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What this talk is about

pure Nash equilibria in game graphs

imperfect information monitoring

public signals

computability of Nash equilibria

1/29



Two-player turn-based games

v0 v1 v2

v3 v4 ,

σ3(v0) = v3, σ3(v2) = σ3(v4) = ,
is a memoryless strategy for 3

Goal of 3: Reach ,
Goal of 2: Avoid ,

payoff3(ρ) ∈ { − 1, 1}
payoff3(ρ) = 1 iff ρ visits ,

σ3 ensures payoff +1 for 3: it is a
winning strategy

Game graph G = (V ,E )

V partitioned into V3 and V2

Strategy for player i :

σi : V ∗Vi → V

s.t. (last(h), σi (h)) ∈ E if
last(h) ∈ Vi

Memoryless if σi (h) = σi (h
′) if

last(h) = last(h′), that is:

σi : Vi → V

Given (σ3, σ2), unique
outcome

Zero-sum hyp.:
payoff2(ρ) = −payoff3(ρ)
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Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Non-zero-sum multiplayer games

Several players Agt = {A1, . . . ,AN}
Each player A plays according to a strategy σA

Each player A has a payoff function

payoffA : V ω → R

Non-zero-sum...

Selfishness hypothesis: each player wants to maximize her own
payoff!

Need of solution concepts to describe the kind of interactions
between the players

The simplest: Nash equilibria

3/29



Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (σA)A∈Agt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

4/29



Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (σA)A∈Agt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

is a Nash equilibrium with payoff
(0, 1, 0)
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Nash equilibria in turn-based games

Nash equilibrium

A strategy profile (σA)A∈Agt is a Nash equilibrium if no player can
improve her payoff by unilaterally changing her strategy.

is not a Nash equilibrium
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Characterization of Boolean Nash equilibria in turn-based
games

Player A1 loses along that play

ψA: objective of player A

Main outcomes of Boolean Nash equilibria in turn-based games can be
characterized by an LTL formula:

ΦNE =
∧

A∈Agt

(
¬ψA ⇒ G(pA ⇒ X¬WA)

)
where pA labels A-states and WA is the set of winning states for A
against the coalition of the other players (should be precomputed).
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Existing results in the framework of turn-based games

[UW11] Ummels, Wojtczak. The Complexity of Nash Equilibria in Stochastic Multiplayer Games (LMCS)
[Umm11] Ummels. Stochastic multiplayer games: theory and algorithms (RWTH Aachen University)

[UW11,Umm11]

There always exists a Nash equilibrium for Boolean ω-regular
objectives

One can decide the constrained existence of a Nash equilibrium (and
compute one!)

One cannot decide the existence of a mixed (i.e. stochastic) Nash
equilibrium

; this is why we restrict to pure equilibria
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What about concurrent games?

[BBMU15] Bouyer, Brenguier, Markey, Ummels. Pure Nash equilibria in concurrent games (LMCS)

Invisible actions in

concurrent games [BBMU15]

The matching-penny game:

v0

v1 (1,0)

v2 (0,1)

〈a,a〉,〈b,b〉

〈a,b〉,〈b,a〉

There is no pure Nash eq.

v0

v1

v2

v3

susp
(

(v0, v3),
)

= {A1}

susp
(

(v0, v2),
)

= {A2,A3}

Solution via the suspect game abstraction,
a structure to track suspect players

Can we add more partial information to that framework?
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Concurrent games with signals

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)

v0

v1

v2

v3

〈a,a〉,〈a,b〉

〈b,b〉

〈b,a〉

Signal for player A1: • and •
Signal for player A2: •, • and •

On playing a, player A1 will receive •
On playing b, player A1 will receive •
On playing a, player A2 will receive either• or •
On playing b, player A2 will receive •

Public signal

Same signal to every player!
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A concurrent game with signals is a tuple

G = 〈V , vinit,Agt,Act,Σ,Allow,Tab, (`A)A∈Agt, (payoffA)A∈Agt〉

where:

V is a finite set of vertices,

vinit ∈ V is the initial vertex,

Agt is a finite set of players,

Act is a finite set of actions,

Σ is a finite alphabet,

Allow: V × Agt→ 2Act \ {∅} is a mapping indicating the actions
available to a given player in a given state,

Tab: V × ActAgt → V associates, with a given state and a given
move of the players (i.e., an element of ActAgt), the state resulting
from that move,

for every A ∈ Agt, `A :
Ä

ActAgt × V
ä
→ Σ is a signal,

for every A ∈ Agt, payoffA : V ×
Ä

ActAgt × V
äω
→ D is a payoff

function for player A
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Strategies

What player A sees from history h = v0
m0−→ v1

m1−→ . . .
mk−1−−−→ vk :

πA(h) = v0 ·m0(A) · `A(m0, v1) ·m1(A) . . .mk−1(A) · `A(mk−1, vk)

; perfect recall hypothesis

Undistinguishability relation for player A:

h ∼A h′ iff πA(h) = πA(h′)

A strategy for player A is a (partial) function:

σA : V ·
(

ActAgt · V
)∗
→ Act

such that h ∼A h′ implies σA(h) = σA(h′).

A strategy profile is a tuple σAgt = (σA)A∈Agt where σA is a strategy
for player A.
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Discussion on the perfect-recall assumption
In most existing frameworks, strategies are defined through observation
maps

OA : V → Σ σA : Σ∗ → Act

This choice is suitable for distributed synthesis and Nash equilibria
(for instance)...
but I think this choice is not suitable in general

Example (Subgame-perfect equilibrium)

v0 v1 (1,0)

v2

v3

v4 (1,0)

v5 (0,1)

v6 (0,1)

v7 (1,0)

〈a,a〉,〈b,a〉〈a,a〉,〈b,a〉

〈a,b
〉

〈a,−〉〈a,−〉

〈b,−〉

〈b,b〉 〈a,−〉

〈b,−〉〈b,−〉
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Digression on payoff functions

Payoff functions

Payoff function for player A (D ⊆ R):

payoffA : V ·
(

ActAgt · V
)ω
→ D

payoffA is privately visible whenever

πA(ρ) = πA(ρ′) implies payoffA(ρ) = payoffA(ρ′)

If signal ` is public (`A = ` for every A), payoffA is publicly visible
whenever

`(ρ) = `(ρ′) implies payoffA(ρ) = payoffA(ρ′)
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Digression on payoff functions (cont’d)

Some payoff functions

Boolean ω-regular payoff function (for Ω):

payoff(ρ) =

ß
1 if ρ ∈ Ω
0 otherwise

Mean-payoff (limsup or liminf) w.r.t. weight function w : MPw (ρ) = lim infn→∞
∑n

i=0 w
(
vi

mi−→ vi+1

)
MPw (ρ) = lim supn→∞

∑n
i=0 w

(
vi

mi−→ vi+1

)

For public visibility, we will assume that atomic propositions/atomic
weights are defined w.r.t. the signal alphabet Σ.
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An example

v0

v1

v2

v3

v4

v5

2,0,0

1,1,0

0,1,0

3,3,3

0,0,0

1,0,3

3,0,1

1,0,0

〈a
,a
,a
〉

〈a,
b,
a〉

〈b,a,a〉

〈b,b,a〉

〈∗,∗,b〉

〈a,−
,−〉

〈b,−,−〉

〈b,−
,−〉

〈a,−,−〉

〈∗,−,−〉

〈a,a,a〉,〈b,a,b〉

〈b,a,
a〉

other

〈a,a,b〉

〈a,a,a〉
other

〈∗,
b,
a〉

Three players concurrent game with public
signal

A1 can deviate to v4 and A3 can deviate
to v5: A2 knows there has been a
deviation, but (s)he doesn’t know whether
A1 or A3 did so, and whether the game
proceeds to v4 or v5. On the other hand,
both A1 and A3 know!

But if the game
proceeds to v4, A3 can help A2 punishing
A1, and if the game proceeds to v5, A1

can help A2 punishing A3.
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How to systematically track all undistinguishable behaviours and all
individual deviations? Is that always possible?
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First undecidability results

[BK10] Berwanger, Kaiser. Information Tracking in Games on Graphs (Journal of Logic, Language and Information)
[DDG+10] Degorre, Doyen, Gentilini, Raskin, Toruńczyk. Energy and Mean-Payoff Games with Imperfect Information (CSL’10)

One cannot decide the existence problem in games with signals with
three players and publicly visible qualitative ω-regular payoff functions.

; by reduction from the distributed synthesis problem (construction for
reachability properties taken in [BK10])

One cannot decide the constrained existence of a Nash equilibrium in a
game with public signals, for a mixture of limsup and liminf mean-payoff
functions which are privately visible. Even for two players.

; by reduction from blind mean-payoff games (proven undecidable in
[DDG+10])
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Proof idea for the second undecidability result

G a

w(e1)

a

w(e2)

is blind

H

lost

〈a, a〉
(0,−w(e1))

〈a, b〉 (a 6= b)

〈−,−〉
(0,−W − 1)

〈−, a〉
(0,−w(e2))

the public signal only reveals lost

but player A2 has full information
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the public signal only reveals lost
but player A2 has full information

has a winning strategy in G ensuring MP > 0
iff

there is an NE in H such that player A2 has a payoff < 0

17/29



Proof idea for the second undecidability result

G a

w(e1)

a

w(e2)

is blind

H

lost

〈a, a〉
(0,−w(e1))

〈a, b〉 (a 6= b)

〈−,−〉
(0,−W − 1)

〈−, a〉
(0,−w(e2))

the public signal only reveals lost
but player A2 has full information

17/29



The epistemic game abstraction

[Rei84] Reif. The complexity of two-player games of incomplete information (J. Comp. and Syst. Sc.)
[BKP11] Berwanger, Kaiser, Puchala. Perfect-information construction for coordination in games (FSTTCS’11)
[BBMU15] Pure Nash equilibria in concurrent games (Log. Meth. in Comp. Sc.)
[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS’16)

Inspired by:

the standard powerset construction [Rei84]

the epistemic unfolding for coordination/distributed synthesis
[BKP11]

the suspect game [BBMU15]

the deviator game [Bre16]

The idea is to track all possible undistinguishable
behaviours, including the single-player deviations
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The epistemic game abstraction (cont’d)

Epistemic states (type-1)

v ,⊥

VA1 ,A1

VA2 ,A2

VA3 ,A3

s

v ,⊥

VA1 ,A1

VA2 ,A2

VA3 ,A3

s
vertex the game is in
if no deviation

vertices the game might be in
if A2 has deviated

Captures set of histories that some of the players do not distinguish.
Ai cannot distinguish between the normal outcome (no deviation) and
deviations of other players leading to some v ∈ VAj with j 6= i
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The epistemic game abstraction (cont’d)

Epistemic states (type-2)

VA1 ,A1

VA2 ,A2

VA3 ,A3

s

VA1 ,A1

VA2 ,A2

VA3 ,A3

s

vertices the game might be in
if A2 has deviated

Captures set of histories that some of the players do not distinguish.
Ai cannot distinguish between the possible deviations of other players
(but he knows there has been a deviation)
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The example again

v0

v1

v2

v3

v4

v5

2,0,0

1,1,0

0,1,0

3,3,3

0,0,0

1,0,3

3,0,1

1,0,0

〈a
,a
,a
〉

〈a,
b,
a〉

〈b,a,a〉

〈b,b,a〉

〈∗,∗,b〉

〈a,−
,−〉

〈b,−,−〉

〈b,−,−
〉

〈a,−,−〉

〈∗,−,−〉

〈a,a,a〉,〈b,a,b〉

〈b,a,a〉

other

〈a,a,b〉

〈a,a,a〉
other

〈∗,
b,a
〉
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Properties of the epistemic game

To every history H in the epistemic game, one can associate sets

concrete⊥(H): at most one concrete real history (if no deviation)

concreteA(H): all possible A-deviations

concrete(H) =
⋃

A∈Agt∪{⊥} concreteA(H)

H history in the epistemic game. For every h1 6= h2 ∈ concrete(H),

h1 ∼A h2 iff h1, h2 /∈ concreteA(H)
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Properties of the epistemic game (cont’d)

Winning condition for Eve

A strategy σEve is said winning for payoff p ∈ RAgt from s0 whenever
payoff(concrete⊥(out⊥(σEve, s0))) = p, and for every R ∈ out(σEve, s0),
for every A ∈ Agt, for every ρ ∈ concreteA(R), payoffA(ρ) ≤ pA.

Winning condition for Eve (publicly visible payoffs)

A strategy σEve is said winning for p from s0 whenever
payoff′(out⊥(σEve, s0)) = p, and for every R ∈ out(σEve, s0), for every
A ∈ susp(R), payoff′A(R) ≤ pA.

Proposition

There is a Nash equilibrium in G with payoff p from v0 if and only if Eve
has a winning strategy for p in EG from s0.
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Application to ω-regular objectives

Player A1 loses along that play

ψA: objective of player A
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ψA: objective of player A

. . .
Player A1 loses along that play

Coalition {A2,A3}
prevents A1 from winning
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Application to ω-regular objectives

ψA: objective of player A

...
Players A1,A2 lose along that ⊥-play

(VA1
,A1)

(VA2
,A2)

(∅,A3)

•

A3 will not deviate
his aim is to potentially
punish both A1 and A2

A2 and A3 will not deviate
their aim is to punish A1

(V ′A1
,A1)

(∅,A2)

(∅,A3)
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Application to ω-regular objectives (cont’d)

[CDHR07] Chatterjee, Doyen, Henzinger, Raskin. Algorithms for ω-regular games with imperfect information (LMCS)

This amounts to solving two-player turn-based games with
generalized (i.e. conjunctions of) ω-regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible payoff functions associated
with parity conditions in EXPSPACE. It is EXPTIME-hard.

EXPTIME-hardness: same proof as for the distributed synthesis
problem [CDHR07]

Can be extended to (finite) preorders over such objectives

May even probably be extended to privately visible or invisible payoff
functions (needs to be checked)
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Application to (publicly visible) mean-payoff payoff
functions

[Bre16] Brenguier. Robust equilibria in mean-payoff games (FoSSaCS’16)
[BR15] Brenguier, Raskin. Pareto curves of multidimensional mean-payoff games (CAV’15)

The mean-payoff payoff publicly visible functions can be used in the
epistemic game, and the winning condition for Eve rewrites as:

A strategy for Eve is said winning for payoff p ∈ RAgt from s0 whenever
MP(out⊥(σEve, s0)) = p, and for every ρ ∈ out(σEve, s0), for every
A ∈ susp(ρ), MPA(ρ) ≤ pA.

Inspired by [Bre16], we can reduce the constrained existence problem of a
Nash equilibrium to the polyhedron problem [BR15].
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Application to mean-payoff payoff functions (cont’d)

The polyhedron problem

In a multi-dimensional mean-payoff two-player turn-based game, the
polyhedron problem aks, given a polyhedron π, whether there is a
strategy for Eve which ensures a payoff vector which belongs to π.

π

valueG

valueG = {v ∈ Rd | ∃σ∀ρ ∈ out(σ), ∀i , MPi (ρ) ≥ vi}
[BR15]: if there is a solution, there is one solution with a payoff of
polynomial size.
[BR15]: the polyhedron problem is Σ2P-complete (Σ2P = NPNP)

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a
game with public signal and publicly visible mean-payoff payoff functions,
in NP, with a coNEXPTIME oracle. This in particular can be solved in
EXPSPACE. It is EXPTIME-hard.
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Application to mean-payoff payoff functions (cont’d)

type-1 type-1 type-1 type-1 type-1 . . .

type-2

type-2

type-2type-2

• •
•

••

Original weight functions: wAi

New weight functions: ui , uN+i , u2N+i

ß
ui = 2wAi

uN+i = u2N+i = −2wAi ui = uN+i = 2W

u2N+i =

ß
−2wAi if Ai suspect
2W otherwise
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uN+i = u2N+i = −2wAi ui = uN+i = 2W

u2N+i =

ß
−2wAi if Ai suspect
2W otherwise

There is a Nash equilibrium in the original game with payoff p if and only
if there is a strategy for Eve in the epistemic game such that for every
outcome ρ, for every 1 ≤ i ≤ N,

MPui (ρ) ≥ pAi

MPuN+i
(ρ) ≥ −pAi

MPu2N+i
(ρ) ≥ −pAi
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Application to mean-payoff payoff functions (cont’d)
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uN+i = u2N+i = −2wAi ui = uN+i = 2W

u2N+i =

ß
−2wAi if Ai suspect
2W otherwise

There is a Nash equilibrium in the original game with a payoff ν ≤ p ≤ ν′
(ν and ν′ are fixed thresholds) if and only if there is a strategy for Eve in
the epistemic game solving the polyhedron problem for the polyhedron∧

1≤i≤N

(
xi = −xN+i = −x2N+i

)
∧

∧
1≤i≤N

(νi ≤ xi ≤ ν′i )
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Conclusion

[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)
[RT98] Renault, Tomala. Repeated proximity games (International Journal of Game Theory)

We have:

proposed a framework for games over graphs with a public signal
monitoring
Note: framework inspired by [Tom98]

proposed an abstraction called the epistemic game abstraction,
which allows to characterize Nash equilibria in the original game

used it to propose several decidability results.

We want to:

work out the precise complexities

understand whether one can extend the approach to other
communication architectures ([RT98]??)

understand whether the current approach is specific to Nash
equilibria or if it can be extended to more expressive languages (like
fragments of Strategy Logic)
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