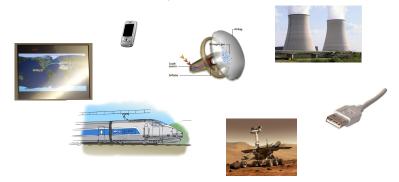
On the verification of timed systems... ... and beyond

Patricia Bouyer-Decitre

LSV, CNRS & ENS Paris-Saclay, France

Time-dependent systems

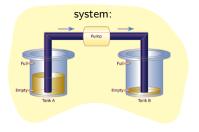
• We are interested in timed systems

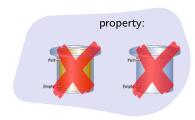


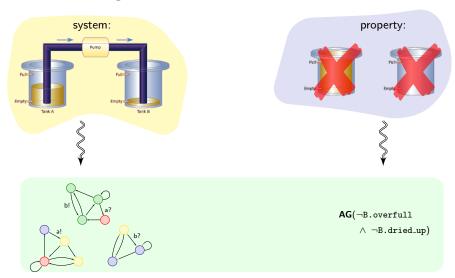
Time-dependent systems

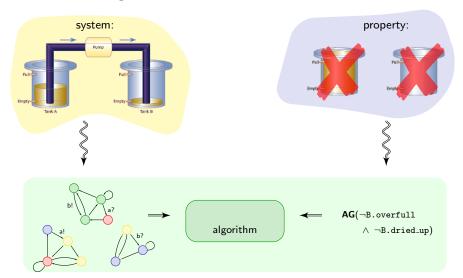
• We are interested in timed systems

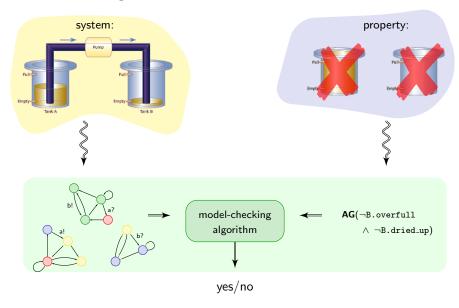
• ... and in their analysis and control

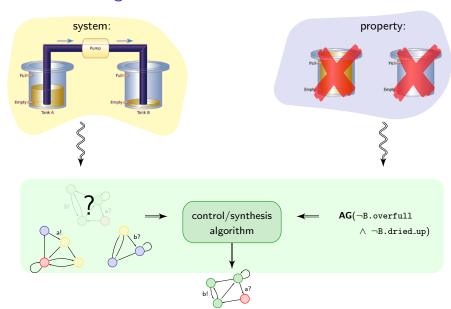










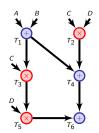


Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

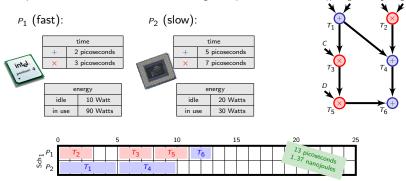
energy					
10 Watt					
90 Watts					

P_2 (slow):

energy				
idle	20 Watts			
in use	30 Watts			



Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

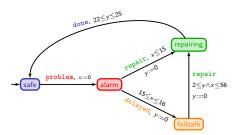


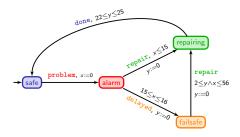
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors: P_1 (fast): P_2 (slow): time time 2 picoseconds 5 picoseconds 3 picoseconds 7 picoseconds energy energy 10 Watt 20 Watts idle idle 90 Watts 30 Watts in use in use 10 15 20 25 13 picoseconds 1.37 nanojoules T_5 T_6 12 picoseconds 1.39 nanojoules T_6

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors: P_1 (fast): P_2 (slow): time time 2 picoseconds 5 picoseconds 3 picoseconds 7 picoseconds energy energy 10 Watt 20 Watts idle idle 90 Watts 30 Watts in use in use 10 15 20 13 picoseconds 1.37 nanojoules T_5 T_6 12 picoseconds T_6 1.39 nanojoules .32 nanojoules T_6

Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- 6 Tools
- Towards applying all this theory to robotic systems
- Conclusion

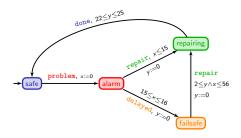




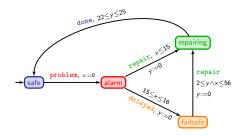
safe

X C

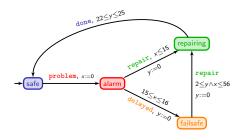
y 0



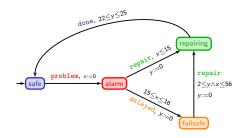
$$\begin{array}{ccc} \text{safe} & \xrightarrow{23} & \text{safe} \\ X & 0 & 23 \\ Y & 0 & 23 \end{array}$$



	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm
х	0		23		0
У	0		23		23

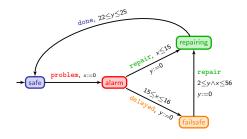


	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\mathtt{problem}}$	alarm	15.6 →	alarm
Х	0		23		0		15.6
V	0		23		23		38.6



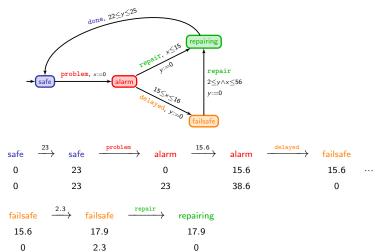
	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\mathtt{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
У	0		23		23		38.6		0	

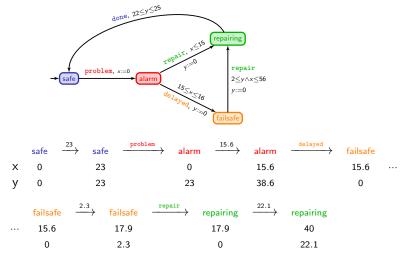
failsafe



$$\begin{array}{ccc}
 & \text{failsafe} & \xrightarrow{2.3} & \text{failsafe} \\
 & \cdots & 15.6 & 17.9 \\
 & 0 & 2.3 &
\end{array}$$

x y





x y

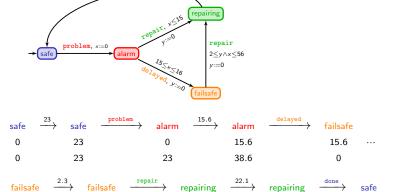
15.6

0

done, 22 \(y \le 25 \)

17.9

2.3



17.9

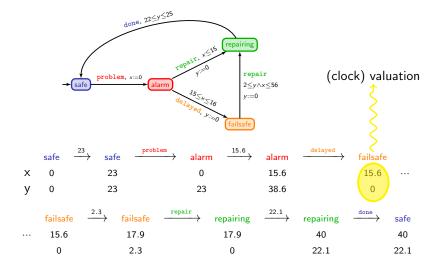
0

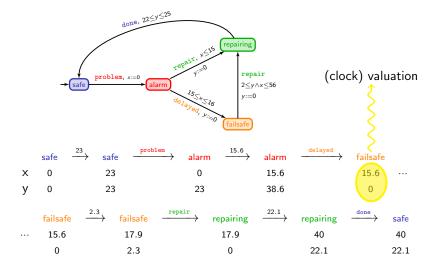
40

22.1

40

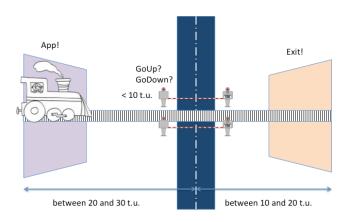
22.1





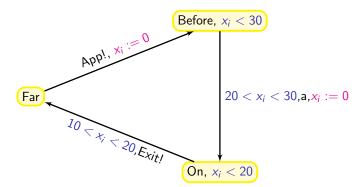
This run reads the timed word (problem, 23)(delayed, 38.6)(repair, 40.9)(done, 63)

The train crossing example



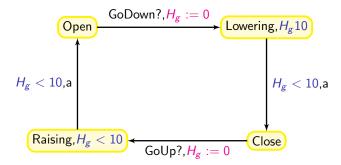
Modelling the train crossing example

Train_{*i*} **with** i = 1, 2, ...



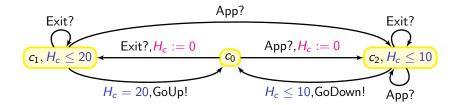
The train crossing example - cont'd

The gate:



The train crossing example - cont'd

The controller:



The train crossing example - cont'd

We use the synchronization function f:

$Train_1$	Train ₂	Gate	Controller	
App!		•	App?	Арр
	App!		App?	Арр
Exit!			Exit?	Exit
	Exit!		Exit?	Exit
a				a
	а			a
		a		a
		GoUp?	GoUp!	GoUp
		GoDown?	GoDown!	GoDown

to define the parallel composition (Train₁ || Train₂ || Gate || Controller)

NB: the parallel composition does not add expressive power!

The train crossing example – cont'd

Some properties one could check:

• Is the gate closed when a train crosses the road?

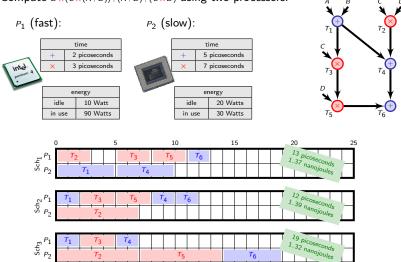
The train crossing example – cont'd

Some properties one could check:

- Is the gate closed when a train crosses the road?
- Is the gate always closed for less than 5 minutes?

Back to the task graph scheduling problem

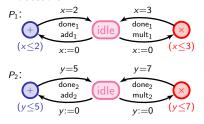
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:



Modelling the task graph scheduling problem

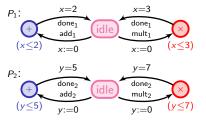
Modelling the task graph scheduling problem

Processors

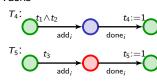


Modelling the task graph scheduling problem

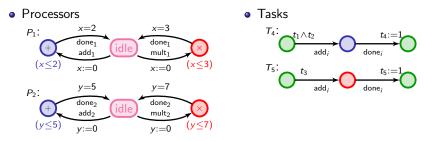
Processors



Tasks



Modelling the task graph scheduling problem



→ build the synchronized product of all these automata

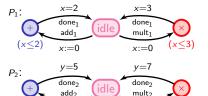
$$(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$$

Modelling the task graph scheduling problem

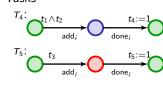
v := 0

 $(y \leq 5)$

v := 0



Tasks



→ build the synchronized product of all these automata

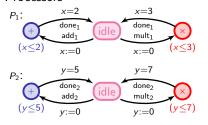
 $(y \leq 7)$

$$(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$$

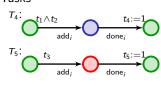
A schedule: a path in the global system which reaches $t_1 \wedge \cdots \wedge t_6$

Modelling the task graph scheduling problem

Processors



Tasks



→ build the synchronized product of all these automata

$$(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$$

A schedule: a path in the global system which reaches $t_1 \wedge \cdots \wedge t_6$

Questions one can ask

- Can the computation be made in no more than 10 time units?
- Is there a scheduling along which no processor is ever idle?
- • •

What we have so far

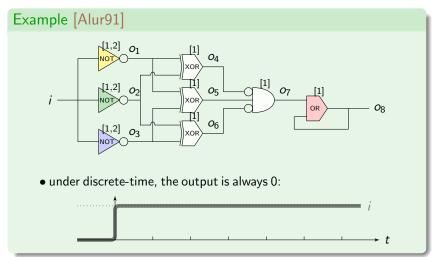
- A model which can adequately represent systems with real-time constraint...
- ... on which we can ask relevant questions

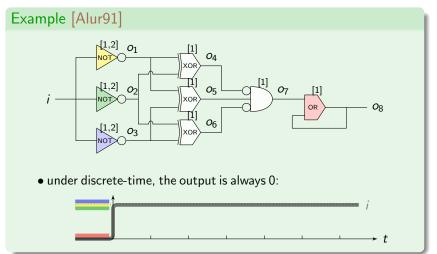
What we have so far

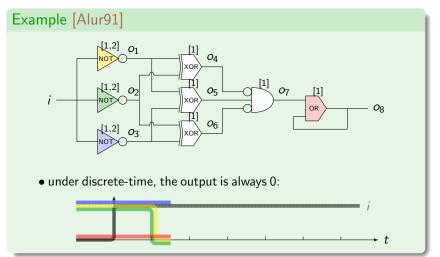
- A model which can adequately represent systems with real-time constraint.
- ... on which we can ask relevant questions

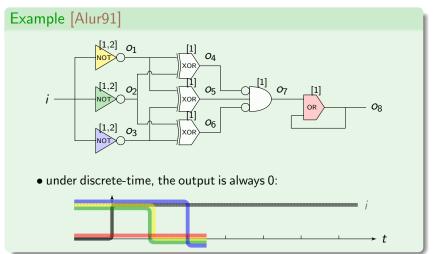
Interesting problems

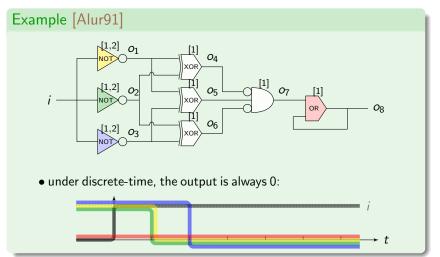
- Which semantics? (and be aware of the limits of the choice)
- Algorithms for automatic verification

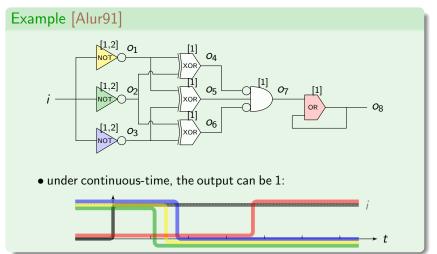


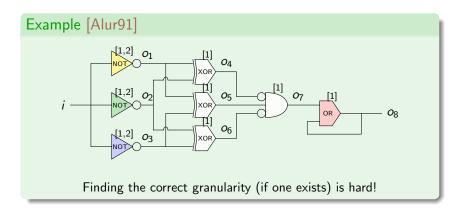


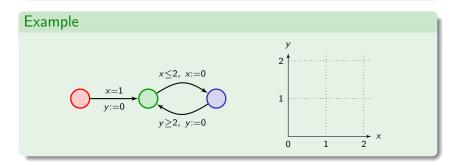


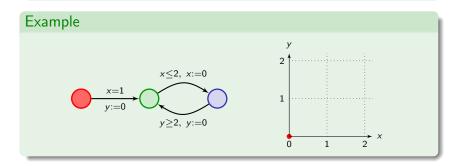


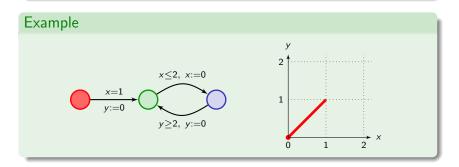


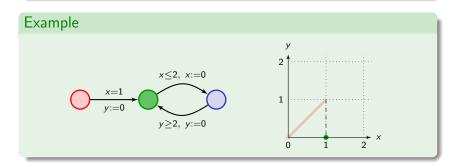


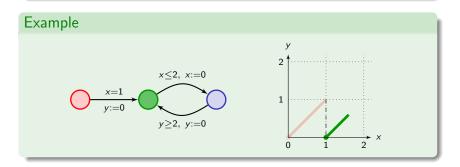


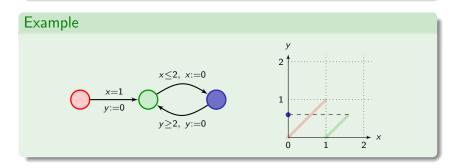


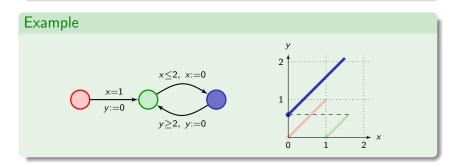


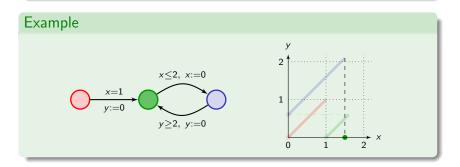


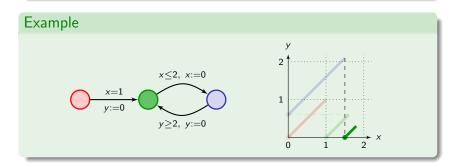


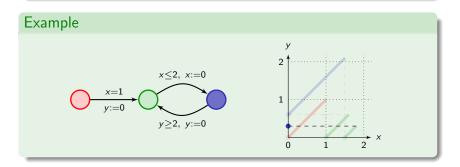


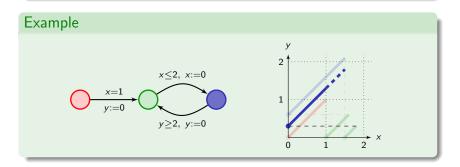




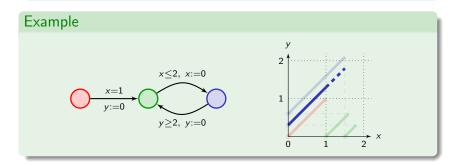






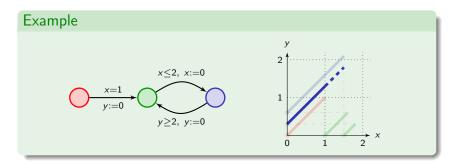


...real-time models for real-time systems!



We will focus on the continuous-time semantics, since this is an adequate abstraction of real-time systems

...real-time models for real-time systems!

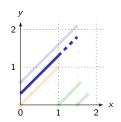


We will focus on the continuous-time semantics, since this is an adequate abstraction of real-time systems

Known limits: robustness issues (we will comment on that later)

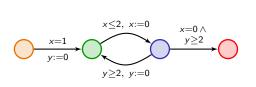
Analyzing timed automata

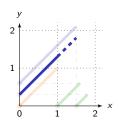




Can we reach state **O**?

Analyzing timed automata

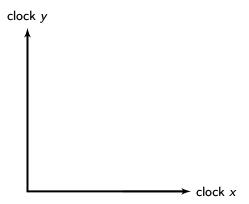


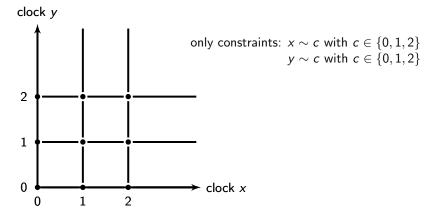


Can we reach state **O**?

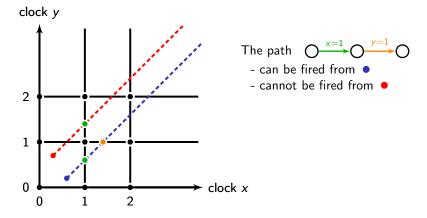
- Problem: the set of configurations is infinite

 ∼ classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

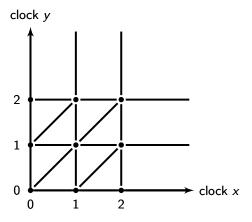




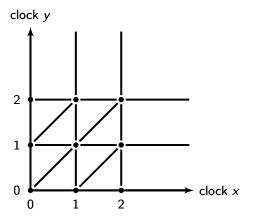
• "compatibility" between regions and constraints



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

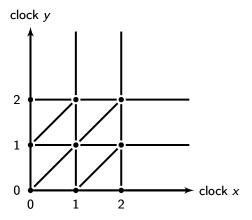


- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

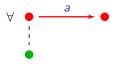
→ an equivalence of finite index

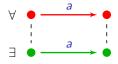


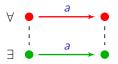
- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing
 - → an equivalence of finite index a time-abstract bisimulation

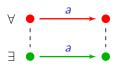
Time-abstract bisimulation

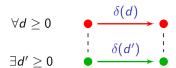
This is a relation between • and • such that:



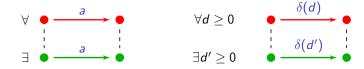








This is a relation between • and • such that:



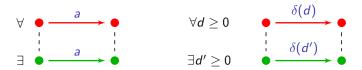
This is a relation between • and • such that:

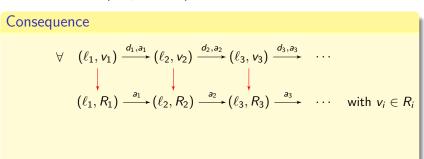
... and vice-versa (swap • and •).

Consequence

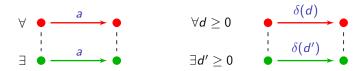
$$\forall \quad (\ell_1, \nu_1) \xrightarrow{d_1, a_1} (\ell_2, \nu_2) \xrightarrow{d_2, a_2} (\ell_3, \nu_3) \xrightarrow{d_3, a_3} \cdots$$

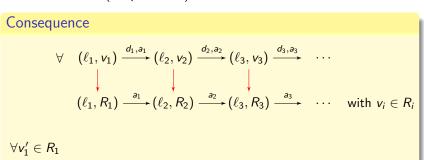
This is a relation between • and • such that:



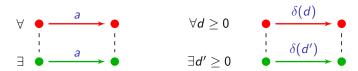


This is a relation between • and • such that:

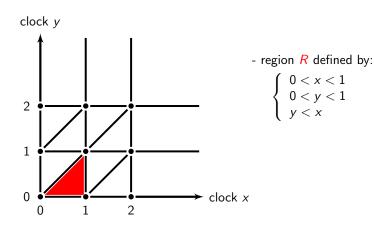




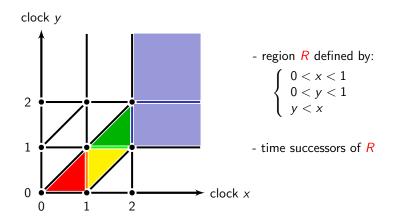
This is a relation between • and • such that:



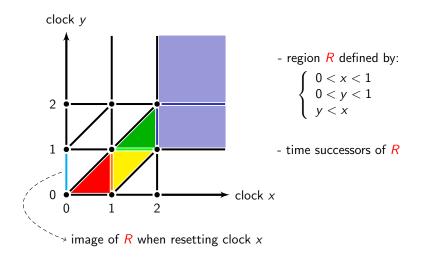
The region abstraction



The region abstraction

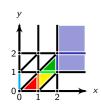


The region abstraction



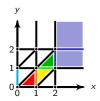
The construction of the region graph

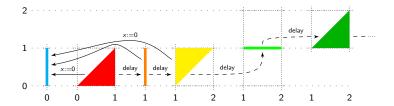
It "mimicks" the behaviours of the clocks.



The construction of the region graph

It "mimicks" the behaviours of the clocks.



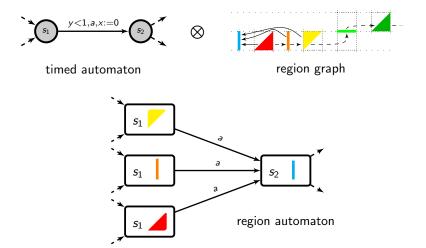


Region automaton ≡ finite bisimulation quotient

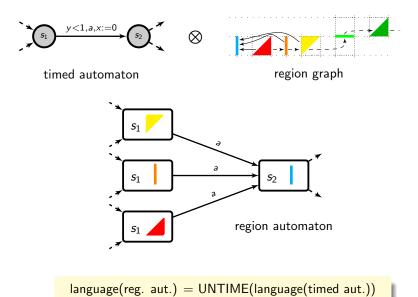
timed automaton

region graph

Region automaton ≡ finite bisimulation quotient

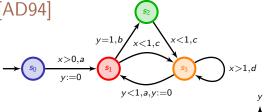


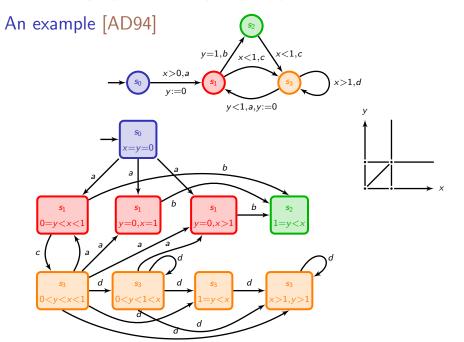
Region automaton ≡ finite bisimulation quotient

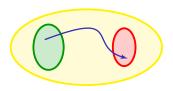


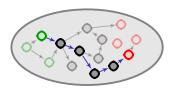
An example [AD94] y=1,b x<1,c x<1,c y=1,b x<1,c x<1,c y=1,b x>1,c y=1,b y=1,b y=1,b y=1,c y=1,c

An example [AD94]









timed automaton

large (but finite) automaton (region automaton)

timed automaton

large (but finite) automaton (region automaton)

• large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

$$\prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}$$

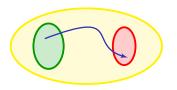
timed automaton

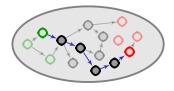
large (but finite) automaton (region automaton)

• large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

$$\prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties
 - liveness properties (Büchi/ ω -regular properties)
 - LTL properties





timed automaton

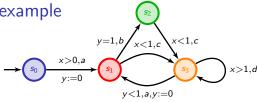
large (but finite) automaton (region automaton)

• large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

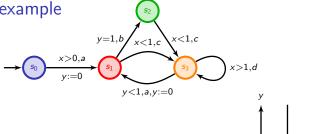
$$\prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}$$

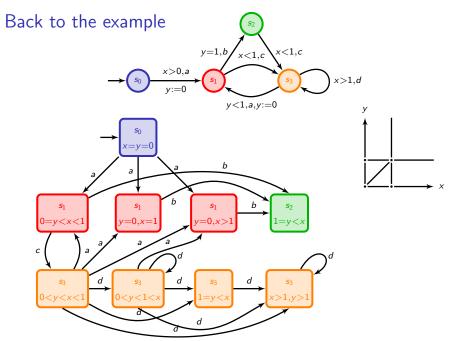
- It can be used to check for:
 - reachability/safety properties
 - liveness properties (Büchi/ ω -regular properties)
 - LTL properties
- Problems with Zeno behaviours? (infinitely many actions in bounded time)

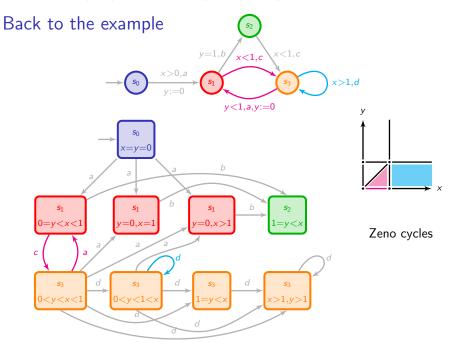
Back to the example

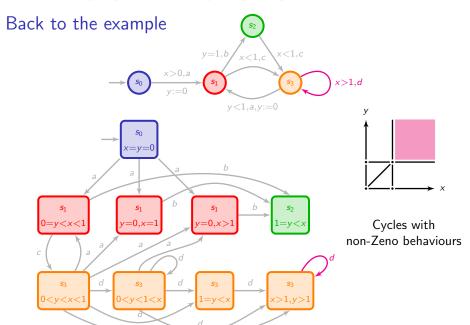


Back to the example









Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

Theorem [AD90,AD94]

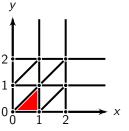
The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

• PSPACE upper bound: guess a path in the region automaton

Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

• PSPACE upper bound: guess a path in the region automaton



region R defined by:

$$\begin{cases}
0 < x < 1 \\
0 < y < 1 \\
y < x
\end{cases}$$

Theorem [AD90, AD94]

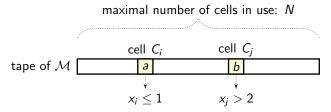
The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

- PSPACE upper bound: guess a path in the region automaton
- PSPACE lower bound: by reduction from a linearly-bounded Turing machine M

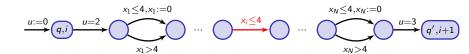
Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete. It even holds for two-clock timed automata [FJ13]. It is NLOGSPACE-complete for one-clock timed automata [LMS04].

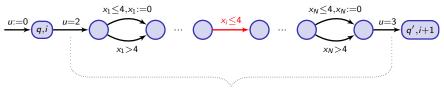
- PSPACE upper bound: guess a path in the region automaton
- ullet PSPACE lower bound: by reduction from a linearly-bounded Turing machine ${\cal M}$



Example of the simulation of a rule $(q, a, b, q', \rightarrow)$:

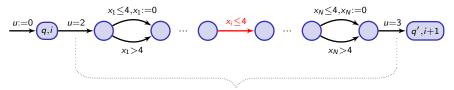


Example of the simulation of a rule $(q, a, b, q', \rightarrow)$:



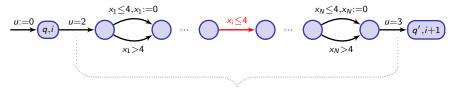
constraint $x_j \le 4$: cell j contains an a

Example of the simulation of a rule $(q, a, b, q', \rightarrow)$:



constraint $x_j \le 4$: cell j contains an a constraint $x_i > 4$: cell j contains a b

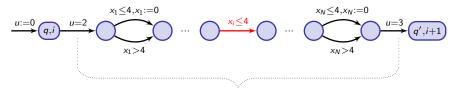
Example of the simulation of a rule $(q, a, b, q', \rightarrow)$:



constraint $x_j \le 4$: cell j contains an a constraint $x_i > 4$: cell j contains a b

reset of clock x_i : the new content is an a

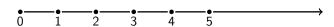
Example of the simulation of a rule $(q, a, b, q', \rightarrow)$:



constraint $x_j \le 4$: cell j contains an a constraint $x_i > 4$: cell j contains a b

reset of clock x_j : the new content is an a no reset of clock x_j : the new content is a b

The case of single-clock timed automata



The case of single-clock timed automata

if only constants 0, 2 and 5 are used

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ -calculus)

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)

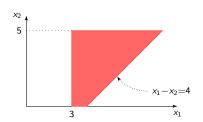
- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 - o-minimal hybrid systems

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 - o-minimal hybrid systems
 - . . .

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 - o-minimal hybrid systems
 - <u>. . . .</u>
- Note however that it might be hard to prove there is a finite bisimulation quotient!

- the region automaton is never computed
- instead, symbolic computations are performed
- Symbolic representation: zones

$$Z = (x_1 > 3) \land (x_2 < 5) \land (x_1 - x_2 < 4)$$

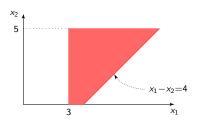


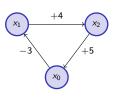
$$\begin{array}{cccc}
x_0 & x_1 & x_2 \\
x_0 & \infty & -3 & \infty \\
x_1 & \infty & \infty & 4 \\
x_2 & 5 & \infty & \infty
\end{array}$$

DBM: Difference Bound Matrice [BM83,Dill89]

- the region automaton is never computed
- instead, symbolic computations are performed
- Symbolic representation: zones

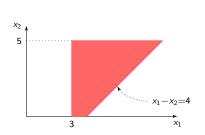
$$Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

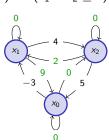




- the region automaton is never computed
- instead, symbolic computations are performed
- Symbolic representation: zones

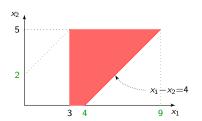
$$Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$





- the region automaton is never computed
- instead, symbolic computations are performed
- Symbolic representation: zones

$$Z = (x_1 > 3) \land (x_2 < 5) \land (x_1 - x_2 < 4)$$



$$\begin{array}{cccc}
x_0 & x_1 & x_2 \\
x_1 & 0 & -3 & 0 \\
x_1 & 9 & 0 & 4 \\
x_2 & 5 & 2 & 0
\end{array}$$

"normal form"

- the region automaton is never computed
- instead, symbolic computations are performed
- Symbolic representation: zones
- Needs of (correct) extrapolation operators... [Bou04,BBLP06]

- the region automaton is never computed
- instead, symbolic computations are performed
- Symbolic representation: zones
- Needs of (correct) extrapolation operators... [Bou04,BBLP06]
- ... or clever inclusion tests [HSW12,HSW13]

Which hypotheses did we make?

• timestamps taken in \mathbb{R}_+ (continuous-time semantics): only density is important, and they can be taken in \mathbb{Q}_+

- timestamps taken in \mathbb{R}_+ (continuous-time semantics): only density is important, and they can be taken in \mathbb{Q}_+
- constants in clock constraints $x \sim c$: $c \in \mathbb{N}$; they could be taken in \mathbb{Q}_+ , but not in \mathbb{R}_+ !

- timestamps taken in \mathbb{R}_+ (continuous-time semantics): only density is important, and they can be taken in \mathbb{Q}_+
- constants in clock constraints $x \sim c$: $c \in \mathbb{N}$; they could be taken in \mathbb{Q}_+ , but not in \mathbb{R}_+ !
- clock constraints of the form $x \sim c$

- timestamps taken in \mathbb{R}_+ (continuous-time semantics): only density is important, and they can be taken in \mathbb{Q}_+
- constants in clock constraints $x \sim c$: $c \in \mathbb{N}$; they could be taken in \mathbb{Q}_+ , but not in \mathbb{R}_+ !
- clock constraints of the form $x \sim c$
 - $x y \sim c$ are fine as well
 - no other kind of clock constraints!

- timestamps taken in \mathbb{R}_+ (continuous-time semantics): only density is important, and they can be taken in \mathbb{Q}_+
- constants in clock constraints $x \sim c$: $c \in \mathbb{N}$; they could be taken in \mathbb{Q}_+ , but not in \mathbb{R}_+ !
- clock constraints of the form $x \sim c$
 - $x y \sim c$ are fine as well
 - no other kind of clock constraints!
- resets of clocks to 0 only; we can reset to integral values as well

- timestamps taken in \mathbb{R}_+ (continuous-time semantics): only density is important, and they can be taken in \mathbb{Q}_+
- constants in clock constraints $x \sim c$: $c \in \mathbb{N}$; they could be taken in \mathbb{Q}_+ , but not in \mathbb{R}_+ !
- clock constraints of the form $x \sim c$
 - $x y \sim c$ are fine as well
 - no other kind of clock constraints!
- resets of clocks to 0 only; we can reset to integral values as well
 - more involved updates can be used as well, but they don't interact very well with diagonal constraints. So one needs to be careful

Limits of the model

- Any slight extension of the model is undecidable:
 - Richer clock constraints x + y = c, $2x \le y$
 - Richer updates: x := x + 1
 - ..

Limits of the model

- Any slight extension of the model is undecidable:
 - Richer clock constraints x + y = c, $2x \le y$
 - Richer updates: x := x + 1
 - ...
- The inclusion problem

$$L(A) \subseteq L(B)$$

is undecidable [AD94]

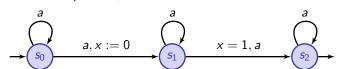
Limits of the model

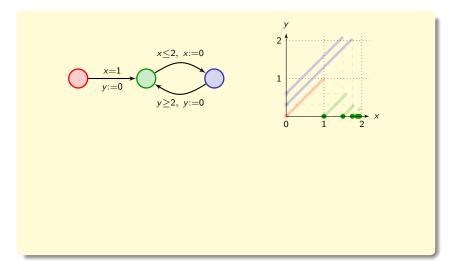
- Any slight extension of the model is undecidable:
 - Richer clock constraints x + y = c, $2x \le y$
 - Richer updates: x := x + 1
 - ...
- The inclusion problem

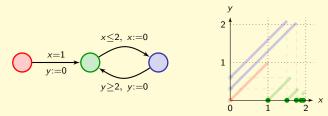
$$L(A) \subseteq L(B)$$

is undecidable [AD94]

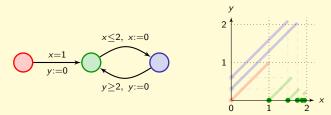
• One cannot complement, determinize timed automata





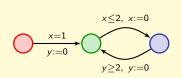


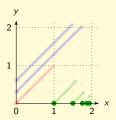
 \sim Value of clock x when hitting O is converging, even though global time diverges



→ Value of clock x when hitting O is converging, even though global time diverges

Can we implement such a strategy??

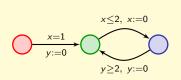


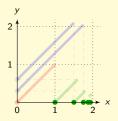


→ Value of clock x when hitting ○ is converging, even though global time diverges

Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for implementations!





 Value of clock x when hitting O is converging, even though global time diverges

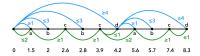
Can we implement such a strategy??

No. But we can detect such behaviours, and give conditions for implementations!

A survey: [BMS13]

Theoretical recent developments

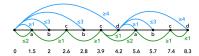
 Tree automata technics for timed automata analysis [AGK16,AGKS17]



- Write behaviours as graphs with timing constraints
- Realize that those graphs have bounded tree-width
- Express properties using MSO and/or build directly tree automata

Theoretical recent developments

 Tree automata technics for timed automata analysis [AGK16,AGKS17]



- Write behaviours as graphs with timing constraints
- Realize that those graphs have bounded tree-width
- Express properties using MSO and/or build directly tree automata

Compute and use the reachability relation [CJ99,QSW17]

[AGKLI6] Akshay, Gastin, Krishna. Analyzing Timed Systems Using Tree Automata (CONCUR'16).

[AGKS17] Akshay, Gastin, Krishna, Sarkar. Towards an Efficient Tree Automata based technique for Timed Systems (CONCUR'17).

[CJ99] Comon, Jurski. Timed Automata and the Theory of Real Numbers (CONCUR'99).

[QSW17] Quaas, Shirmohammadi, Worrell. Revisiting Reachability in Timed Automata (LICS'17).

Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- Tools
- Towards applying all this theory to robotic systems
- Conclusion

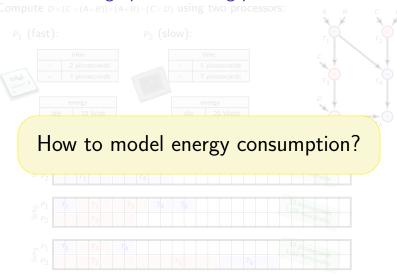
Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- Tools
- Towards applying all this theory to robotic systems
- Conclusion

Back to the task-graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors: P_1 (fast): P_2 (slow): time time 2 picoseconds 5 picoseconds intel 3 picoseconds 7 picoseconds D energy energy idle 10 Watt idle 20 Watts 90 Watts 30 Watts in use in use 10 15 13 picoseconds 1.37 nanojoules 12 picoseconds 1.39 nanojoules .32 nanojoules T_6

Back to the task-graph scheduling problem



• System resources might be relevant and even crucial information

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - ...

- price to pay,
- bandwidth,

• System resources might be relevant and even crucial information

- energy consumption,
- memory usage,
- ...

- price to pay,
- bandwidth,

→ timed automata are not powerful enough!

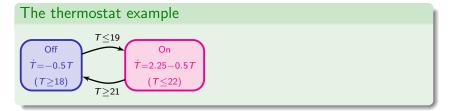
System resources might be relevant and even crucial information

- energy consumption,
- memory usage,
- ...

- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata
 - a discrete control (the mode of the system)
 - + continuous evolution of the variables within a mode

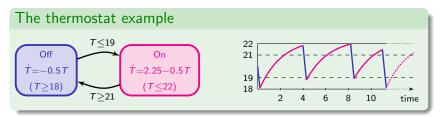
- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - ...

- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

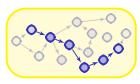


- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - ...

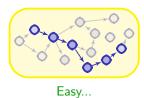
- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata



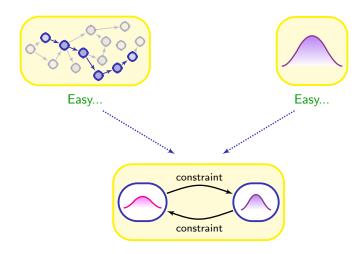
Easy...



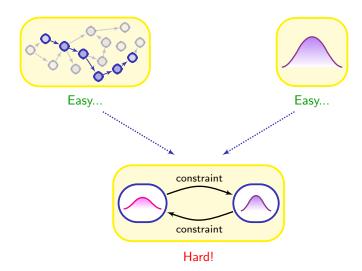
Easy...



Ok... but?



Ok... but?



- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - ...

- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is <u>undecidable</u> in hybrid automata. Even for the simplest, the so-called stopwatch automata (clocks can be stopped).

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - ...

- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

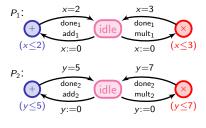
Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the simplest, the so-called stopwatch automata (clocks can be stopped).

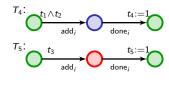
- An alternative: weighted/priced timed automata [ALP01,BFH+01]
 - hybrid variables do not constrain the system hybrid variables are observer variables

Modelling the task graph scheduling problem

Processors

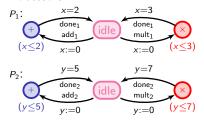


Tasks

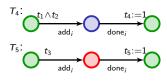


Modelling the task graph scheduling problem

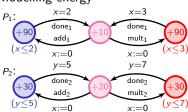
Processors



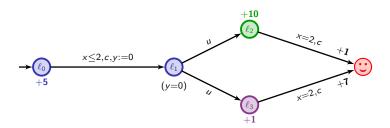
Tasks

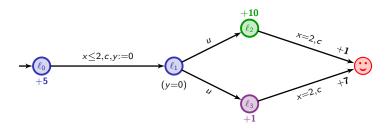


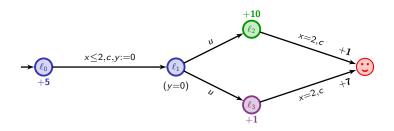
Modelling energy



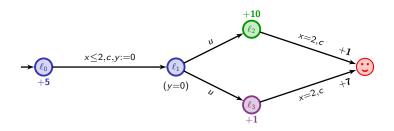
A good schedule is a path in the product automaton with a low cost



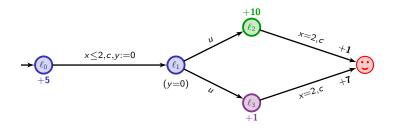


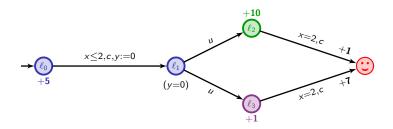


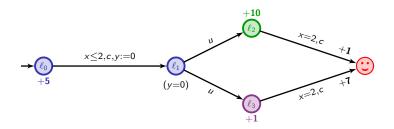
cost:

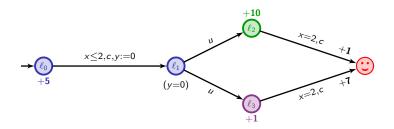


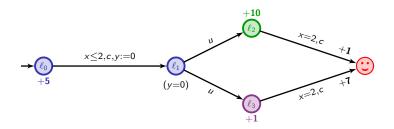
cost: 6.5

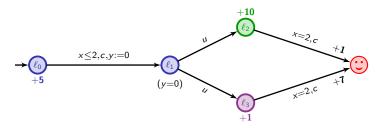


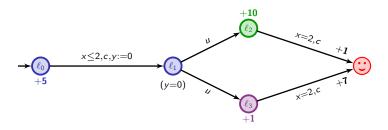




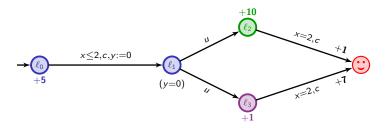




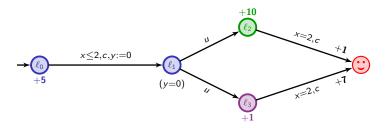




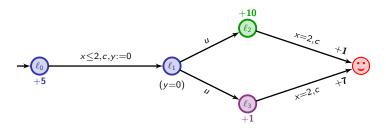
$$5t + 10(2-t) + 1$$



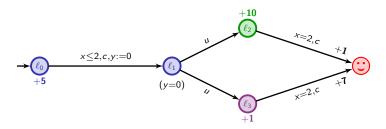
$$5t + 10(2 - t) + 1$$
, $5t + (2 - t) + 7$



min
$$(5t+10(2-t)+1, 5t+(2-t)+7)$$



$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$



Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$

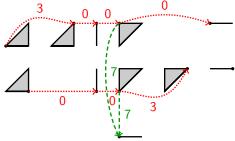
 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Optimal-cost reachability

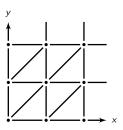
Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be computed in PSPACE.

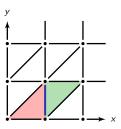
 Technical tool: a refinement of the regions, the corner-point abstraction



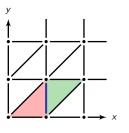
Technical tool: the corner-point abstraction



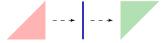
Technical tool: the corner-point abstraction

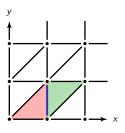


Technical tool: the corner-point abstraction

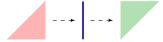


Abstract time successors:

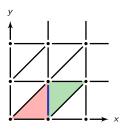




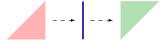
Abstract time successors:

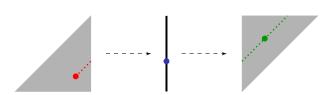


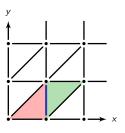




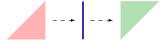
Abstract time successors:

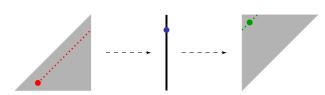


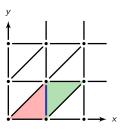




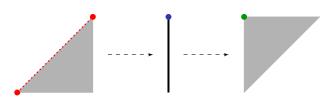
Abstract time successors:

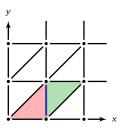




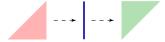


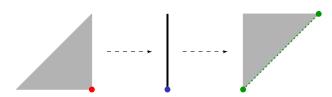
Abstract time successors:

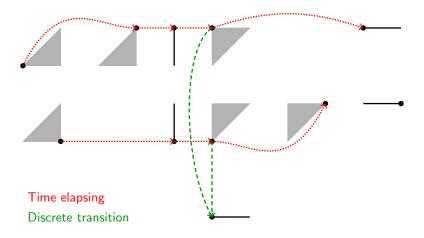


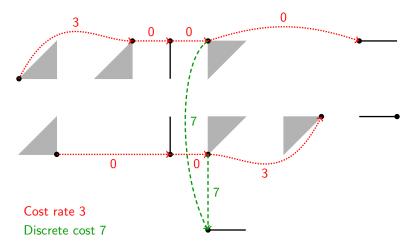


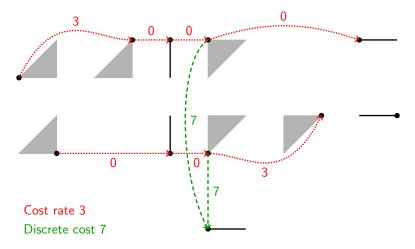
Abstract time successors:











Optimal cost in the weighted graph = optimal cost in the weighted timed automaton!

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \left\{ \begin{array}{c} t_1 + t_2 \leq 2 \\ \end{array} \right.$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \begin{cases} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{cases}$$

Optimal reachability as a linear programming problem

Lemma

Let Z be a bounded zone and f be a function

$$f: (T_1, ..., T_n) \mapsto \sum_{i=1}^n c_i T_i + c$$

well-defined on \overline{Z} . Then $\inf_{\overline{Z}} f$ is obtained on the border of \overline{Z} with integer coordinates.

Optimal reachability as a linear programming problem

Lemma

Let Z be a bounded zone and f be a function

$$f: (T_1, ..., T_n) \mapsto \sum_{i=1}^n c_i T_i + c$$

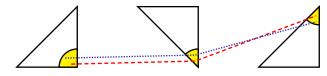
well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in A, there exists a path Π in A_{cp} such that

$$cost(\Pi) \leq cost(\pi)$$

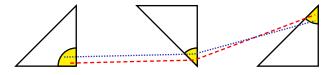
 $[\Pi \text{ is a "corner-point projection" of } \pi]$

Approximation of abstract paths:



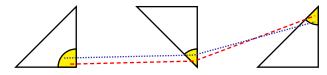
For any path Π of $\mathcal{A}_{\sf cp}$,

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon > 0$,

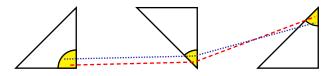
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

Use of the corner-point abstraction

It is a very interesting abstraction, that can be used in several other contexts:

	_			
•	tor	mean-cost	ontim	uzation
•	101	IIICall-COSt	ODLIII	IIZatioii

- for discounted-cost optimization
- for all concavely-priced timed automata
- for deciding frequency objectives

• ...

[BBL04,BBL08]

[FL08]

[JT08]

[BBBS11,Sta12]

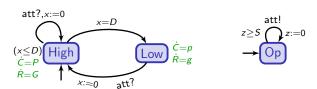
[[]BBL04] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC'04).

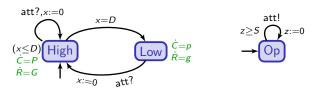
[[]BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

[[]FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

[[]JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS'08).

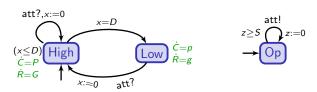
[[]BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP'11). [Sta12] Stainer. Frequencies in forgetful timed automata (FORMATS'12).





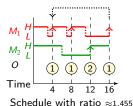
→ compute optimal infinite schedules that minimize

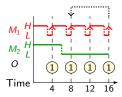
$$\mathsf{mean\text{-}cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$



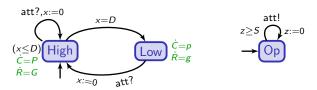
→ compute optimal infinite schedules that minimize

$$\mathsf{mean\text{-}cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$





Schedule with ratio ≈1.478



→ compute optimal infinite schedules that minimize

$$\mathsf{mean\text{-}cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$

Theorem [BBL08]

In weighted timed automata, the optimal mean-cost can be compute in PSPACE.

→ the corner-point abstraction can be used

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i+c}{\sum_{i=1}^n r_i t_i+r}$$

well-defined on \overline{Z} . Then $inf_{\overline{Z}}f$ is obtained on the border of \overline{Z} with integer coordinates.

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i+c}{\sum_{i=1}^n r_i t_i+r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in \mathcal{A} , there exists a path Π in $\mathcal{A}_{\sf cp}$ s.t. ${\sf mean-cost}(\Pi) < {\sf mean-cost}(\pi)$

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i+c}{\sum_{i=1}^n r_i t_i+r}$$

well-defined on \overline{Z} . Then $inf_{\overline{Z}}f$ is obtained on the border of \overline{Z} with integer coordinates.

- \sim for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} s.t. mean-cost(Π) < mean-cost(π)
- Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i+c}{\sum_{i=1}^n r_i t_i+r}$$

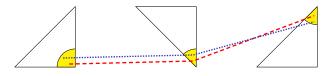
well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

- \sim for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} s.t. mean-cost(Π) < mean-cost(π)
- Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

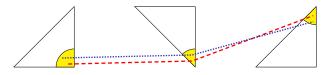
 \rightarrow the optimal cycle of \mathcal{A}_{cp} is better than any infinite path of $\mathcal{A}!$

Approximation of abstract paths:



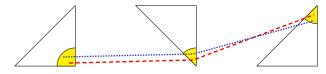
For any path Π of $\mathcal{A}_{\sf cp}$,

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > 0$,

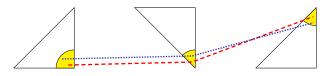
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon>0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{mean\text{-}cost}(\Pi) - \mathsf{mean\text{-}cost}(\pi_{\varepsilon})| < \eta$$

Going further 2: concavely-priced cost functions

→ A general abstract framework for quantitative timed systems

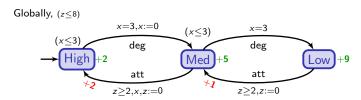
Theorem [JT08]

In concavely-priced timed automata, optimal cost is computable, if we restrict to quasi-concave cost functions. For the following cost functions, the (decision) problem is even PSPACE-complete:

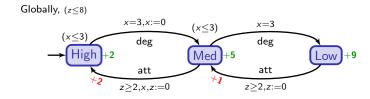
- optimal-time and optimal-cost reachability;
- optimal discrete discounted cost;
- optimal mean-cost.

 \rightarrow the corner-point abstraction can be used

Going further 3: discounted-time cost optimization

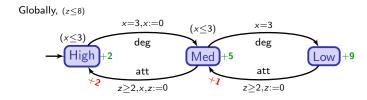


Going further 3: discounted-time cost optimization



∼ compute optimal infinite schedules that minimize discounted cost over time

Going further 3: discounted-time cost optimization

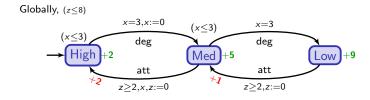


→ compute optimal infinite schedules that minimize

$$\mathsf{discounted\text{-}cost}_{\lambda}(\pi) = \sum_{n \geq 0} \lambda^{T_n} \int_{t=0}^{\tau_{n+1}} \lambda^t \mathsf{cost}(\ell_n) \, \mathrm{d}t + \lambda^{T_{n+1}} \mathsf{cost}(\ell_n \xrightarrow{a_{n+1}} \ell_{n+1})$$

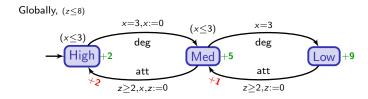
if
$$\pi = (\ell_0, \nu_0) \xrightarrow{\tau_1, a_1} (\ell_1, \nu_1) \xrightarrow{\tau_2, a_2} \cdots$$
 and $T_n = \sum_{i \le n} \tau_i$

Going further 3: discounted-time cost optimization

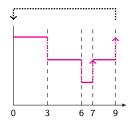


∼ compute optimal infinite schedules that minimize discounted cost over time

Going further 3: discounted-time cost optimization

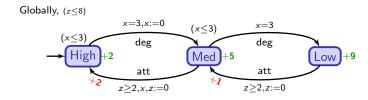


→ compute optimal infinite schedules that minimize discounted cost over time



if $\lambda = e^{-1}$, the discounted cost of that infinite schedule is ≈ 2.16

Going further 3: discounted-time cost optimization



→ compute optimal infinite schedules that minimize discounted cost over time

Theorem [FL08]

In weighted timed automata, the optimal discounted cost is computable in FXPTIMF

→ the corner-point abstraction can be used

And symbolically?

• Non-obvious in general...

And symbolically?

- Non-obvious in general...
- Only for optimal reachability

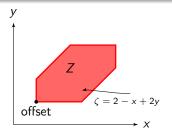
And symbolically?

- Non-obvious in general...
- Only for optimal reachability

Priced zones

priced zone
$$=$$
 zone $+$ affine cost function

 efficient representation: DBM + offset cost + affine coefficient for each clock



Represented by: zone Z

offset cost: +4

rate for x: -1

rate for y: +2

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

[[]LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

• Development of an (abstract) inclusion test \sqsubseteq_M on priced zones

[[]LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

- Development of an (abstract) inclusion test \sqsubseteq_M on priced zones
- $\mathcal{Z} \sqsubseteq_M \mathcal{Z}'$ reduces to several bilevel linear optimization problems

[[]LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

Theorem [LBB+01,RLS06]

The forward algorithm with standard inclusion is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

- Development of an (abstract) inclusion test \sqsubseteq_M on priced zones
- $\mathcal{Z} \sqsubseteq_M \mathcal{Z}'$ reduces to several bilevel linear optimization problems

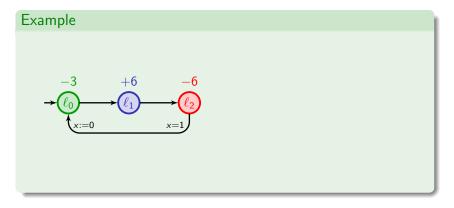
Theorem [BCM16]

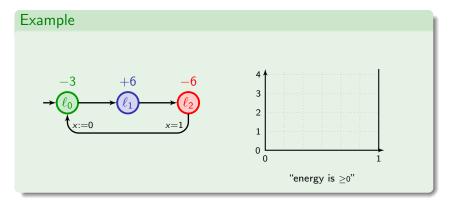
The forward algorithm with inclusion test \sqsubseteq_M is correct and terminates for timed automata with some conditions on the cost.

It is always better than standard inclusion for bounded timed automata.

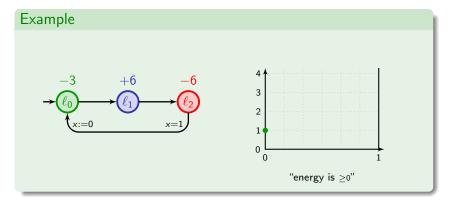
[[]LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

[[]RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).
[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).

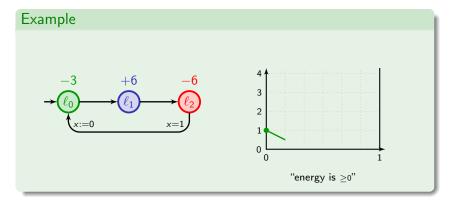




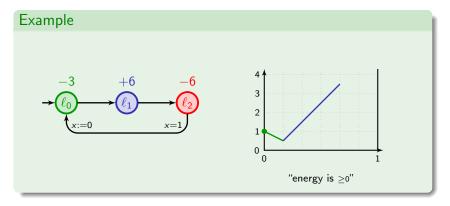
• Lower-bound problem (L)



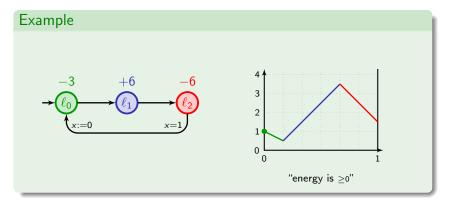
• Lower-bound problem (L)



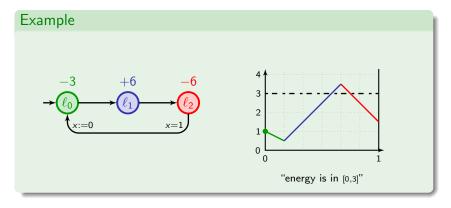
Lower-bound problem (L)



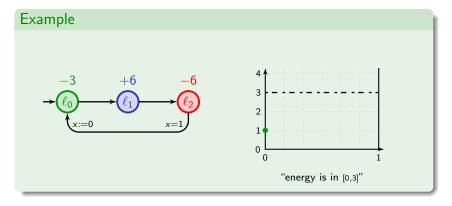
• Lower-bound problem (L)



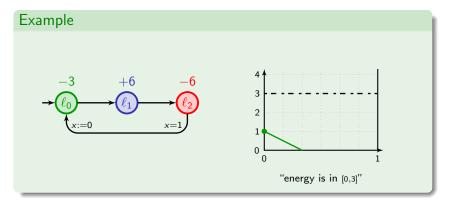
Lower-bound problem (L)



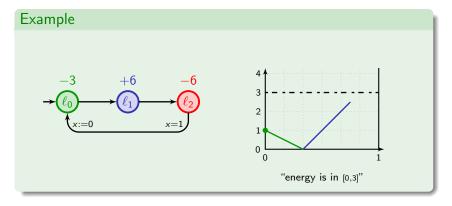
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



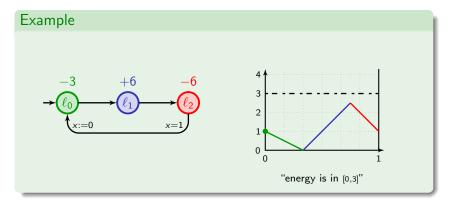
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



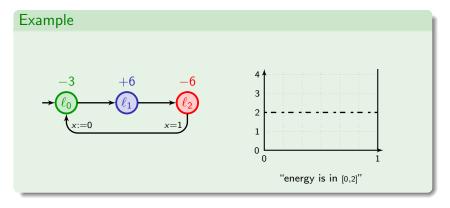
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



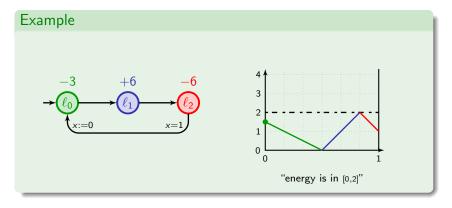
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



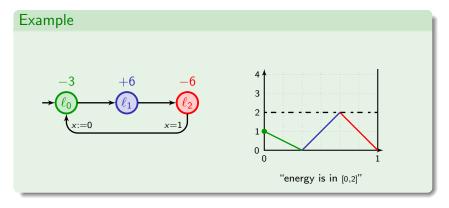
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



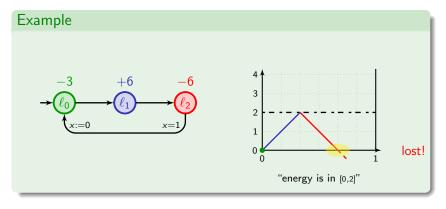
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



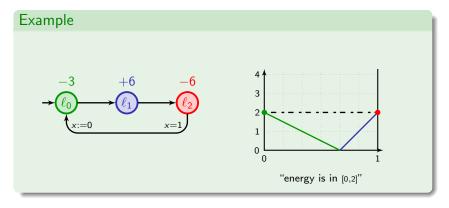
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



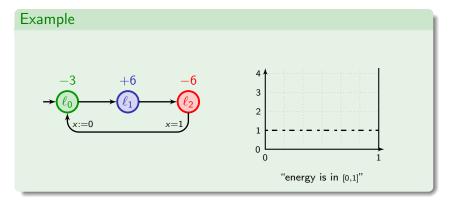
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



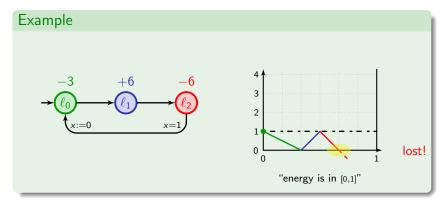
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



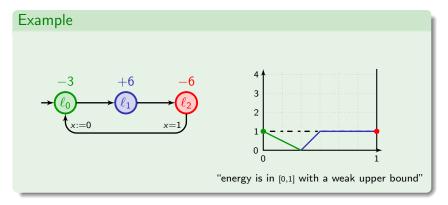
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)



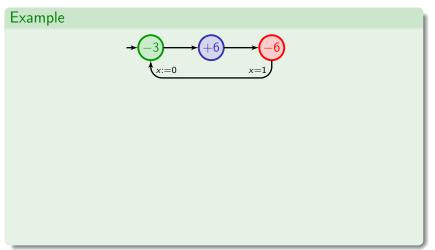
- Lower-bound problem (L)
- Lower-and-upper-bound problem (L+U)
- Lower-and-weak-upper-bound problem (L+W)

Idea: delay in the most profitable location

→ the corner-point abstraction

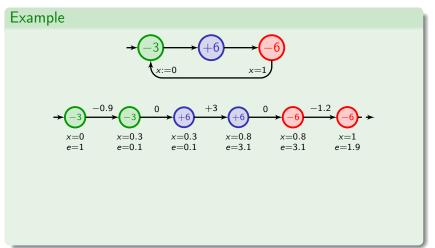
Idea: delay in the most profitable location

 \sim the corner-point abstraction



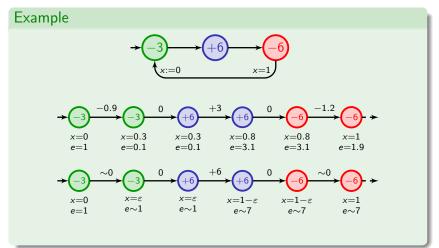
Idea: delay in the most profitable location

 \sim the corner-point abstraction



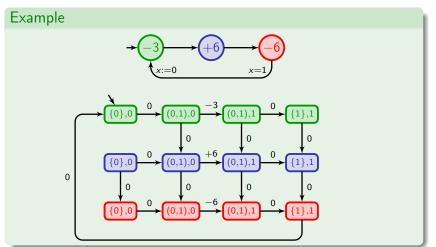
Idea: delay in the most profitable location

→ the corner-point abstraction



Idea: delay in the most profitable location

 \sim the corner-point abstraction



Idea: delay in the most profitable location

→ the corner-point abstraction

Theorem [BFLMS08]

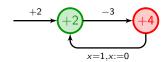
The corner-point abstraction is sound and complete for single-clock WTA with no discrete costs. Hence the existential **L**-problem is in PTIME in that case.

Idea: delay in the most profitable location

 \sim the corner-point abstraction

Remark

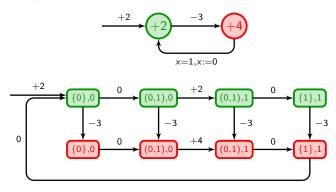
The corner-point abstraction is not correct with discrete costs.



Idea: delay in the most profitable location

→ the corner-point abstraction

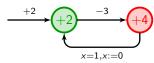
Remark

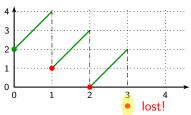


Idea: delay in the most profitable location

→ the corner-point abstraction

Remark

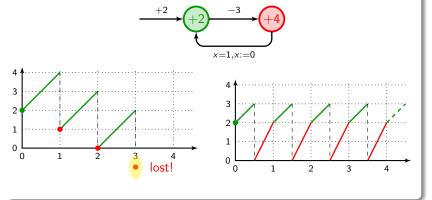




Idea: delay in the most profitable location

 \sim the corner-point abstraction

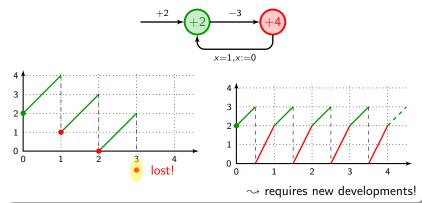
Remark

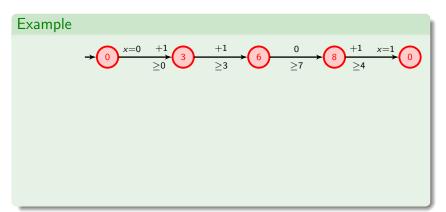


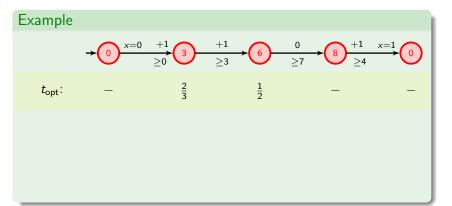
Idea: delay in the most profitable location

→ the corner-point abstraction

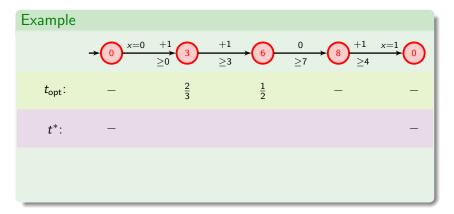
Remark



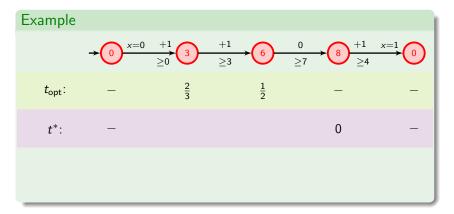




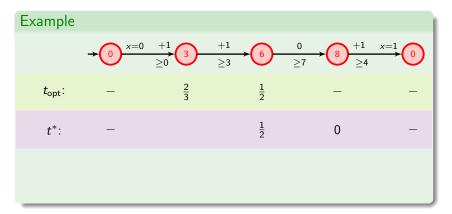
• compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;



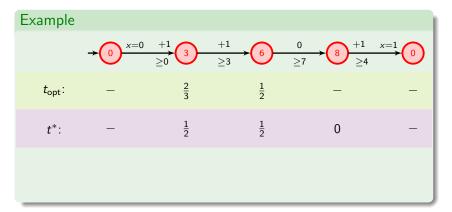
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



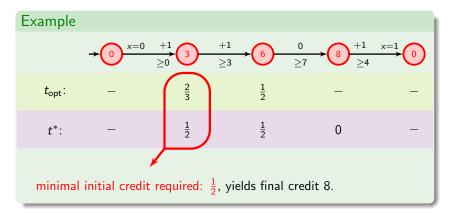
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



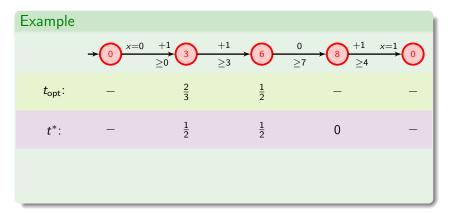
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



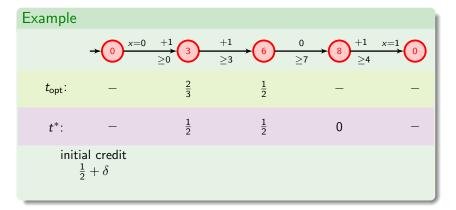
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



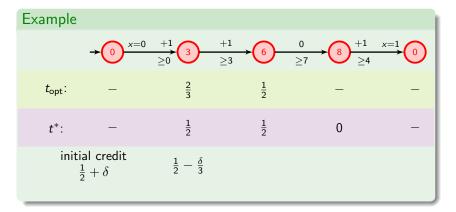
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



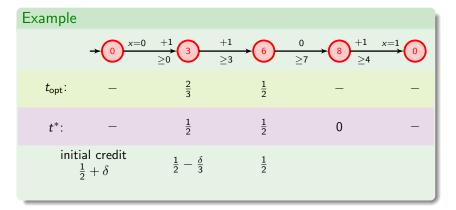
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



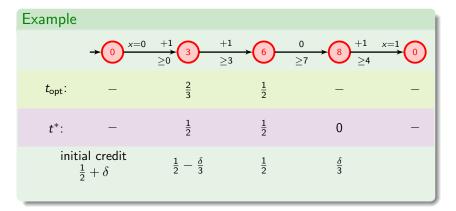
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



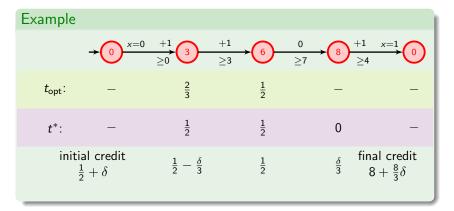
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



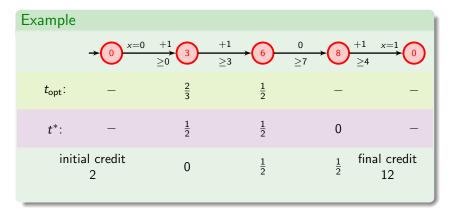
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



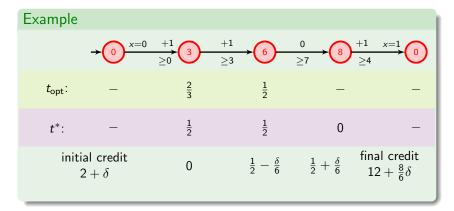
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



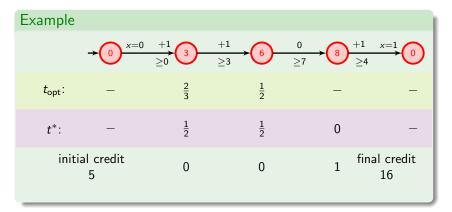
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



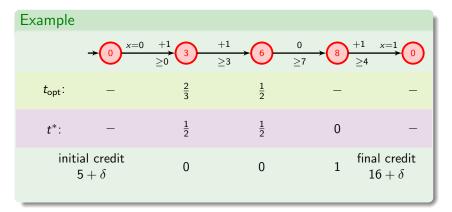
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



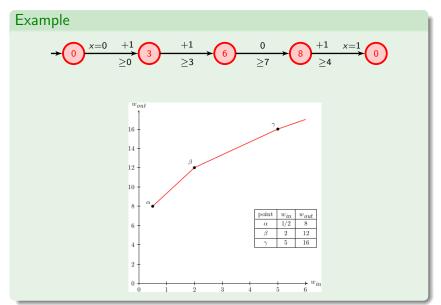
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



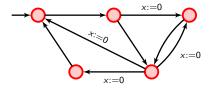
Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

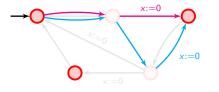
• transform the automaton into an automaton with energy functions;



Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

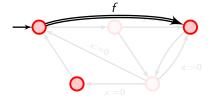
transform the automaton into an automaton with energy functions;



Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

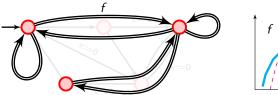
transform the automaton into an automaton with energy functions;



Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

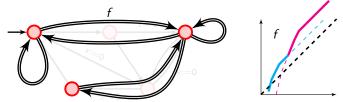
transform the automaton into an automaton with energy functions;



Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock WTA

transform the automaton into an automaton with energy functions;



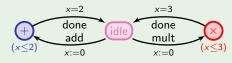
 check if simple cycles can be iterated (or if a Zeno cycle can be reached...)

Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- Tools
- Towards applying all this theory to robotic systems
- Conclusion

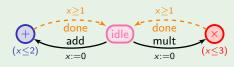
to model uncertainty

Example of a processor in the taskgraph example

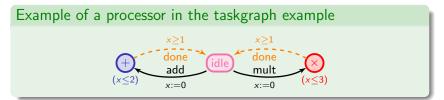


to model uncertainty

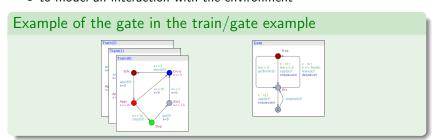
Example of a processor in the taskgraph example



to model uncertainty

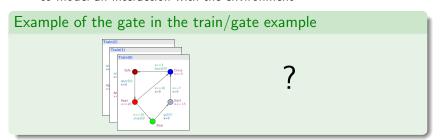


• to model an interaction with the environment



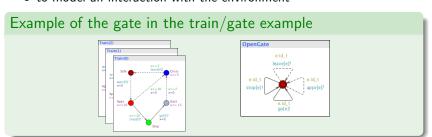
to model uncertainty

• to model an interaction with the environment



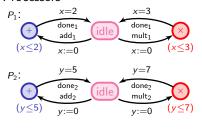
to model uncertainty

• to model an interaction with the environment

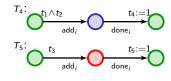


Modelling the task graph scheduling problem

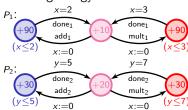
Processors



Tasks

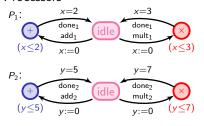


Modelling energy

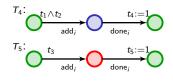


Modelling the task graph scheduling problem

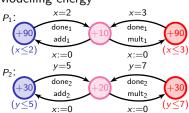
Processors



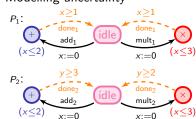
Tasks



Modelling energy

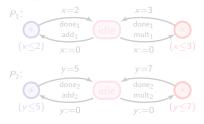


Modelling uncertainty

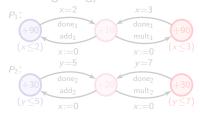


Modelling the task graph scheduling problem

Processors



Modelling energy

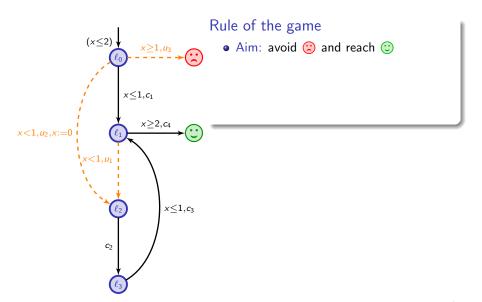


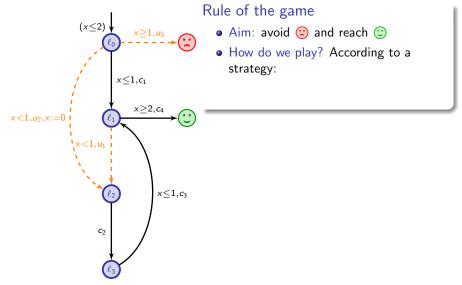
Tasks

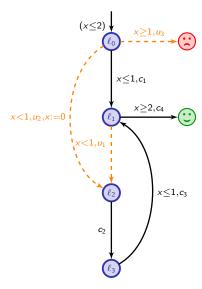


A (good) schedule is a strategy in the product game (with a low cost)

Modelling uncertainty



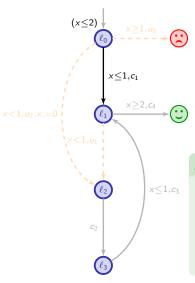




Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)



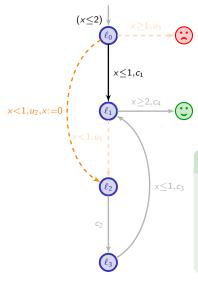
Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from $(\ell_0, 0)$, play $(0.5, c_1)$



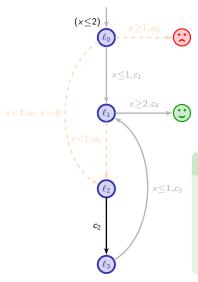
Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2



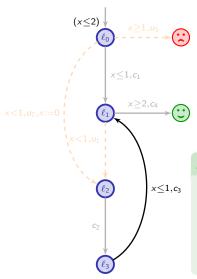
Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$



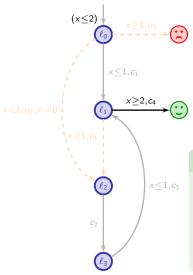
Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

 $f: history \mapsto (delay, cont. transition)$

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$



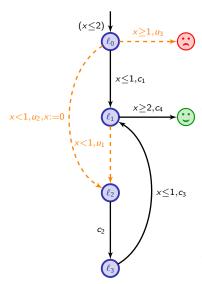
Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$
- from $(\ell_1, 1)$, play $(1, c_4)$

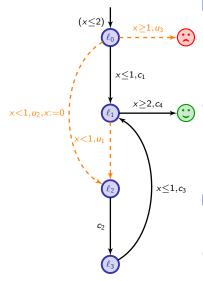


Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

Problems to be considered



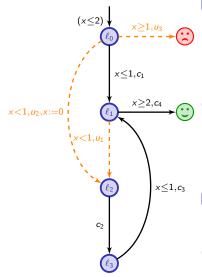
Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

Problems to be considered

• Does there exist a winning strategy?



Rule of the game

- Aim: avoid (2) and reach (3)
- How do we play? According to a strategy:

 $f: history \mapsto (delay, cont. transition)$

Problems to be considered

- Does there exist a winning strategy?
- If yes, compute one (as simple as possible).

Decidability of timed games

Theorem [AMPS98, HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

Decidability of timed games

Theorem [AMPS98, HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \sim classical regions are sufficient for solving such problems a region-closed attractor can be computed

Decidability of timed games

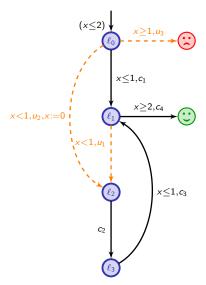
Theorem [AMPS98, HK99]

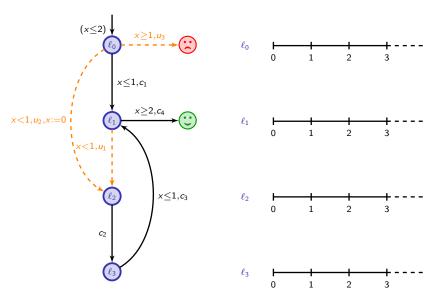
Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

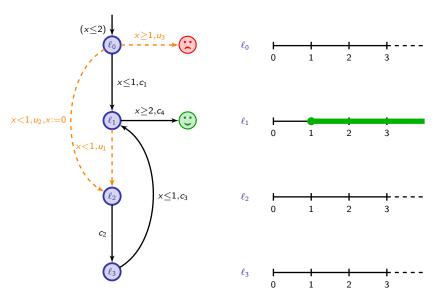
 ∼ classical regions are sufficient for solving such problems a region-closed attractor can be computed

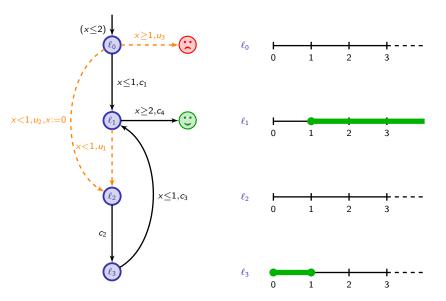
Theorem [AM99,BHPR07,JT07]

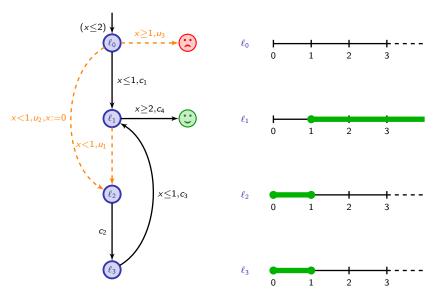
Optimal-time reachability timed games are decidable and EXPTIME-complete.

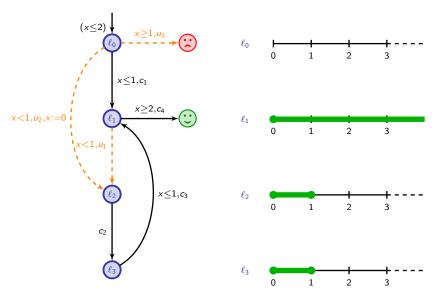


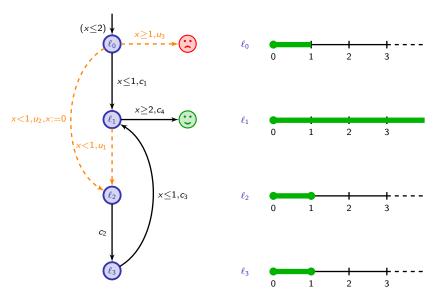


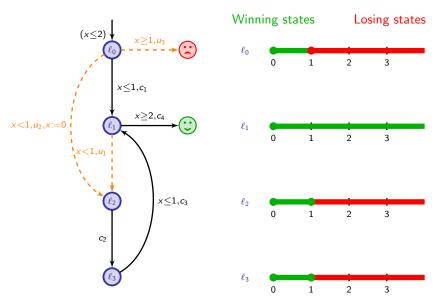












Skip attractors

•
$$\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$$

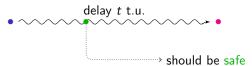
- $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$
- controllable and uncontrollable discrete predecessors:

$$\mathsf{cPred}(X) = \bigcup_{a \text{ cont.}} \mathsf{Pred}^a(X) \qquad \qquad \mathsf{uPred}(X) = \bigcup_{a \text{ uncont.}} \mathsf{Pred}^a(X)$$

- $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$
- controllable and uncontrollable discrete predecessors:

$$\mathsf{cPred}(\textcolor{red}{X}) = \bigcup_{a \text{ cont.}} \mathsf{Pred}^a(\textcolor{red}{X}) \qquad \qquad \mathsf{uPred}(\textcolor{red}{X}) = \bigcup_{a \text{ uncont.}} \mathsf{Pred}^a(\textcolor{red}{X})$$

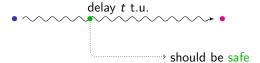
• time controllable predecessors:



- $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$
- controllable and uncontrollable discrete predecessors:

$$\mathsf{cPred}(X) = \bigcup_{a \text{ cont.}} \mathsf{Pred}^a(X) \qquad \qquad \mathsf{uPred}(X) = \bigcup_{a \text{ uncont.}} \mathsf{Pred}^a(X)$$

• time controllable predecessors:



$$\mathsf{Pred}_{\delta}(X,\mathsf{Safe}) = \{ \bullet \mid \exists t \geq 0, \ \bullet \xrightarrow{\delta(t)} \bullet \\ \mathsf{and} \ \forall 0 \leq t' \leq t, \ \bullet \xrightarrow{\delta(t')} \bullet \in \mathsf{Safe} \}$$

We write:

$$\pi({\color{red}{X}}) = {\color{red}{X}} \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}({\color{red}{X}}), \neg \mathsf{uPred}(\neg {\color{red}{X}}))$$

We write:

$$\pi(X) = X \cup \operatorname{Pred}_{\delta}(\operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$$

• The states from which one can ensure ② in no more than 1 step is:

$$\mathsf{Attr}_1(\ \odot) = \pi(\ \odot)$$

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure ② in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

The states from which one can ensure (2) in no more than 2 steps is:

$$\mathsf{Attr}_2(\circlearrowleft) = \pi(\mathsf{Attr}_1(\circlearrowleft))$$

We write:

$$\pi(X) = X \cup \operatorname{Pred}_{\delta}(\operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$$

• The states from which one can ensure ② in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

The states from which one can ensure (2) in no more than 2 steps is:

$$\mathsf{Attr}_2(\textcircled{\ }) = \pi(\mathsf{Attr}_1(\textcircled{\ }))$$

...

We write:

$$\pi(X) = X \cup \operatorname{Pred}_{\delta}(\operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$$

• The states from which one can ensure ② in no more than 1 step is:

$$\mathsf{Attr}_1(\ \bigcirc\) = \pi(\ \bigcirc\)$$

The states from which one can ensure (2) in no more than 2 steps is:

$$\mathsf{Attr}_2(\circlearrowleft) = \pi(\mathsf{Attr}_1(\circlearrowleft))$$

- ۵
- The states from which one can ensure ② in no more than *n* steps is:

$$\mathsf{Attr}_n(\textcircled{\ }) = \pi(\mathsf{Attr}_{n-1}(\textcircled{\ }))$$

We write:

$$\pi(X) = X \cup \operatorname{Pred}_{\delta}(\operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$$

• The states from which one can ensure ① in no more than 1 step is:

$$\mathsf{Attr}_1(\ \bigcirc\) = \pi(\ \bigcirc\)$$

The states from which one can ensure (2) in no more than 2 steps is:

$$\mathsf{Attr}_2(\circlearrowleft) = \pi(\mathsf{Attr}_1(\circlearrowleft))$$

- ۵
- The states from which one can ensure ② in no more than *n* steps is:

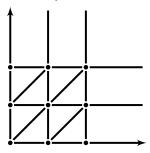
$$Attr_n(\textcircled{0}) = \pi(Attr_{n-1}(\textcircled{0}))$$
$$= \pi^n(\textcircled{0})$$

Stability w.r.t. regions

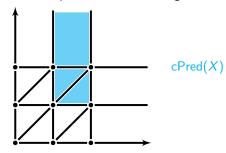
- if X is a union of regions, then:
 - Pred_a(X) is a union of regions,
 - and so are cPred(X) and uPred(X).

Stability w.r.t. regions

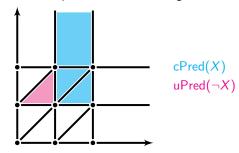
- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



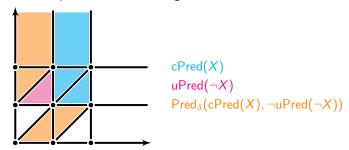
- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



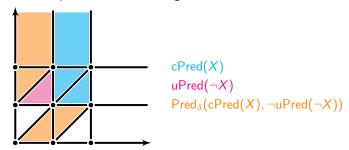
- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



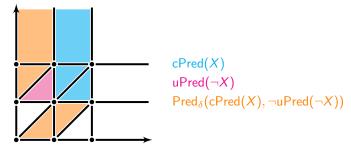
- if X is a union of regions, then:
 - Pred_a(X) is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

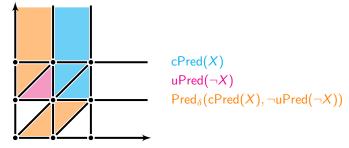


- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

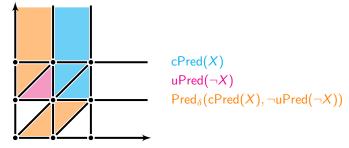
- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

 \sim the computation of $\pi^*(\bigcirc)$ terminates!

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

 \sim the computation of $\pi^*(\bigcirc)$ terminates! ... and is correct

And in practice?

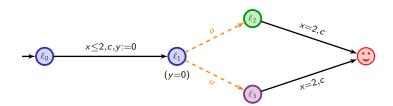
 A zone-based forward algorithm with backtracking [CDF+05,BCD+07]

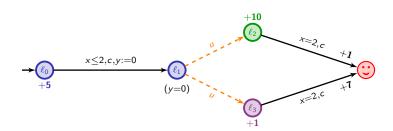
Outline

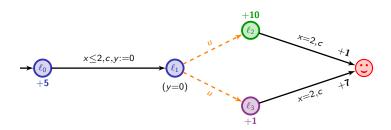
- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- 6 Tools
- 7 Towards applying all this theory to robotic systems
- Conclusion

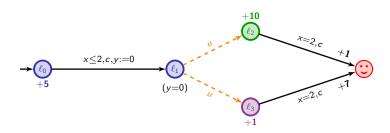
A simple

timed game

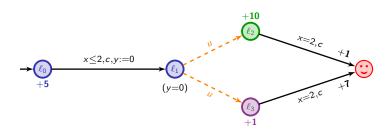




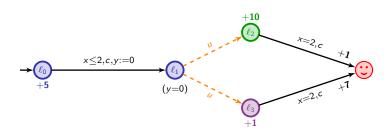




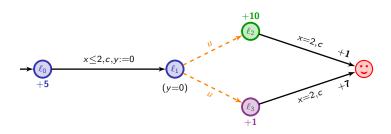
$$5t + 10(2-t) + 1$$



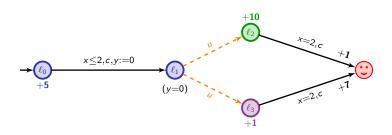
$$5t + 10(2-t) + 1$$
, $5t + (2-t) + 7$



max (
$$5t + 10(2 - t) + 1$$
 , $5t + (2 - t) + 7$)



$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$



Question: what is the optimal cost we can ensure while reaching ??

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

 \sim strategy: wait in ℓ_0 , and when $t=\frac{4}{3}$, go to ℓ_1

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

```
[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed games (ICALP'04). [BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS'05). [BBM06] Bouyer, Brihaye, Markey, Improved undecidability results on weighted timed automata (Information Processing Letters). [BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06). [Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11). [HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13). [BGK+14] Brihaye, Geareatrs, Krishna, Manasa, Monmege, Trivedi. Adding, Negative Prices to Priced Timed Games (CONCUR'14).
```

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a symbolic algorithm to solve weighted timed games with a strongly non-Zeno cost.

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be computed, as soon as games have three clocks or more.

Optimal reachability in weighted timed games (2)

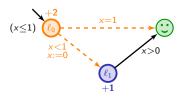
[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be computed, as soon as games have three clocks or more.

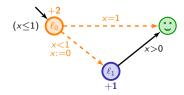
[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp. PTIME) when automata have a single clock (resp. with two rates). They are PTIME-hard.

• Memoryless strategies can be non-optimal...

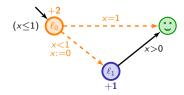


• Memoryless strategies can be non-optimal...



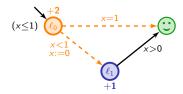
... but memoryless almost-optimal strategies will be sufficient.

• Memoryless strategies can be non-optimal...



- ... but memoryless almost-optimal strategies will be sufficient.
- Key: resetting the clock somehow resets the history...

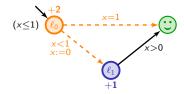
• Memoryless strategies can be non-optimal...



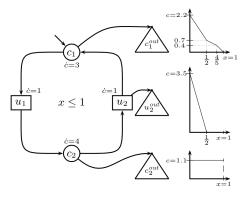
... but memoryless almost-optimal strategies will be sufficient.

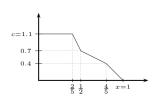
- Key: resetting the clock somehow resets the history...
- By unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.

• Memoryless strategies can be non-optimal...

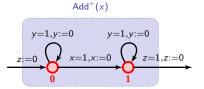


- ... but memoryless almost-optimal strategies will be sufficient.
- Key: resetting the clock somehow resets the history...
- By unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proofs of correctness

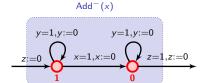




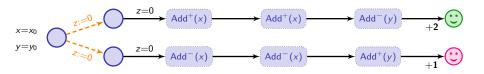
$$\sigma(c_2, x) = \begin{cases} c_2^{out} & \text{if } 0 \le x < 2/5\\ c_2 & \text{if } 2/5 \le x < 1/2\\ u_2 & \text{if } 1/2 \le x \le 1 \end{cases}$$

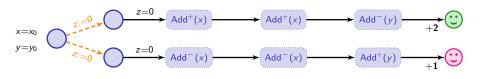


The cost is increased by x_0

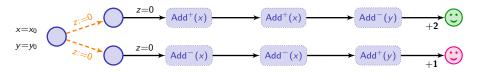


The cost is increased by $1-x_0$

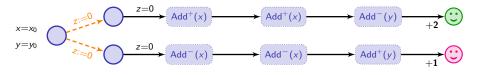




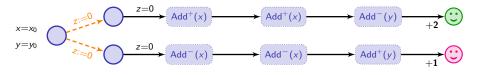
• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$



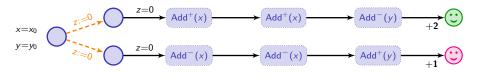
• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$
In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

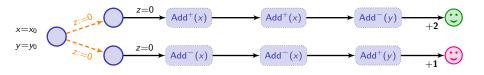


- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

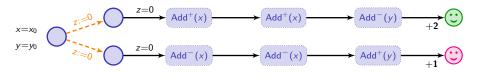
Given two clocks x and y, we can check whether y = 2x.



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

 \rightarrow player 2 can enforce cost $3 + |y_0 - 2x_0|$

Given two clocks x and y, we can check whether y = 2x.



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3 \Rightarrow player 2 can enforce cost $3 + |y_0 2x_0|$
- Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

Player 1 will simulate a two-counter machine:

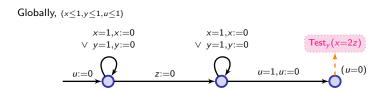
- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

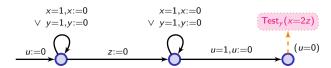
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module:
- the counter values c_1 and c_2 are encoded by two clocks:

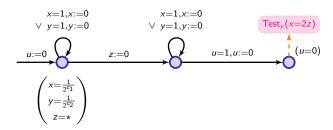
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module:
- the counter values c_1 and c_2 are encoded by two clocks:

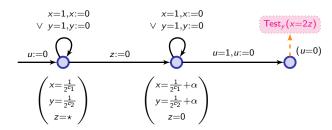
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

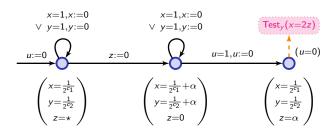
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module:
- the counter values c_1 and c_2 are encoded by two clocks:

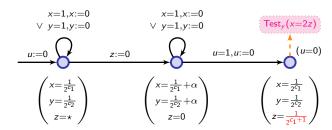
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



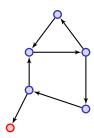
Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module:
- the counter values c_1 and c_2 are encoded by two clocks:

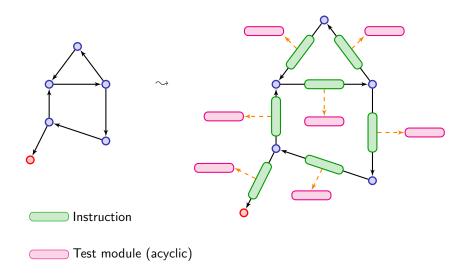
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



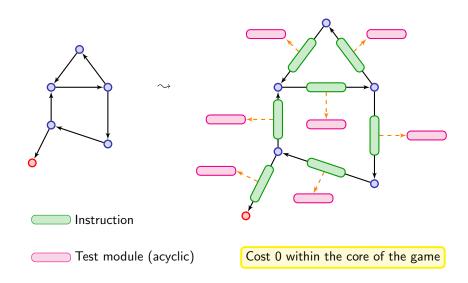
Shape of the reduction



Shape of the reduction



Shape of the reduction



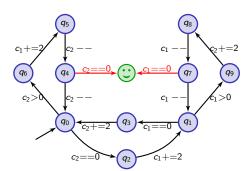
Some further subtlety

Value of the game = infimum of all costs of strategies

Some further subtlety

Value of the game = infimum of all costs of strategies

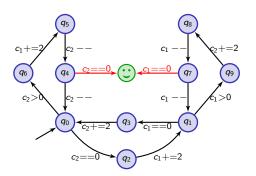
The value of the game is 3, but no strategy has cost 3.

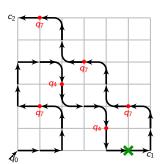


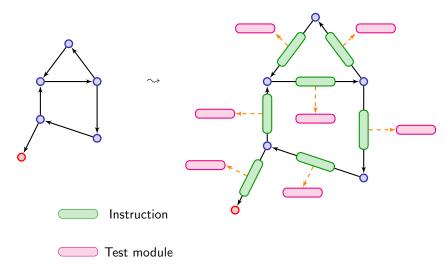
Some further subtlety

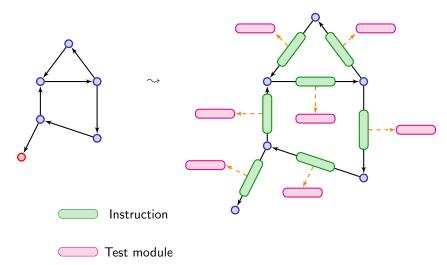
Value of the game = infimum of all costs of strategies

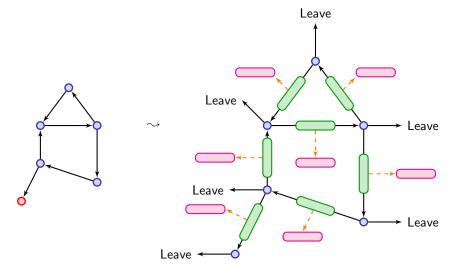
The value of the game is 3, but no strategy has cost 3.



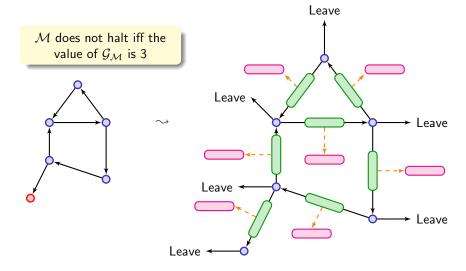








Leave with cost $3 + 1/2^n$ (n: length of the path)



Leave with cost $3 + 1/2^n$ (n: length of the path)

Are we done?

Optimal cost is computable...

... when cost is strongly non-zeno.

[AM04,BCFL04]

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$

Optimal cost is not computable...

... when cost is almost-strongly non-zeno.

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$
 or $cost(\varrho) = 0$

Optimal cost is computable...

... when cost is strongly non-zeno.

[AM04,BCFL04]

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno.

[BJM15]

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$
 or $cost(\varrho) = 0$

Optimal cost is computable...

... when cost is strongly non-zeno.

[AM04,BCFL04]

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno.

[BJM15]

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$
 or $cost(\varrho) = 0$

- Almost-optimality in practice should be sufficient
- Even when we know how to compute the value, we are only able to synthesize almost-optimal strategies...

Theorem

Let $\mathcal G$ be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon>0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^{+} - v_{\epsilon}^{-}| < \epsilon \quad \text{and} \quad v_{\epsilon}^{-} \le \text{optcost}_{\mathcal{G}} \le v_{\epsilon}^{+}$$

Theorem

Let $\mathcal G$ be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon>0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad \text{and} \quad v_{\epsilon}^- \le \text{optcost}_{\mathcal{G}} \le v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\mathsf{optcost}_{\mathcal{G}} \leq \mathsf{cost}(\sigma_{\epsilon}) \leq \mathsf{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

Theorem

Let $\mathcal G$ be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon>0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad \text{and} \quad v_{\epsilon}^- \le \text{optcost}_{\mathcal{G}} \le v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\mathsf{optcost}_{\mathcal{G}} \leq \mathsf{cost}(\sigma_{\epsilon}) \leq \mathsf{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

Skip approximation scheme

Theorem

Let $\mathcal G$ be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon>0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad \text{and} \quad v_{\epsilon}^- \le \text{optcost}_{\mathcal{G}} \le v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\mathsf{optcost}_{\mathcal{G}} \leq \mathsf{cost}(\sigma_{\epsilon}) \leq \mathsf{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

 Standard technics: unfold the game to get more precision, and compute two adjacency sequences

Theorem

Let $\mathcal G$ be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon>0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad \text{and} \quad v_{\epsilon}^- \le \text{optcost}_{\mathcal{G}} \le v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\mathsf{optcost}_{\mathcal{G}} \leq \mathsf{cost}(\sigma_{\epsilon}) \leq \mathsf{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

- Standard technics: unfold the game to get more precision, and compute two adjacency sequences
- This is not possible here
 There might be runs with prefixes of arbitrary length and cost 0 (e.g. the game of the undecidability proof)

Idea for approximation

Idea

Only partially unfold the game:

- Keep components with cost 0 untouched we call it the kernel
- Unfold the rest of the game

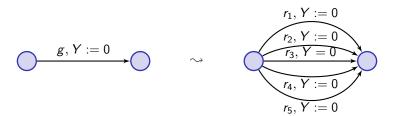
Idea for approximation

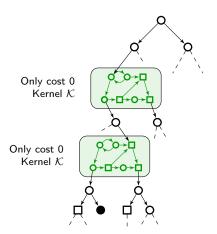
Idea

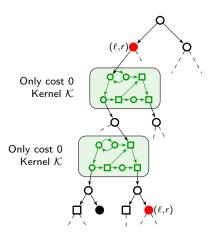
Only partially unfold the game:

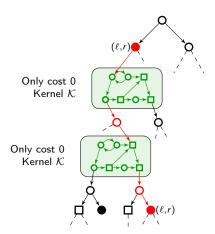
- Keep components with cost 0 untouched we call it the kernel
- Unfold the rest of the game

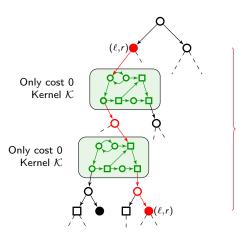
First: split the game along regions!





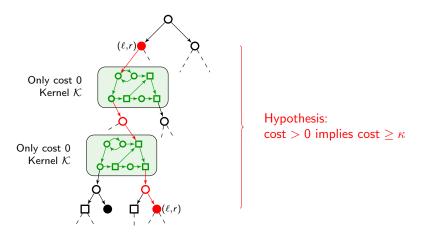




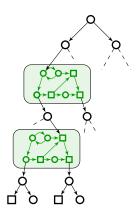


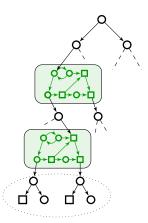
 $\begin{array}{l} \text{Hypothesis:} \\ \cos t > 0 \text{ implies } \cos t \geq \kappa \end{array}$

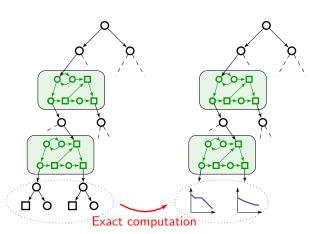
Idea of the proof: Semi-unfolding

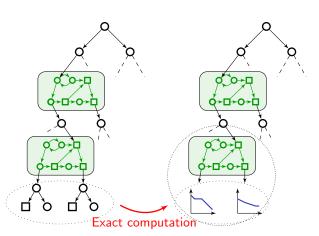


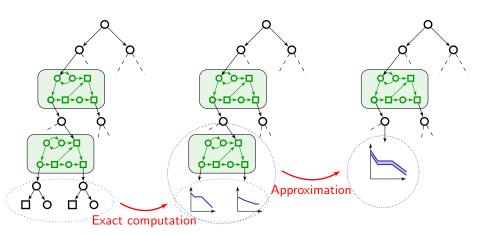
Conclusion: we can stop unfolding the game after finitely many steps

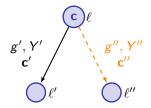


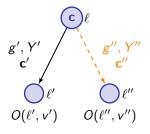




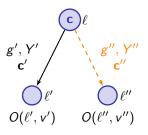




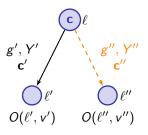




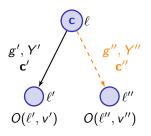
$$O(\ell, v) =$$



$$O(\ell, v) = \inf_{t' \mid v + t' \mid = g'}$$



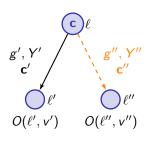
$$O(\ell, v) = \inf_{t' \mid v + t' \mid = g'} \max(,)$$



$$O(\ell, \nu) = \inf_{t' \mid \nu + t' \mid = g'} \max(\alpha),$$

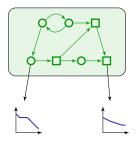
$$(\alpha) = t'\mathbf{c} + \mathbf{c}' + O(\ell', v')$$

$$v'=[Y'\leftarrow 0](v+t')$$

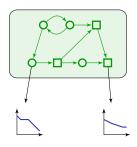


$$O(\ell, v) = \inf_{t' \mid v + t' \mid = g'} \max((\alpha), (\beta))$$
$$(\alpha) = t' \mathbf{c} + \mathbf{c}' + O(\ell', v')$$
$$(\beta) = \sup_{t'' \le t' \mid v + t'' \mid = g''} t'' \mathbf{c} + \mathbf{c}'' + O(\ell'', v'')$$

$$v' = [Y' \leftarrow 0](v+t')$$
$$v'' = [Y'' \leftarrow 0](v+t'')$$

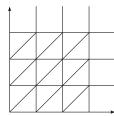


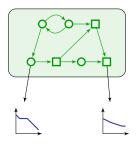
Output cost functions f



Output cost functions f

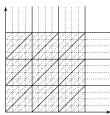
9 Refine the regions such that f differs of at most ϵ within a small region

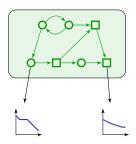




Output cost functions f

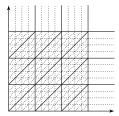
Q Refine the regions such that f differs of at most ϵ within a small region

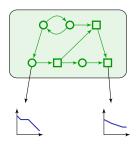




Output cost functions f

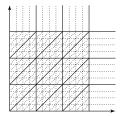
9 Refine the regions such that f differs of at most ϵ within a small region





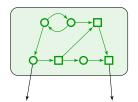
Output cost functions f

Q Refine the regions such that f differs of at most ϵ within a small region

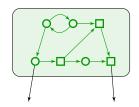


Quadratic States Under- and over-approximate by piecewise constant functions f_{ϵ}^- and f_{ϵ}^+

3 Refine/split the kernel along the new small regions and fix f_{ϵ}^- or f_{ϵ}^+ , write f_{ϵ}



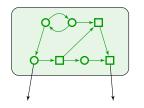
 f_{ϵ} : constant f_{ϵ} : constant



 f_{ϵ} : constant

 f_{ϵ} : constant

- **3** Refine/split the kernel along the new small regions and fix f_{ϵ}^- or f_{ϵ}^+ , write f_{ϵ}
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_{ϵ})

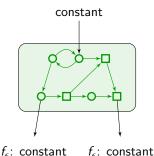


 f_{ϵ} : constant

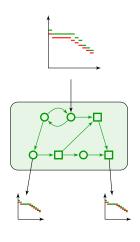
 f_{ϵ} : constant

9 Refine/split the kernel along the new small regions and fix f_{ϵ}^{-} or f_{ϵ}^{+} , write f_{ϵ}

- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_{ϵ})
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_{ϵ}) is constant within a small region



- **3** Refine/split the kernel along the new small regions and fix f_{ϵ}^- or f_{ϵ}^+ , write f_{ϵ}
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_{ϵ})
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_{ϵ}) is constant within a small region



- **3** Refine/split the kernel along the new small regions and fix f_{ϵ}^- or f_{ϵ}^+ , write f_{ϵ}
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_{ϵ})
- **③** Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_{ϵ}) is constant within a small region

Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- **6** Tools
- Towards applying all this theory to robotic systems
- Conclusion

• Many tools and prototypes everywhere on earth...

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995
 - Uppaal for timed automata
 - Uppaal-TiGa for timed games
 - Uppaal-Cora for weighted timed automata

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995
- Our new tool TiAMo, developed by Maximilien Colange (formerly at LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata Model-checker

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995
- Our new tool TiAMo, developed by Maximilien Colange (formerly at LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata Model-checker

- Timed automata: (time-optimal) reachability
- Weighted timed automata: optimal rechability

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995
- Our new tool TiAMo, developed by Maximilien Colange (formerly at LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata Model-checker

- Timed automata: (time-optimal) reachability
- Weighted timed automata: optimal rechability

- Aims at being a platform for experiments (open source!)
- Aims at asserting and comparing algorithms

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995
- Our new tool TiAMo, developed by Maximilien Colange (formerly at LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata Model-checker

https://git.lsv.fr/colange/tiamo

- Many tools and prototypes everywhere on earth...
- Tool-suite Uppaal, developed in Aalborg (Denmark) and originally Uppsala (Sweden) since 1995
- Our new tool TiAMo, developed by Maximilien Colange (formerly at LSV), using code by Ocan Sankur (IRISA, France)

TiAMo = Timed Automata Model-checker

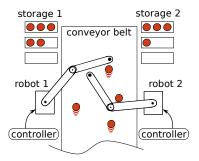
https://git.lsv.fr/colange/tiamo

 In the future: TiAMo will merge with TChecker (developed by Frédéric Herbreteau (LaBRI, France))

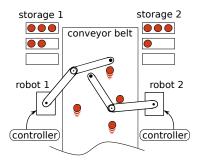
Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- Tools
- Towards applying all this theory to robotic systems
- Conclusion

Example problem, objective and approach

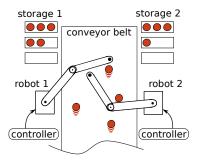


Example problem, objective and approach



- Infinitely many configurations
- Complex behaviour
- Mechanical constraints

Example problem, objective and approach

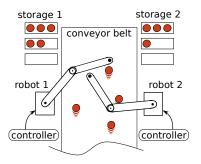


Goal: Synthesize a controller:

- Which robot handles an object
- How to avoid collision
- Don't miss any object

- Infinitely many configurations
- Complex behaviour
- Mechanical constraints

Example problem, objective and approach



- Infinitely many configurations
- Complex behaviour
- Mechanical constraints

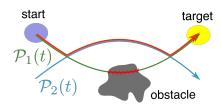
Goal: Synthesize a controller:

- Which robot handles an object
- How to avoid collision
- Don't miss any object

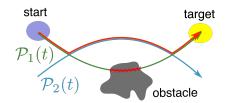
Approach:

- Discretization of the behaviour via a fixed set of continuous controllers
- Create an abstraction and use previous results

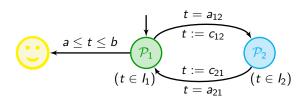
Simplistic idea: fixed set of reference trajectories + property



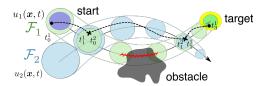
Simplistic idea: fixed set of reference trajectories + property



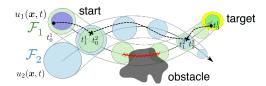
Corresponding timed automaton:



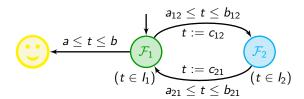
More realistic idea: fixed set of funnels for control law + property



More realistic idea: fixed set of funnels for control law + property

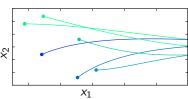


Corresponding timed automaton:



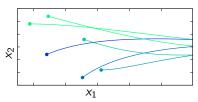
Control funnels

System with continuous dynamics $\dot{\mathbf{x}} = f(\mathbf{x}, t)$



Control funnels

System with continuous dynamics $\dot{\mathbf{x}} = f(\mathbf{x}, t)$

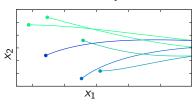


A (control) funnel is a trajectory $\mathcal{F}(t)$ of a set in the state space such that, for any trajectory $\mathbf{x}(t)$ of the dynamical system:

$$\forall t_0 \in \mathbb{R}, \ \mathbf{x}(t_0) \in \mathcal{F}(t_0) \Rightarrow \forall t \geq t_0, \ \mathbf{x}(t) \in \mathcal{F}(t)$$

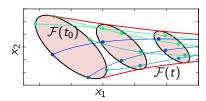
Control funnels

System with continuous dynamics $\dot{\mathbf{x}} = f(\mathbf{x}, t)$

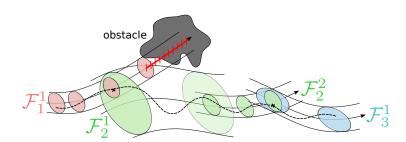


A (control) funnel is a trajectory $\mathcal{F}(t)$ of a set in the state space such that, for any trajectory $\mathbf{x}(t)$ of the dynamical system:

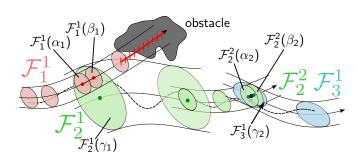
$$\forall t_0 \in \mathbb{R}, \ \mathbf{x}(t_0) \in \mathcal{F}(t_0) \Rightarrow \forall t \geq t_0, \ \mathbf{x}(t) \in \mathcal{F}(t)$$



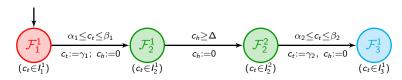
Example

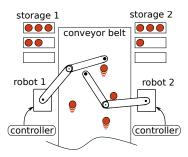


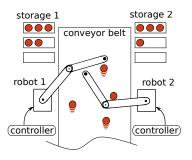
Example



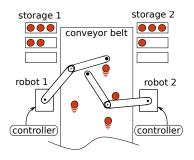
ct: positional clock; ch: local clock



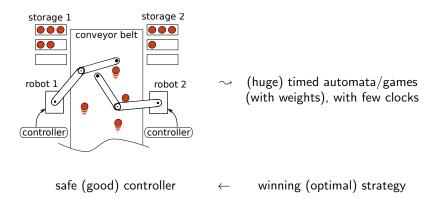




(huge) timed automata/games (with weights), with few clocks

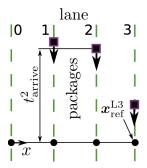


← winning (optimal) strategy



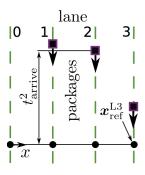
A pick-and-place example

1d point mass

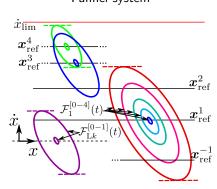


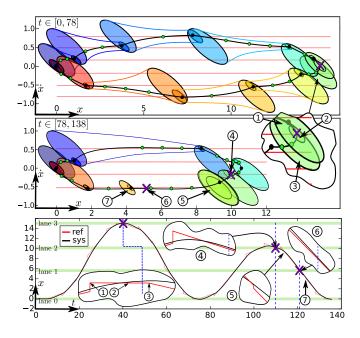
A pick-and-place example

1d point mass



Funnel system





Current challenges

For control people

• Handle more non-linear systems (automatically build control funnels)

Current challenges

For control people

• Handle more non-linear systems (automatically build control funnels)

For us

- Does not scale up very well so far (huge timed automata models)
 - Build the model on-demand?
 But, can we give guarantees (optimality) when only part of the model has been built?
 - Develop specific algorithms for the special timed automata we construct?
- Implement efficient approx. algorithm for weighted timed games

Outline

- Timed automata
- 2 Timed temporal logics
- Weighted timed automata
- 4 Timed games
- Weighted timed games
- Tools
- Towards applying all this theory to robotic systems
- 8 Conclusion

Conclusion

Summary of the talk

- Basics of timed automata verification
- Relevant extensions for applications: weights, games, mix of both
 - We looked at decidability and limits
 - We mentioned algorithmics and tools
- Timed automata can be used as abstractions for more complex systems

Conclusion

Current challenges

- Various theoretical issues
 - Decidability and approximability of weighted timed automata and games
 - New approaches (tree automata, reachability relations) might give a new light on the verification of timed systems
 - Robustness and implementability
- Continue working on algorithms and tools

TiAMo + TChecker

- Implementation of (weighted) timed games (good data structures, abstractions, etc.)
- More applications with specific challenges (e.g. robotic problems)