,v) =

Y

E’ O El/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

Y

Q: Or

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t'|v4irr:tf):g' max(,)

c/ N 7
O El b ZI/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

Y4 O E, = i ’
(V) /Ivln/ , n ax((a))
g/, Y/ \\ " oyn

/ \ 1
C \ (o}
\

v b o (o) = tc+c + 0, V)
o,y o v

v/ =[Y'«0](v+t')

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t’|v4i»r:.f):g’ max((a), (7))

g/, Y/ \\ g//- Y//
c/ \\ c//
v b o (o) = tc+c + 0, V)

ow,vy oW, v
(B) = sup t'c+c+ 0" v")
t//St/|V+t//':g//

v/ =[Y'«0](v+t')
v =[Y" +0](v+t")

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
108/123

Weighted timed games

Second step: Kernels

/?H %l
SN

Output cost functions f

109/123

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

109/123

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?x
N

Output cost functions f

109/123

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

109/123

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

@ Under- and over-approximate by
piecewise constant functions .~ and
fr

Output cost functions f

109/123

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

f.: constant f.: constant

110/123

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

f.: constant f.: constant

110/123

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

© Those can be solved using standard

O/\N/ technics based on attractors: small
/ : regions are sufficient, and the local

O—>L_YI optimal cost (for output 7.) is constant

within a small region

f.: constant f.: constant

110/123

Second step: Kernels

constant

[A
—

f.: constant f.: constant

Weighted timed games

Refine/split the kernel along the new
small regions and fix 7 or ", write f;

Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)
Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output 7.) is constant
within a small region

110/123

Second step: Kernels

Weighted timed games

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

© Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output 7.) is constant
within a small region

~» We have computed e-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

110/123

Tools

Outline

O Tools

111/123

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

o Uppaal for timed automata
o Uppaal-TiGa for timed games
o Uppaal-Cora for weighted timed automata

Uppaal url: http.//uve tppasl.org

112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

Uppaal url: http://www.uppaal.org

112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (formerly at
LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata
Model-checker

Uppaal url: http://www.uppaal.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (formerly at
LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata
Model-checker J

e Timed automata:
(time-optimal) reachability

o Weighted timed automata:
optimal rechability

Uppaal url: http://svir vppacl
TiAMo url: http ://git.1sv. fr/colange/t);mo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).

112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...
@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (formerly at
LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata
Model-checker

e Timed automata: e Aims at being a platform for
(time-optimal) reachability experiments (open source!)

o Weighted timed automata: e Aims at asserting and
optimal rechability comparing algorithms

Uppaal url: http:/ /uvw vppasl.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (formerly at
LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata
Model-checker

https://git.1lsv.fr/colange/tiamo)

Uppaal url: http://www.uppaal.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Tools

Tools for (weighted) timed automata and games

@ Many tools and prototypes everywhere on earth...

@ Tool-suite Uppaal, developed in Aalborg (Denmark) and originally
Uppsala (Sweden) since 1995

@ Our new tool TiAMo, developed by Maximilien Colange (formerly at
LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata
Model-checker J

https://git.1lsv.fr/colange/tiamo)

@ In the future: TiAMo will merge with TChecker (developed by
Frédéric Herbreteau (LaBRI, France))

Uppaal url: http://www.uppaal.org
TiAMo url: https://git.1lsv.fr/colange/tiamo
[BCM16] Bouyer, Colange, Markey. Symbolic optimal reachability in weighted timed automata (CAV'16).
112/123

http://www.uppaal.org
https://git.lsv.fr/colange/tiamo
https://git.lsv.fr/colange/tiamo

Towards further applications

Outline

@ Towards applying all this theory to robotic systems

113/123

Towards further applications

Example problem, objective and approach

storage 1 storage 2

X
@ |
L]

conveyor belt

ik

@ @
S
o
o
-+
N

controller

~

5] Bouyer, Markey, Perrin, aissier. tomata Abstraction of Switche: namical Systems Using Control Funnels
BMPS15] B Markey, Perrin, Schlehuber-Caissier. Timed-A Ab: i f Switched Dy ical S Using C | Fi |
(FORMATS'15).

114/123

Towards further applications

Example problem, objective and approach

storage 1 storage 2

X
@ |
L]

conveyor belt

controller

~

@ @
S
o
o
-+
N

@ Infinitely many configurations
@ Complex behaviour

@ Mechanical constraints

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS'15).

114/123

Towards further applications

Example problem, objective and approach

storage 1 storage 2

conveyor belt

i

robot 2

!

controlle

A((. K
@ @

@ Infinitely many configurations
@ Complex behaviour

@ Mechanical constraints

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Aut
(FORMATS'15).

Goal: Synthesize a controller:
@ Which robot handles an object
@ How to avoid collision
@ Don't miss any object

ta Abstraction of Switched Dynamical Systems Using Control Funnels

114/123

Towards further applications

Example problem, objective and approach

storage 1 storage 2
oo conveyor belt XX Goal: Synthesize a controller:
@0 | ® | @ Which robot handles an object
@ @ How to avoid collision
robot 2 e Don't miss any object
e
@ Approach:

!

controlle

L~ L @ Discretization of the behaviour

via a fixed set of continuous
controllers

o Infini i i .
Infinitely many configurations @ Create an abstraction and use

o Complex behaviour previous results

@ Mechanical constraints

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels

(FORMATS'15).
114/123

Towards further applications

Our approach
Simplistic idea: fixed set of reference trajectories + property

start target

obstacle

115/123

Towards further applications

Our approach
Simplistic idea: fixed set of reference trajectories + property

start target

obstacle

115/123

Towards further applications

Our approach

More realistic idea: fixed set of funnels for control law + property

up (@,) obstacle

115/123

Towards further applications

Our approach

More realistic idea: fixed set of funnels for control law + property

ui(, 1) start target
T .;tl 9
7 \o% e
~ o /‘\ tl t*\ S
j \
(@,) obstacle

Corresponding timed automaton:

l ap <t < bp

115/123

Towards further applications

Control funnels

System with continuous dynamics x = f(x, t)

X1

X2

116/123

Towards further applications

Control funnels

System with continuous dynamics x = f(x, t)

X2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

Vo € R, x(tp) € F(to) = Vt > to, x(t) € F(t)

116/123

Towards further applications

Control funnels

System with continuous dynamics x = f(x, t)

X2

A (control) funnel is a trajectory F(t) of a set in the state space such
that, for any trajectory x(t) of the dynamical system:

Vo € R, x(tp) € F(to) = Vt > to, x(t) € F(t)

X2

116/123

Towards further applications

Example

obstacle

117/123

Towards further applications

Example

¢:: positional clock; cp: local clock

a1<c <Py m ch>A /_\ a2<c:<B2
771 771 772 7?1
1 e e 2 . 2 44, — 3
ce:=71; cp:=0 cp:=0 cri="2, cp:=0

(ce€l}) (ce€ly) (ce€3) (ce€ly)

117/123

Towards further applications

Summary

storage 1 storage 2

conveyor belt

ik

@ ‘\\\\:;E:i§>
@ @

118/123

Towards further applications

Summary

storage 1 storage 2

conveyor belt

i

robot 2 ~» (huge) timed automata/games
(with weights), with few clocks

@ K
@ @

118/123

Towards further applications

Summary
storage 1 storage 2
m conveyor belt m
@@] @]
L] 2 L]
N robot 2 ~» (huge) timed automata/games
o (with weights), with few clocks
)
N
L

— winning (optimal) strategy

118/123

Towards further applications

Summary
storage 1 storage 2
m conveyor belt m
@@] @]
L] 2 L]
N robot 2 ~» (huge) timed automata/games
o (with weights), with few clocks
)
N
L

safe (good) controller +— winning (optimal) strategy

118/123

Towards further applications

A pick-and-place example

1d point mass

lane
[0 1 2| 3]

2
arrive

t

T8
-

packages

8

119/123

A pick-a

Towards further applications

nd-place example

1d point mass Funnel system

[0

2
arrive

t

lane
1 2| 3|

119/123

Towards further applications

0 “20 40 60 80 100 120 140

120/123

Towards further applications

Current challenges

For control people
e Handle more non-linear systems (automatically build control funnels)J

121/123

Towards further applications

Current challenges

For control people

e Handle more non-linear systems (automatically build control funnels)J

For us
@ Does not scale up very well so far (huge timed automata models)
o Build the model on-demand?
But, can we give guarantees (optimality) when only part of the
model has been built?
o Develop specific algorithms for the special timed automata we
construct?

o Implement efficient approx. algorithm for weighted timed games

121/123

Conclusion

Outline

© Conclusion

122/123

Conclusion

Conclusion

Summary of the talk

@ Basics of timed automata verification

@ Relevant extensions for applications: weights, games, mix of both
o We looked at decidability and limits
o We mentioned algorithmics and tools

@ Timed automata can be used as abstractions for more complex
systems

123/123

Conclusion

Conclusion

Current challenges

@ Various theoretical issues
o Decidability and approximability of weighted timed automata and
games
o New approaches (tree automata, reachability relations) might give a
new light on the verification of timed systems
o Robustness and implementability

@ Continue working on algorithms and tools

TiAMo + TChecker)

o Implementation of (weighted) timed games (good data structures,
abstractions, etc.)
o More applications with specific challenges (e.g. robotic problems)

123/123

	Timed automata
	Timed temporal logics

