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Motivating example

Hydac oil pump industrial case study (Quasimodo research project)

Goals

1 Keep the oil level in the safe zone

↪→ Energy objective with lower and
upper bounds: EGLU

2 Minimize the average oil level

↪→ Average-energy objective: AE

3 Conjunction: AELU
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Outline

1 Average-energy games

2 Average-energy with energy constraints
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Average-energy: illustration
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Average-energy: overview

[Kar78] Karp. A characterization of the minimum cycle mean in a digraph (Discrete Mathematics)
[ZP96] Zwick, Paterson. The complexity of mean payoff games on graphs (Theoretical Computer Science)
[EM79] Ehrenfeucht, Mycielski. Positional strategies for mean payoff games (Int. Journal of Game Theory)
[FV97] Filar, Vrieze. Competitive Markov decision provesses (Springer)
[GS09] Gawlitza, Seidl. Games through nested fixpoints (CAV’09)
[GZ04] Gimbert, Zielonka. When can you play positionally? (MFCS’04)
[BFL+08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08)
[CDHS03] Chakrabarti, De Alfaro, Henzinger, Stoelinga. Resource interfaces (EMSOFT’03)
[FJ13] Fearnley, Jurdziński. Reachability in two-clock timed automata is PSPACE-complete (ICALP’13)

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CDHS03,BFL+08] memoryless [CDHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] pseudo-polynomial

Techniques

Classical criteria cannot be applied out-of-the-box
[EM79,BSV04,AR14,GZ04,Kop06]

↪→ we cannot mix nor shuffle cycles, but only 0-cycles!

1-player: memorylessness proof and polynomial-time LP-based
algorithm

2-player: extension thanks to Gimbert and Zielonka [GZ05]

MP-hardness
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Average-energy: overview

[GZ05] Gimbert, Zielonka. Games where you can play optimally without any memory (CONCUR’05)
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Two settings

1 AELU : AE with lower (0) and upper (U ∈ N) bounds

2 AEL: AE with only the lower bound (0)

↪→ Fixed initial credit cinit = 0
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With LU energy constraints, memory is needed!

AELU ; minimize AE while keeping EL ∈ [0, 3] (init. EL = 0).

b a c
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(d) Play π3 = (acaab)ω .

Minimal AE with π3: alternating between the +1, +2 and −3 cycles
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With LU energy constraints, memory is needed!
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Non-trivial behavior in general!
; We need to choose carefully which cycles to play
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With LU energy constraints, memory is needed!

AELU ; minimize AE while keeping EL ∈ [0, 3] (init. EL = 0).

Non-trivial behavior in general!
; We need to choose carefully which cycles to play

Result
The AELU problem is EXPTIME-complete.

Reduction from AELU to AE on pseudo-polynomial game

Reduction from this AE game to MP game +
pseudo-poly. algorithm.
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Complexity results for AELU

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CDHS03,BFL+08] memoryless [CDHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] pseudo-polynomial

AE P NP ∩ coNP memoryless

AELU PSPACE-c. EXPTIME-c. pseudo-polynomial
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What happens with only L-constraints?

[LLT04] Lafourcade, Lugiez, Treinen. Intruder deduction for AC-like equational theories with homomorphism (Research report LSV-04-16)

There is a priori no more an upper bound on the energy level...

... hence the state-space of the game becomes infinite

One-player case

Upper bound on the energy level, thanks to [LLT04]

Results for AELU apply!

This cannot easily be extended to two-player games...
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Two-player games with L-constraints

The crux idea

If the average is low (bounded by t), then there must be a large number
of configurations with energy level smaller than t!

Assume AE (π) ≤ t:

∃γ ∈ Γ≤t s.t. ∀n, ∃∞n′ ≥ n,

density(γ, π[n,n′]) ≥
t̃

4(t + 1)2|S |

There is a reachable cycle with average ≤ t (called good)

All (reachable) good cycles with no strict good sub-cycles have
length bounded by 8t1t2(t + 1)3|S |2
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Seeing strategies as (finite) trees

leaf
start of good cycle
critical node
backward edge
good cycle

A finite good tree represents a winning strategy

Fix a winning strategy, and build a finite tree by “closing” minimal
good cycles. We then have a finite good tree, hence a winning
strategy!

12/15



Seeing strategies as (finite) trees

leaf
start of good cycle
critical node
backward edge
good cycle

A finite good tree represents a winning strategy

Fix a winning strategy, and build a finite tree by “closing” minimal
good cycles. We then have a finite good tree, hence a winning
strategy!

12/15



Seeing strategies as (finite) trees

leaf
start of good cycle
critical node
backward edge
good cycle

A finite good tree represents a winning strategy

Fix a winning strategy, and build a finite tree by “closing” minimal
good cycles. We then have a finite good tree, hence a winning
strategy!

12/15



What is missing?

[Wal01] Walukiewicz. Pushdown processes: Games and model-checking (Information and Computation)
[FZ12] Fridman, Zimmermann. Playing pushdown parity games in a hurry (GandALF’12)

energy level is bounded in green
parts (good cycles)

what about white/gray parts?

; better understand winning
strategies in pushdown games

; an original proof by [Wal01],
revisited in [FZ12], from which we
can derive a doubly-exponential
upper bound on the energy level!

reduced to AELU problem!
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With energy constraints: results overview

[Hun14] Hunter. Reachability in succinct one-counter games (CoRR abs/1407.1996)
[Hun15] Hunter. Reachability in succinct one-counter games (RP’15)

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CDHS03,BFL+08] memoryless [CDHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] pseudo-polynomial

AE P NP ∩ coNP memoryless

AELU PSPACE-c. EXPTIME-c. pseudo-polynomial

AEL PSPACE-e./NP-h. 2-EXPTIME-e./EXPSPACE-h. super-exp. (doubly exp.)

; Lower bounds for AELU inferred from [Hun14,Hun15]
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Conclusion

[TV87] Thuijsman, Vrieze. The bad match; A total reward stochastic game (IR Spektrum)
[CP13] Chatterjee, Prabhu. Quantitative timed simulation functions and refinement metrics for real-time systems (HSCC’13)
[BEGM15] Boros, Elbassioni, Gurvich, Makino. Markov decision processes and stochastic games with total effective payoff (STACS’15)

“New” quantitative objective
Appeared in [TV87] as an alternative total reward definition but not

studied until recently. See also [CP13,BEGM15]

Yields natural payoff functions

AE “refines” TP (and MP)

Same complexity class as EGL, MP and TP games

AELU and AEL now well-understood

Next...
Investigate further that payoff function

Investigate further mean-payoff pushdown games?

Undecidable in general
By-product of this work: decidable restricted subclass
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