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What this talk is about

pure Nash equilibria in game graphs
imperfect information monitoring

public signals

computability of Nash equilibria
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&—¢ v
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Non-zero-sum multiplayer games

o Several players Agt = {A4,...,An}
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Non-zero-sum multiplayer games

Several players Agt = {A1,...,An}

Each player A plays according to a strategy oa

Each player A has a payoff function
payoff, : V¥ = R

Non-zero-sum...

(]

Selfishness hypothesis: each player wants to maximize her own
payoff!

@ Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria



Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (c4)acagt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

@O
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Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (c4)acagt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

is a Nash equilibrium with payoff

@) (0,1,0)
<>/.3
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Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (c4)acagt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

0—o—%°

.3 is not a Nash equilibrium
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Characterization of Boolean Nash equilibria in turn-based
games

Player A; loses along that play
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV VAV

1a: objective of player A
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Characterization of Boolean Nash equilibria in turn-based
games

I
\J

1=, Player A; loses along that play

1a: objective of player A
Player A;
should lose
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Characterization of Boolean Nash equilibria in turn-based
games

1=, Player A; loses along that play

I
\J

.~ Coalition {Ag, As} ™.
- prevents A; from winning ™.,

1a: objective of player A

Main outcomes of Boolean Nash equilibria in turn-based games can be
characterized by an LTL formula:

One = /\ (ﬂ/fA = G(pa = XﬁWA))

AcAgt

where p, labels A-states and W, is the set of winning states for A
against the coalition of the other players (should be precomputed).
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Existing results in the framework of turn-based games

[UW11,Umm11]

@ There always exists a Nash equilibrium for Boolean w-regular
objectives

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (RWTH Aachen University) 6/29



Existing results in the framework of turn-based games

[UW11,Umm11]

@ There always exists a Nash equilibrium for Boolean w-regular
objectives

@ One can decide the constrained existence of a Nash equilibrium (and
compute one!)

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (RWTH Aachen University) 6/29



Existing results in the framework of turn-based games

[UW11,Umm11]
@ There always exists a Nash equilibrium for Boolean w-regular
objectives

@ One can decide the constrained existence of a Nash equilibrium (and
compute one!)

@ One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (RWTH Aachen University) 6/29



Existing results in the framework of turn-based games

[UW11,Umm11]
@ There always exists a Nash equilibrium for Boolean w-regular
objectives
@ One can decide the constrained existence of a Nash equilibrium (and
compute one!)
@ One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

v

~ this is why we restrict to pure equilibria

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (RWTH Aachen University) 6/29
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(a,b),(b,a)
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What about concurrent games?

Invisible actions in concurrent games [BBMU15]

The matching-penny game: SS8 @

(a,a),(b,b) (1,0) @
@O

@O0 @

(0,1)

(a,b),(b,a)
O SUSP((V07V3)7OOO) = {A}

° susp((vo, V2),OOO) = {Az, A3}

There is no pure Nash eq.

a structure to track suspect players

Solution via the suspect game abstraction, J

Can we add more partial information to that framework? J

[BBMU15] Bouyer, Brenguier, Markey, Ummels. Pure Nash equilibria in concurrent games (LMCS) 7/29



Concurrent games with signals

(a,a),(a,b) @
OO,
(b,a) @

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)
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Concurrent games with signals

o Signal for player A;: @ and
o Signal for player A;: ,  and @

e On playing a, player A; will receive ®
e On playing b, player A; will receive

@ On playing a, player Ay will receive either
or

e On playing b, player A, will receive

Same signal to every player!

Public signal J

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory) 8/29




A concurrent game with signals is a tuple

g= <V7 Vinit, Agta ACtv Za A”OW, Tabv (gA)AGAgtv (payOfFA)AGAgt>

where:

e V is a finite set of vertices,

@ Vinit € V is the initial vertex,

@ Agt is a finite set of players,

@ Act is a finite set of actions,

@ Y is a finite alphabet,

o Allow: V x Agt — 2\ {()} is a mapping indicating the actions
available to a given player in a given state,

@ Tab: V x Act"® — V associates, with a given state and a given
move of the players (i.e., an element of Act”&"), the state resulting
from that move,

o for every A € Agt, la: (ActAgt X V) — ¥ is a signal,

o for every A € Agt, payoff,: V x (ActAgt X V)w — D is a payoff

function for player A




Strategies

e What player A sees from history h = vp —% v — ... RSN
7TA(h) =" mo(A) . fA(mo, Vl) . ml(A) coo mk_l(A) . €A(mk_1, Vk)

~ perfect recall hypothesis

10/29



Strategies

e What player A sees from history h = vp —% v — ... RSN
ﬂA(h) =\ mo(A) . €A(mo, Vl) . ml(A) coo mk_l(A) . KA(mk_l, Vk)

~ perfect recall hypothesis
@ Undistinguishability relation for player A:

h ~A h/ iff 7TA(h) = 7TA(h/)

10/29



Strategies

e What player A sees from history h = vp —% v — ... RSN
ﬂA(h) =\ mo(A) . ZA(mo, Vl) . ml(A) coo mk_l(A) . KA(mk_l, Vk)

~ perfect recall hypothesis
@ Undistinguishability relation for player A:

h ~A h/ iff 7TA(h) = 7TA(h/)
@ A strategy for player A is a (partial) function:
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Strategies

e What player A sees from history h = vp —% v — ... RSN
7TA(h) =\ mo(A) . éA(mo, Vl) . ml(A) coo mk_l(A) . KA(mk_l, Vk)

~ perfect recall hypothesis

@ Undistinguishability relation for player A:
heah'iff wa(h) = ma(h')
@ A strategy for player A is a (partial) function:
oa: V- (ActAgt . V>* — Act

such that h ~4 h' implies ga(h) = oa(h).
o A strategy profile is a tuple oagt = (04)acagt Where o4 is a strategy
for player A.

v
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Discussion on the perfect-recall assumption

In most existing frameworks, strategies are defined through observation
maps
Op: VX op: £ — Act
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Discussion on the perfect-recall assumption
In most existing frameworks, strategies are defined through observation
maps
Op: VX op: £ — Act

@ This choice is suitable for distributed synthesis and Nash equilibria
(for instance)...
@ but | think this choice is not suitable in general

Example (Subgame-perfect equilibrium)

(@) (1,0)

(0,1)

O,
01
O,

(1,0)
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Discussion on the perfect-recall assumption
In most existing frameworks, strategies are defined through observation
maps
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Digression on payoff functions

Payoff functions
@ Payoff function for player A (D C R):

payoff,: V- (ActAg“ : v)w 5D
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Digression on payoff functions

Payoff functions
@ Payoff function for player A (D C R):

payoff,: V - (ActAgt . V) —D
@ payoff, is privately visible whenever

Ta(p) = ma(p') implies payoff,(p) = payoffs(p’)

o If signal ¢ is public (£4 = ¢ for every A), payoffy, is publicly visible
whenever

Up) = £(p") implies payoff,(p) = payoff,(p')
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Digression on payoff functions (cont'd)

Some payoff functions
@ Boolean w-regular payoff function (for Q2):

1 ifpeQ
0 otherwise

payoff(p) = {
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Some payoff functions

@ Boolean w-regular payoff function (for Q2):

1 ifpeQ
0 otherwise
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Digression on payoff functions (cont'd)

Some payoff functions

@ Boolean w-regular payoff function (for Q2):

1 ifpeQ
0 otherwise

payoff(p) = {
@ Mean-payoff (limsup or liminf) w.r.t. weight function w:

MP,,(p) = lim infosoe 370 W<v,- iy v,-+1)
MP,,(p) = limsup,_, .. Sio W<V,' RN v,-+1)

For public visibility, we will assume that atomic propositions/atomic
weights are defined w.r.t. the signal alphabet ¥.
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An example

@ Three players concurrent game with public
signal

1,1,0

0,1,0

33,3

0,0,0

1,0,3

3,0,1

1,0,0
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An example

1,1,0 @ Consider the (partial) strategy profile oag:.
Can we complete it into a Nash
equilibrium?

0,1,0

33,3

0,0,0

1,0,0
14/29



An example 200

°
1,1,0 (*]
0,1,0 @ This is an Ax-deviation, which is invisible

to both A; and Asz. A; has to play a and

cannot deviate to 2,0, 0.
3,3,3

0,0,0

1,0,0
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An example

°
1,1,0 °
> 0,1,0 °

@ This is a non-profitable A;-deviation.

1,0,0
14/29



An example

°
1,1,0 °
0,1,0 °
33,3

°

@ No one (alone) can deviate to vs.
0,0,0

1,0,3

3,0,1

1,0,0
14/29



An example

A1 can deviate to v4 and As can deviate
to vs: Az knows there has been a
deviation, but (s)he doesn’t know whether
A1 or As did so, and whether the game
proceeds to v4 or vs. On the other hand,
both A; and Az know!
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A; can deviate to v4 and A3 can deviate
to v5: Az knows there has been a
deviation, but (s)he doesn’t know whether
A1 or As did so, and whether the game
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both A; and As know! But if the game
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How to systematically track all undistinguishable behaviours and all
individual deviations? |s that always possible? J
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First undecidability results

One cannot decide the existence problem in games with signals with
three players and publicly visible qualitative w-regular payoff functions. J

~» by reduction from the distributed synthesis problem (construction for
reachability properties taken in [BK10])

[BK10] Berwanger, Kaiser. Information Tracking in Games on Graphs (Journal of Logic, Language and Information)
[DDG+10] Degorre, Doyen, Gentilini, Raskin, Toruficzyk. Energy and Mean-Payoff Games with Imperfect Information (CSL'10) 16/29



First undecidability results

One cannot decide the existence problem in games with signals with
three players and publicly visible qualitative w-regular payoff functions. J

~» by reduction from the distributed synthesis problem (construction for
reachability properties taken in [BK10])

One cannot decide the constrained existence of a Nash equilibrium in a
game with public signals, for a mixture of limsup and liminf mean-payoff
functions which are privately visible. Even for two players.

~> by reduction from blind mean-payoff games (proven undecidable in
[DDG+10])

[BK10] Berwanger, Kaiser. Information Tracking in Games on Graphs (Journal of Logic, Language and Information)
[DDG+10] Degorre, Doyen, Gentilini, Raskin, Toruficzyk. Energy and Mean-Payoff Games with Imperfect Information (CSL'10) 16/29



Proof idea for the second undecidability result

O s blind

w(er) w(e2)

C) a D a

Q
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Proof idea for the second undecidability result

O has a winning strategy in G ensuring MP > 0
iff
there is an NE in #H such that player A, has a payoff < 0
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The epistemic game abstraction

Inspired by:
@ the standard powerset construction [Rei84]

o the epistemic unfolding for coordination/distributed synthesis
[BKP11]

@ the suspect game [BBMU15]
@ the deviator game [Brel6]

[Rei84] Reif. The complexity of two-player games of incomplete information (J. Comp. and Syst. Sc.)

[BKP11] Berwanger, Kaiser, Puchala. Perfect-information construction for coordination in games (FSTTCS'11)
[BBMU15] Pure Nash equilibria in concurrent games (Log. Meth. in Comp. Sc.)

[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS'16)
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The epistemic game abstraction

Inspired by:
@ the standard powerset construction [Rei84]

o the epistemic unfolding for coordination/distributed synthesis
[BKP11]

@ the suspect game [BBMU15]
@ the deviator game [Brel6]

The idea is to track all possible undistinguishable
behaviours, including the single-player deviations J

[Rei84] Reif. The complexity of two-player games of incomplete information (J. Comp. and Syst. Sc.)

[BKP11] Berwanger, Kaiser, Puchala. Perfect-information construction for coordination in games (FSTTCS'11)

[BBMU15] Pure Nash equilibria in concurrent games (Log. Meth. in Comp. Sc.)
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The epistemic game abstraction (cont'd)

Epistemic states (type-1)

s
v, L

Va., A1
Va,, Az

Vas, A3

vertex the game is in
if no deviation

vertices the game might be in
if A> has deviated

Captures set of histories that some of the players do not distinguish.
A; cannot distinguish between the normal outcome (no deviation) and
deviations of other players leading to some v € V. with j # i

19/29



The epistemic game abstraction (cont'd)

Epistemic states (type-2)

S

Va, Al
Va,, Az

Va,, A3

vertices the game might be in
if Ao has deviated

Captures set of histories that some of the players do not distinguish.
A; cannot distinguish between the possible deviations of other players
(but he knows there has been a deviation)

19/29



The example again
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The example again

1,1,0

0,1,0

1,0,3

3,0,1
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Example of construction
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S0 S1

(a,b,a)

s0,(a,b,a)
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Example of construction

S0 S1

(a,b,a)
s0,{(a,b,a)
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Example of construction

S0 S1

v, L 22

(a,b,a) 0.A a,—,—
frssa)——t ™ =)
vi },A2 L
0,As

21/29



Example of construction

So S1
va, L 237_7_§ (1,1,0),L
(a,b,a) Cona) 0A [T 2o {(0,1,0)},A4
— {v}.A - {(1,1,0)},A,
0,As 0,As
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Example of construction

287—,—§ (1,1,0),L
a,b,a ( ) a,—,—
( ) s0,(a,b,a) 517231:,:; {(0,1,0)},A
{v1},A 4 {(1,1,0)},A.
@,A3 @,A:;
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Example of construction

(a,b,a)

s0,(a,b,a)

(0,1,0),L
{(1,1,00},A
{(2,0,0)},4,

0,A3

(1,1,0),L
{(01170)}7A1

{(11170)}1A2
0,As
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Example of construction

(a,b,a)

s0,(a,b,a)

(0,1,0),L
{(1,1,00},A
{(2,0,0)},4,

0,A3

(1,1,0),L
{(01170)}7A1

{(11170)}1A2
0,As
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Example of construction
(0,1,0),L

{(1)170)}7/41
{(21070)}7’42
0,As

(1,1,0),L
{(0,1,00},A
{(1,1,00},4,

0,As

a,b,a r—}
( ) s0,(a,b,a)

{(07070)a(11073)}7A1
0,A2
{(17070)7(3a071)}7A3
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Example of construction

(0,1,0),L
b,_7_§ {(1)170)}7/41
b— —

{(21070)}7’42
0,A3

Adam-state
(a,b,a)

(1,1,0),L
2,7,72 {(0,1,0)},A
S {(1,1,00},4,
0,As

s0,(a,b,a)

Eve-state

{(07070)a(11073)}7A1
sl’gb,a,gg 0,A;
{(17070)7(3a071)}7A3

21/29



Properties of the epistemic game

@ To every history H in the epistemic game, one can associate sets
e concrete; (H): at most one concrete real history (if no deviation)
o concretea(H): all possible A-deviations

o concrete(H) = | Jaeagiuq 1y concretea(H)
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Properties of the epistemic game

@ To every history H in the epistemic game, one can associate sets
e concrete; (H): at most one concrete real history (if no deviation)
o concretea(H): all possible A-deviations

o concrete(H) = | Jaeagiuq 1y concretea(H)

H history in the epistemic game. For every h; # h, € concrete(H),

hi ~4 hy iff h1, hy ¢ concretea(H)
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Properties of the epistemic game (cont'd)

Winning condition for Eve

A strategy ogye is said winning for payoff p € R”8t from s, whenever
payoff(concrete, (out (gve, S0))) = p, and for every R € out(ogye, So),
for every A € Agt, for every p € concretea(R), payoff,(p) < pa.
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Properties of the epistemic game (cont'd)

Winning condition for Eve (publicly visible payoffs)

A strategy ogye is said winning for p from sy whenever
payoff (out (0&ve, S0)) = p, and for every R € out(ogye, So), for every
A € susp(R), payoffy(R) < pa.
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Properties of the epistemic game (cont'd)

Winning condition for Eve (publicly visible payoffs)

A strategy ogye is said winning for p from sy whenever
payoff (out (0&ve, S0)) = p, and for every R € out(ogye, So), for every
A € susp(R), payoffy(R) < pa.

Proposition

There is a Nash equilibrium in G with payoff p from v if and only if Eve
has a winning strategy for p in &g from sp.
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Application to w-regular objectives

Player A; loses along that play

1a: objective of player A
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Application to w-regular objectives

.t=—.. Player A; loses along that play

|
1a: objective of player A '
Player A;

should lose
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Application to w-regular objectives

.t=—.. Player A; loses along that play

\

" Coalition {Ag, As} ™.
- prevents A; from winning ™.,

1a: objective of player A
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Application to w-regular objectives

Players 4,4, lose along that 1-play
AN\N\NN\NN\NN\NNSN NN AN\N\N\N\N\N\NN\NN\N\NN

1a: objective of player A

) As will not deviate
" » his aim is to potentially
// punish both A; and A

. A and Az will not deviate
/ their aim is to punish A;
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Application to w-regular objectives (cont'd)

@ This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) w-regular objectives

[CDHRO7] Chatterjee, Doyen, Henzinger, Raskin. Algorithms for w-regular games with imperfect information (LMCS) 25/29



Application to w-regular objectives (cont'd)

@ This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) w-regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible payoff functions associated
with parity conditions in EXPSPACE. It is EXPTIME-hard.

[CDHRO7] Chatterjee, Doyen, Henzinger, Raskin. Algorithms for w-regular games with imperfect information (LMCS) 25/29



Application to w-regular objectives (cont'd)

@ This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) w-regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible payoff functions associated
with parity conditions in EXPSPACE. It is EXPTIME-hard.

o EXPTIME-hardness: same proof as for the distributed synthesis
problem [CDHRO7]
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Application to w-regular objectives (cont'd)

@ This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) w-regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible payoff functions associated
with parity conditions in EXPSPACE. It is EXPTIME-hard.

o EXPTIME-hardness: same proof as for the distributed synthesis
problem [CDHRO7]

@ Can be extended to (finite) preorders over such objectives
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Application to w-regular objectives (cont'd)

@ This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) w-regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible payoff functions associated
with parity conditions in EXPSPACE. It is EXPTIME-hard.

o EXPTIME-hardness: same proof as for the distributed synthesis
problem [CDHRO7]

@ Can be extended to (finite) preorders over such objectives

@ May even probably be extended to privately visible or invisible payoff
functions (needs to be checked)

[CDHRO7] Chatterjee, Doyen, Henzinger, Raskin. Algorithms for w-regular games with imperfect information (LMCS) 25/29



Application to (publicly visible) mean-payoff payoff
functions

The mean-payoff payoff publicly visible functions can be used in the
epistemic game, and the winning condition for Eve rewrites as:

A strategy for Eve is said winning for payoff p € R”&" from sy whenever
MP(out] (0gve, So)) = p, and for every p € out(ogye, So), for every
A € susp(p), MPa(p) < pa.
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Application to (publicly visible) mean-payoff payoff
functions

The mean-payoff payoff publicly visible functions can be used in the
epistemic game, and the winning condition for Eve rewrites as:

A strategy for Eve is said winning for payoff p € R”&" from sy whenever
MP(out, (0gve, So)) = p, and for every p € out(ogye, So), for every
A € susp(p), MPa(p) < pa.

Inspired by [Brel6], we can reduce the constrained existence problem of a
Nash equilibrium to the polyhedron problem [BR15].
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Application to mean-payoff payoff functions (cont'd)
The polyhedron problem

In a multi-dimensional mean-payoff two-player turn-based game, the
polyhedron problem aks, given a polyhedron 7, whether there is a
strategy for Eve which ensures a payoff vector which belongs to 7.

valueg

valueg = {v € R? | JoV¥p € out(c), Vi, MP;(p) > v;}
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Application to mean-payoff payoff functions (cont'd)

The polyhedron problem

In a multi-dimensional mean-payoff two-player turn-based game, the
polyhedron problem aks, given a polyhedron 7, whether there is a
strategy for Eve which ensures a payoff vector which belongs to 7.

e [BR15]: if there is a solution, there is one solution with a payoff of
polynomial size.
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Application to mean-payoff payoff functions (cont'd)

The polyhedron problem

In a multi-dimensional mean-payoff two-player turn-based game, the
polyhedron problem aks, given a polyhedron 7, whether there is a
strategy for Eve which ensures a payoff vector which belongs to .

e [BR15]: if there is a solution, there is one solution with a payoff of
polynomial size.

e [BR15]: the polyhedron problem is ¥;P-complete (X,P = NPNP)

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible mean-payoff payoff functions,
in NP, with a coNEXPTIME oracle. This in particular can be solved in
EXPSPACE. It is EXPTIME-hard.
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Application to mean-payoff payoff functions (cont'd)

’cype;lJ type—llI type-1 type-1

@e—2

type-2

H
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Application to mean-payoff payoff functions (cont'd)

’cype;lJ type—llI type-1 type-1

@e—2

type-2

Original weight functions: wy,
type-2 type-2 New weight functions: wu;, uny;, Uspyti

H
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Application to mean-payoff payoff functions (cont'd)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

' {
[type—2 UN+i U N+ WA,

Original weight functions: wy,

o
type-2 New weight functions: wu;, uny;, Uspyti
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Application to mean-payoff payoff functions (cont'd)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

X { uj = 2w,
77777 v~
! @e_z \‘ UNyi = Uan4i = —2Wp,
! |
: : up = unyj = 2W
| ! > s — { —2wy, if A; suspect
[ ! | 2N+ 2W otherwise
| type-2| |
| |
| |
1 e
1 | Original weight functions: wy,
| | . .
: type-2 ! New weight functions: wu;, uny;, Uspyti
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Application to mean-payoff payoff functions (cont'd)

There is a Nash equilibrium in the original game with payoff p if and only
if there is a strategy for Eve in the epistemic game such that for every
outcome p, for every 1 < < N,

MPUi(p) > PA;
MPUN+/‘(p) 2 —Pa;
MPU2N+/'(/)) > —PA;
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Application to mean-payoff payoff functions (cont'd)

There is a Nash equilibrium in the original game with a payoff v < p </
(v and v/ are fixed thresholds) if and only if there is a strategy for Eve in
the epistemic game solving the polyhedron problem for the polyhedron

/\ (X; = —XNti = —X2N+i> N /\ (vi <x <))

1<i<N 1<i<N
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Conclusion

We have:

@ proposed a framework for games over graphs with a public signal
monitoring
Note: framework inspired by [Tom98|

@ proposed an abstraction called the epistemic game abstraction,
which allows to characterize Nash equilibria in the original game

@ used it to propose several decidability results.

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)
[RT98] Renault, Tomala. Repeated proximity games (International Journal of Game Theory) 20/29



Conclusion

We have:

@ proposed a framework for games over graphs with a public signal
monitoring
Note: framework inspired by [Tom98|

@ proposed an abstraction called the epistemic game abstraction,
which allows to characterize Nash equilibria in the original game

@ used it to propose several decidability results.

We want to:
@ work out the precise complexities

@ understand whether one can extend the approach to other
communication architectures ([RT98]77)

@ understand whether the current approach is specific to Nash
equilibria or if it can be extended to more expressive languages (like
fragments of Strategy Logic)

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)
[RT98] Renault, Tomala. Repeated proximity games (International Journal of Game Theory)

29/29



