Let’s play!

Patricia Bouyer-Decitre

LSV, CNRS & ENS Paris-Saclay, France

Thanks to Mickael Randour for his slides!
We are going to play…
We are going to play... and discover game theory!
We are going to play... and discover game theory!

How will we proceed?
- We will play together...
We are going to play... and discover **game theory**!

How will we proceed?

- We will play together...
- ... and discover several key concepts!
We are going to play... and discover game theory!

How will we proceed?

- We will play together...
- ... and discover several key concepts!

What is game theory?

- General mathematical approach
- Interactions between agents or processes seen as games between several players
- Many applications: computer science, economy, biology, politics...
Historical context

- Movie *A beautiful mind* relating the life of John Nash!
Rationality

Fundamental assumption: players are rational!
Rationality

Fundamental assumption: players are rational!

- They make their decisions based on what is available to them (their knowledge)
Rationality

Fundamental assumption: players are rational!

- They make their decisions based on what is available to them (their knowledge)
- They want to maximize their own profit
Rationality

Fundamental assumption: players are rational!

- They make their decisions based on what is available to them (their knowledge)
- They want to maximize their own profit
- They have no emotion, their choices are not influenced by friendships or social restrictions
Rationality

- They make their decisions based on what is available to them (their knowledge)
- They want to maximize their own profit
- They have no emotion, their choices are not influenced by friendships or social restrictions

Today, we will be selfish... that's just a game 😊
Un first example: the Nim game

Rules of the game

- Two players
- 13 matches
- At her turn, a player removes 1, 2 or 3 matches
- The player who has to take the last one loses!
Un first example: the Nim game

Rules of the game
- Two players
- 13 matches
- At her turn, a player removes 1, 2 or 3 matches
- The player who has to take the last one loses!

Who wins? Could the loser have won?
Un first example: the Nim game

Rules of the game
- Two players
- 13 matches
- At her turn, a player removes 1, 2 or 3 matches
- The player who has to take the last one loses!

Who wins? Could the loser have won?
Do you want to bet?
Nim game: if you bet, you should first know the following...

If n is the number of matches, then:
- either the first player can win whatever the choices of the second player ($n \mod 4 \neq 1$)
- or the second player can win whatever the choices of the first player ($n \mod 4 = 1$)

Why that?
- If $n = 1$, the first player loses
- If $n = 2, 3$ or 4, the first player removes 1, 2 or 3 matches, and the second player loses
- If $n = 5$, the first player loses
...
Nim game: if you bet, you should first know the following...

If \(n \) is the number of matches, then:

- either the first player can win whatever the choices of the second player \((n \mod 4 \neq 1)\)
- or the second player can win whatever the choices of the first player \((n \mod 4 = 1)\)
Nim game: if you bet, you should first know the following...

If n is the number of matches, then:

- either the first player can win whatever the choices of the second player \((n \mod 4 \neq 1)\)
- or the second player can win whatever the choices of the first player \((n \mod 4 = 1)\)

Why that?

If $n = 1$, the first player loses
If $n = 2, 3$ or 4, the first player removes 1, 2 or 3 matches, and the second player loses
If $n = 5$, the first player loses...
Nim game: if you bet, you should first know the following...

If \(n \) is the number of matches, then:

- either the first player can win whatever the choices of the second player \((n \mod 4 \neq 1) \)
- or the second player can win whatever the choices of the first player \((n \mod 4 = 1) \)

Why that?

- If \(n = 1 \), the first player loses
Nim game: if you bet, you should first know the following...

If \(n \) is the number of matches, then:

- either the first player can win \((n \mod 4 \neq 1)\) whatever the choices of the second player
- or the second player can win \((n \mod 4 = 1)\) whatever the choices of the first player

Why that?

- If \(n = 1 \), the first player loses
- If \(n = 2, 3 \) or \(4 \), the first player removes 1, 2 or 3 matches, and the second player loses
Nim game: if you bet, you should first know the following...

If \(n \) is the number of matches, then:

- either the first player can win \((n \mod 4 \neq 1)\)
 whatever the choices of the second player
- or the second player can win \((n \mod 4 = 1)\)
 whatever the choices of the first player

Why that?

- If \(n = 1 \), the first player loses
- If \(n = 2, 3 \) or \(4 \), the first player removes 1, 2 or 3 matches, and the second player loses
- If \(n = 5 \), the first player loses
Nim game: if you bet, you should first know the following...

If \(n \) is the number of matches, then:

- either the first player can win \((n \mod 4 \neq 1) \)
 whatever the choices of the second player
- or the second player can win \((n \mod 4 = 1) \)
 whatever the choices of the first player

Why that?

- If \(n = 1 \), the first player loses
- If \(n = 2, 3 \) or \(4 \), the first player removes 1, 2 or 3 matches, and the second player loses
- If \(n = 5 \), the first player loses
- ...
Determinacy of games

- We say that the Nim game is determined: given an initial configuration of the game, one of the players can win, whatever the choices of the other player!
Determinacy of games

We say that the Nim game is determined: given an initial configuration of the game, one of the players can win, whatever the choices of the other player! But (s)he should play according to a winning strategy.
Determinacy of games

We say that the Nim game is determined: given an initial configuration of the game, one of the players can win, whatever the choices of the other player!
But (s)he should play according to a winning strategy.

Not very exciting, is it?
Determinacy of games

- We say that the Nim game is determined: given an initial configuration of the game, one of the players can win, whatever the choices of the other player!
 But (s)he should play according to a winning strategy.

- Not very exciting, is it? But it is the case of many games we like playing with!. For instance, *Connect 4 (Puissance 4)*
Determinacy of games

- We say that the Nim game is determined: given an initial configuration of the game, one of the players can win, whatever the choices of the other player! But (s)he should play according to a winning strategy.
- Not very exciting, is it? But it is the case of many games we like playing with!. For instance, *Connect 4 (Puissance 4)*
- Even *Chess* are concerned with this kind of results

Zermelo theorem (1913) for chess

either white can force a win, or black can force a win, or both sides can force at least a draw
We say that the Nim game is determined: given an initial configuration of the game, one of the players can win, whatever the choices of the other player! But (s)he should play according to a winning strategy.

Not very exciting, is it? But it is the case of many games we like playing with! For instance, Connect 4 (Puissance 4)

Even Chess are concerned with this kind of results

Zermelo theorem (1913) for chess

either white can force a win, or black can force a win, or both sides can force at least a draw

Existence of a winning strategy does not mean it is easy to compute.

According to Claude Shannon, there are 10^{43} legal positions in Chess, so it will take an impossibly long time to compute a perfect strategy
Another game model

- Players choose their actions secretly and simultaneously.
- Each player earns (or loses) some amount of money (a payoff).
- Each player tries to maximize the amount of money (s)he earns.
An example: The prisoner dilemma

- Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>(−3, −3)</td>
<td>(−10, −1)</td>
</tr>
<tr>
<td>Betray</td>
<td>(−1, −10)</td>
<td>(−5, −5)</td>
</tr>
</tbody>
</table>

How should they play? (remember they are rational...)
An example: The prisoner dilemma

- Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal.

- They are both offered to either betray (Betray) the other by testifying that the other committed the crime, or to cooperate (Cooperate) with the other by remaining silent.

<table>
<thead>
<tr>
<th>A / B</th>
<th>Cooperate</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>(−3, −3)</td>
<td>(−10, −1)</td>
</tr>
<tr>
<td>Betray</td>
<td>(−1, −10)</td>
<td>(−5, −5)</td>
</tr>
</tbody>
</table>
An example: The prisoner dilemma

- Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal.
- They are both offered to either betray (Betray) the other by testifying that the other committed the crime, or to cooperate (Cooperate) with the other by remaining silent.

<table>
<thead>
<tr>
<th>A / B</th>
<th>Cooperate</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>(−3, −3)</td>
<td>(−10, −1)</td>
</tr>
<tr>
<td>Betray</td>
<td>(−1, −10)</td>
<td>(−5, −5)</td>
</tr>
</tbody>
</table>

- They cannot communicate.
An example: The prisoner dilemma

- Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal.
- They are both offered to either betray (Betray) the other by testifying that the other committed the crime, or to cooperate (Cooperate) with the other by remaining silent.

<table>
<thead>
<tr>
<th></th>
<th>Cooperate</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>(−3, −3)</td>
<td>(−10, −1)</td>
</tr>
<tr>
<td>Betray</td>
<td>(−1, −10)</td>
<td>(−5, −5)</td>
</tr>
</tbody>
</table>

- They cannot communicate.

How should they play?
An example: The prisoner dilemma

- Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal.

- They are both offered to either betray (Betray) the other by testifying that the other committed the crime, or to cooperate (Cooperate) with the other by remaining silent.

<table>
<thead>
<tr>
<th>A / B</th>
<th>Cooperate</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>(−3, −3)</td>
<td>(−10, −1)</td>
</tr>
<tr>
<td>Betray</td>
<td>(−1, −10)</td>
<td>(−5, −5)</td>
</tr>
</tbody>
</table>

- They cannot communicate.

How should they play? (remember they are rational...)
The prisoner dilemma: Analysis

- Notion of dominating strategy
 \[\sim \text{whatever does the adversary, it is better to Betray...} \]
The prisoner dilemma: Analysis

- Notion of **dominating strategy**
 \[\rightarrow \text{whatever does the adversary, it is better to Betray...} \]

- What would have happened if they could have communicated?
The prisoner dilemma: Analysis

- Notion of **dominating strategy**
 - whatever does the adversary, it is better to Betray...

- What would have happened if they could have communicated?
- The classical model of game theory assumes selfishness of individuals, hence one should not trust other players...
The prisoner dilemma: Analysis

- Notion of dominating strategy
 \[\sim \text{ whatever does the adversary, it is better to Betray...} \]

- What would have happened if they could have communicated?
- The classical model of game theory assumes selfishness of individuals, hence one should not trust other players...
- For some applications (e.g. in computer science), it is fine. However for some others (e.g. in economy), this is not so clear...
The prisoner dilemma: Analysis

- Notion of dominating strategy
 \[\sim \text{whatever does the adversary, it is better to Betray...} \]

- What would have happened if they could have communicated?
- The classical model of game theory assumes selfishness of individuals, hence one should not trust other players...
- For some applications (e.g. in computer science), it is fine. However for some others (e.g. in economy), this is not so clear...
- It is possible to enforce more cooperation by repeating the game and giving the possibility to players to punish the other player if they betrayed before
A couple agreed to meet this evening, but none of them can recall if they planned to go to the theater or attend a football match.
A couple agreed to meet this evening, but none of them can recall if they planned to go to the theater or attend a football match.

The husband would prefer to attend the football game. The wife would rather go to the theater. Both would prefer to go to the same place rather than different ones.

<table>
<thead>
<tr>
<th>He / She</th>
<th>Foot</th>
<th>Theater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot</td>
<td>(3, 2)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>Theater</td>
<td>(0, 0)</td>
<td>(2, 3)</td>
</tr>
</tbody>
</table>
The battle of the sexes

A couple agreed to meet this evening, but none of them can recall if they planned to go to the theater or attend a football match.

The husband would prefer to attend the football game. The wife would rather go to the theater. Both would prefer to go to the same place rather than different ones.

<table>
<thead>
<tr>
<th>He / She</th>
<th>Foot</th>
<th>Theater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot</td>
<td>(3, 2)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>Theater</td>
<td>(0, 0)</td>
<td>(2, 3)</td>
</tr>
</tbody>
</table>

They cannot communicate.
A couple agreed to meet this evening, but none of them can recall if they planed to go to the theater or attend a football match.

The husband would prefer to attend the football game. The wife would rather go to the theater. Both would prefer to go to the same place rather than different ones.

<table>
<thead>
<tr>
<th>He / She</th>
<th>Foot</th>
<th>Theater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot</td>
<td>(3, 2)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>Theater</td>
<td>(0, 0)</td>
<td>(2, 3)</td>
</tr>
</tbody>
</table>

They cannot communicate.

Where should they go? Recall that they are rational...
The battle of the sexes: Analysis

- Here, there is no dominating strategy (which would be better in any case)
The battle of the sexes: Analysis

- Here, there is no dominating strategy (which would be better in any case)
- Notion of **Nash equilibrium**
 \[\therefore \text{A player has no incentive to change (alone) his/her strategy} \]
The battle of the sexes: Analysis

- Here, there is no dominating strategy (which would be better in any case)
- Notion of Nash equilibrium
 - A player has no incentive to change (alone) his/her strategy
 - (Foot, Foot) and (Theater, Theater) are Nash equilibria.
The battle of the sexes: Analysis

- Here, there is no dominating strategy (which would be better in any case)
- Notion of Nash equilibrium
 - A player has no incentive to change (alone) his/her strategy (Foot, Foot) and (Theater, Theater) are Nash equilibria.

Playing according to an equilibrium requires some coordination between the players, but contrary to the prisoner’s dilemma, they know that the other player has no interest in deviating.
Rock/Paper/Scissors
Rock/Paper/Scissors

<table>
<thead>
<tr>
<th>A / B</th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>(0, 0)</td>
<td>(-1, 1)</td>
<td>(1, -1)</td>
</tr>
<tr>
<td>Paper</td>
<td>(1, -1)</td>
<td>(0, 0)</td>
<td>(-1, 1)</td>
</tr>
<tr>
<td>Scissor</td>
<td>(-1, 1)</td>
<td>(1, -1)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Does this game have an equilibrium?

There is a unique Nash equilibrium, which is stochastic. Each player should play uniformly at random.
Rock/Paper/Scissors

<table>
<thead>
<tr>
<th>A / B</th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>(0, 0)</td>
<td>(−1, 1)</td>
<td>(1, −1)</td>
</tr>
<tr>
<td>Paper</td>
<td>(1, −1)</td>
<td>(0, 0)</td>
<td>(−1, 1)</td>
</tr>
<tr>
<td>Scissor</td>
<td>(−1, 1)</td>
<td>(1, −1)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Does this game have an equilibrium?
Rock/Paper/Scissors

<table>
<thead>
<tr>
<th>A / B</th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>(0, 0)</td>
<td>(−1, 1)</td>
<td>(1, −1)</td>
</tr>
<tr>
<td>Paper</td>
<td>(1, −1)</td>
<td>(0, 0)</td>
<td>(−1, 1)</td>
</tr>
<tr>
<td>Scissor</td>
<td>(−1, 1)</td>
<td>(1, −1)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Does this game have an equilibrium?

- There is a unique Nash equilibrium, which is stochastic
- Each player should play uniformly at random
The pirate game

- Five pirates, A (most senior), B, C, D and E (most junior), share 100 gold coins
The pirate game

- Five pirates, A (most senior), B, C, D and E (most junior), share 100 gold coins
- The most senior pirate (A) proposes a plan of distribution. The five pirates then vote on whether to accept this distribution.
The pirate game

- Five pirates, A (most senior), B, C, D and E (most junior), share 100 gold coins.
- The most senior pirate (A) proposes a plan of distribution. The five pirates then vote on whether to accept this distribution.
- If the majority accepts the plan (or in case of equality), the coins are disbursed and the game ends.
The pirate game

- Five pirates, A (most senior), B, C, D and E (most junior), share 100 gold coins.
- The most senior pirate (A) proposes a plan of distribution. The five pirates then vote on whether to accept this distribution.
- If the majority accepts the plan (or in case of equality), the coins are disbursed and the game ends.
- If the majority rejects the plan, the proposer is thrown overboard from the pirate ship and dies.
The pirate game

- Five pirates, A (most senior), B, C, D and E (most junior), share 100 gold coins
- The most senior pirate (A) proposes a plan of distribution. The five pirates then vote on whether to accept this distribution.
- If the majority accepts the plan (or in case of equality), the coins are disbursed and the game ends.
- If the majority rejects the plan, the proposer is thrown overboard from the pirate ship and dies.
- The next most senior pirate makes a new proposal to begin the system again, and the process repeats until a plan is accepted or if there is one pirate left.
The pirate game

- Five pirates, A (most senior), B, C, D and E (most junior), share 100 gold coins
- The most senior pirate (A) proposes a plan of distribution. The five pirates then vote on whether to accept this distribution.
- If the majority accepts the plan (or in case of equality), the coins are disbursed and the game ends
- If the majority rejects the plan, the proposer is thrown overboard from the pirate ship and dies.
- The next most senior pirate makes a new proposal to begin the system again, and the process repeats until a plan is accepted or if there is one pirate left.

What do you think the issue of the game will be?
What should the pirates do?
The pirate game: Analysis

Remember that everyone should be rational...

Finally, we have:

A : 98, B : 0, C : 1, D : 0, E : 1.

Surprising, no? But that's the only rational...
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates...
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates...
- Let’s think a bit more...
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates...

- Let’s think a bit more...
 - If only D and E remain, D will take the 100 gold coins

Finally, we have:

- A : 98, B : 0, C : 1, D : 0, E : 1.

Surprising, no? But that’s the only rational issue...
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates...

- Let’s think a bit more...
 - If only D and E remain, D will take the 100 gold coins
 - If C, D and E remain, then C will propose to take 99 coins and give one coin to E: it’s better for E than 0 in case C is thrown overboard. Hence E will accept.

Finally, we have:

- A : 98, B : 0, C : 1, D : 0, E : 1.

Surprising, no? But that’s the only rational issue...
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates. . .

- Let’s think a bit more. . .
 - If only D and E remain, D will take the 100 gold coins
 - If C, D and E remain, then C will propose to take 99 coins and give one coin to E: it’s better for E than 0 in case C is thrown overboard. Hence E will accept.
 - If B, C, D and E remain, then B will propose to keep 99 coins and give one to D: it’s better for D than 0 (in case B is thrown overboard). Hence D accepts.

Finally, we have:
- A : 98, B : 0, C : 1, D : 0, E : 1.

Surprising, no? But that’s the only rational issue. . .
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates. . .

- Let’s think a bit more. . .
 - If only D and E remain, D will take the 100 gold coins
 - If C, D and E remain, then C will propose to take 99 coins and give one coin to E: it’s better for E than 0 in case C is thrown overboard. Hence E will accept.
 - If B, C, D and E remain, then B will propose to keep 99 coins and give one to D: it’s better for D than 0 (in case B is thrown overboard). Hence D accepts.
 - If the five pirates are there, then A can keep 98 gold coins and offer one coin to C and one coin to E: it’s better for both of them, since otherwise they will get 0! Hence they accept.
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates. . .

- Let’s think a bit more. . .
 - If only D and E remain, D will take the 100 gold coins
 - If C, D and E remain, then C will propose to take 99 coins and give one coin to E: it’s better for E than 0 in case C is thrown overboard. Hence E will accept.
 - If B, C, D and E remain, then B will propose to keep 99 coins and give one to D: it’s better for D than 0 (in case B is thrown overboard). Hence D accepts.
 - If the five pirates are there, then A can keep 98 gold coins and offer one coin to C and one coin to E: it’s better for both of them, since otherwise they will get 0! Hence they accept.

- Finally, we have:

 A : 98, B : 0, C : 1, D : 0, E : 1.
The pirate game: Analysis

Remember that everyone should be rational...

- Intuitively, one could think that A should be generous with the other pirates...

- Let’s think a bit more...
 - If only D and E remain, D will take the 100 gold coins.
 - If C, D and E remain, then C will propose to take 99 coins and give one coin to E: it’s better for E than 0 in case C is thrown overboard. Hence E will accept.
 - If B, C, D and E remain, then B will propose to keep 99 coins and give one to D: it’s better for D than 0 (in case B is thrown overboard). Hence D accepts.
 - If the five pirates are there, then A can keep 98 gold coins and offer one coin to C and one coin to E: it’s better for both of them, since otherwise they will get 0! Hence they accept.

- Finally, we have:
 \[\text{A : 98, B : 0, C : 1, D : 0, E : 1}. \]

- Surprising, no? But that’s the only rational issue...
Many extensions exist, allowing to model more complex situations:
- games with imperfect information
- coalition games
- repeated games
- games on graphs
- probabilistic games...
Many extensions exist, allowing to model more complex situations

- games with imperfect information
- coalition games
- repeated games
- games on graphs
- probabilistic games...

The choice of the type of games depends on the application we have in mind
Extensions

- Many extensions exist, allowing to model more complex situations
 - games with imperfect information
 - coalition games
 - repeated games
 - games on graphs
 - probabilistic games...

- The choice of the type of games depends on the application we have in mind

- The theory is very rich. New results appear regularly
Some critical systems cannot tolerate bugs!
Application in computer science: fiability of critical systems

- Some critical systems cannot tolerate bugs!

- One needs to check that they behave correctly: they have to be somehow resilient to (unexpected) actions from the environment (e.g. lightnings)
... using games

- Model interactions between the system and its environment using a game
- The system is one player which aims at behaving in a correct manner (with no bug)
- The environment is another player with the opposite goal (zero-sum)
... using games

- Model interactions between the system and its environment using a game.
- The system is one player which aims at behaving in a correct manner (with no bug).
- The environment is another player with the opposite goal (zero-sum).

If one finds a winning strategy for the system (remember the Nim game), then we know how to control the system and react to actions by the environment while ensuring the safety of the system.
... using games

- Model interactions between the system and its environment using a game
- The system is one player which aims at behaving in a correct manner (with no bug)
- The environment is another player with the opposite goal (zero-sum)

- If one finds a winning strategy for the system (remember the Nim game), then we know how to control the system and react to actions by the environment while ensuring the safety of the system
- Game theory offers a mathematical framework to prove formally that a system is correct, and to synthesize correct controllers
Wants to go further?

... and many more!