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The standard timed automaton model [AD90,AD94]

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Example

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

3/22



Why should we go further?

Not only time should be modelled, but further (time-dependent, or
not) information might be of interest.

Examples:

Interaction
Uncertainty
Resources
. . .
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Task graph scheduling problems

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Global system: (P1 ∥ P2) ∥s (T1 ∥ T2 ∥ ⋅ ⋅ ⋅ ∥ T6)
A schedule: a path in the global system which reaches t1 ∧ ⋅ ⋅ ⋅ ∧ t6
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Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

to model an interaction with an environment

Example of the gate in the train/gate example

?

7/22



Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with an environment

Example of the gate in the train/gate example

?

7/22



Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with an environment

Example of the gate in the train/gate example

?

7/22



Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with an environment

Example of the gate in the train/gate example

?

7/22



Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with an environment

Example of the gate in the train/gate example

?

7/22



Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x≥1

done

x≥1

done

to model an interaction with an environment

Example of the gate in the train/gate example

?

7/22



An example of a timed game

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,

How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)
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Why add stochastic features? And how?

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

to model probabilistic behaviours

Example of losses when sending messages

x≤2

lost

delivered

send

x :=0

; the probabilistic timed automata model

used e.g. in PRISM and UPPAAL-PRO

[KNSS02]

to model uncertainty on delays

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)x :=0

add

x :=0

mult

1 21.5 1 32

; the stochastic timed automata model [BBB+08,BF09]
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[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

to model probabilistic behaviours

Example of losses when sending messages

x≤2

lost

delivered

send

x :=0

0.1

0.9

; the probabilistic timed automata model

used e.g. in PRISM and UPPAAL-PRO

[KNSS02]

to model uncertainty on delays

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)x :=0

add

x :=0

mult

x≥1

done

x≥1

done

1 21.5 1 32

; the stochastic timed automata model [BBB+08,BF09]

9/22



Stochastic timed game: an example

a

b

c

d

e

f

g
x≤2 x≤2 x=2

x≤1

x=2

x≤3

x≤2x :=0

Timed graph with vertices partitioned among three players:

classical players
playing “turn-based”

the Nature
stochastic player

There are prescribed probability distributions from vertices.
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How is this game played?

a

b

c

d

e

f

g
x≤2 x≤2 x=2

x≤1

x=2

x≤3

x≤2x :=0

Players and play according to standard strategies

Player plays according to the prescribed probability distributions:
choose a delay according to some distribution
choose an action according to some discrete distribution
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Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

From the game and the strategies we obtain a Markov chain:

(a,0)

(c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0)

(c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0)

(c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0)

(c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g

x≤2

x≤2 x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)

(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2 x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2 x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)

(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

Strategy for : go to c when x = 1

Strategy for : go to g when x = 2

From the game and the strategies we obtain a Markov chain:

(a,0) (c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)

12/22



How can we attach probabilities to delays?

The example of continuous-time Markov chains

exponential distribution

density function t 7→
n
� ⋅ exp(−�t) if t ≥ 0
0 otherwise

; this is ok if delays are in [0,+∞)

But what if bounded intervals?

truncated normal distribution

I

uniform distribution
density function t 7→

§
1
∣I ∣ if t ≥ 0

0 otherwise
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The semantics for 1
2-player games in a nutshell

We measure symbolic cylinders of the form �(s
e1−→ . . .

en−→ )

Idea:

From state s:

randomly choose a delay

then randomly select an edge

then continue

ss

probability distribution
over delays

s ′ s ′′ . . .

I (s, e1) = {� ∣ s �,e1−−→} and �s distribution over I (s) =
S
e

I (s, e)

ps+t distribution over transitions enabled in s + t
(given by weights on transitions)

s
t−→ s + t

e1−→ st
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Some remarks
1
2 -player games define purely stochastic processes.

Continuous-time Markov chains = timed automata with a single
“useless” clock which is reset on all transitions. The distributions on
delays are exponential distributions with a rate per location.

The semantics can be extended in a natural way to several players:

ℙ
�
�(s

e1−→ ⋅ ⋅ ⋅ en−→ )
�
=

Z
t∈I (s,e1)

ps+t(e1)ℙ
�
�(st

e2−→ ⋅ ⋅ ⋅ en−→ )
�
d�s(t)

mass distribution given by the strategy

if s is a player vertex

Probabilistic timed automata = a subclass of the 1 1
2 -player games

2≤x≤5
(z=0)z:=0

2≤x≤5
z=

0

z=0
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The synthesis problem

[BHHK10] Baier, Hermanns, Haverkort, Katoen. Performance Evaluation and Model Checking Join Forces (CACM).

Problem statement

Given a game G , a (linear-time) property ', a rational threshold ⊳⊲ r ,

is there a strategy f⋄ for player s.t.

for all strategies f2 of player , ℙ
�
G f⋄,f2 ∣= '

�
⊳⊲ r?

Number of players

2 1
2 -player games:

1 1
2 -player games: (“Markov decision process”)

1
2 -player games: (“Markov chain”)

Possibility to ask ‘performance evaluation’ questions [BHHK10]
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Why model time-dependent resources?

System resources might be relevant and even crucial information

energy consumption,
memory usage,
bandwidth,
...

price to pay,
benefits,
temperature,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)
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Why model time-dependent resources?

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed
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An alternative: priced/weighted timed automata [ALP01,BFH+01]

; hybrid variables are observer variables
(they do not constrain a priori the system)
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A simple example of weighted timed automata (WTA)

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

[ALP01,BFH+01]

Example (with a linear observer)

ℓ0

−3

ℓ1

+6

ℓ2

−6

x=1x :=0

0
0

1

2

3

4

1

Run (ℓ0, 0)
delay( 1

6 )−−−−−→ (ℓ0,
1
6 ) → (ℓ1,

1
6 )

delay( 1
2 )−−−−−→ (ℓ1,

2
3 ) → (ℓ2,

2
3 ) . . .
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The taskgraph scheduling example

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

P1:

+10+90

(x≤2)

+90

(x≤3)
x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:

+20+30

(y≤5)

+30

(y≤7)
x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2
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Beyond linear observers...

rate: 0%

Bank A:
rate: 2% Bank B:

rate: 5%

Bank C:
rate: 6%

−50

−50

−100 −20

−150

−100

−100
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Beyond linear observers...

Example

We also consider PTA with an exponential observer:

ℓ0

−3

ℓ1

+6

ℓ2

−6
−1

x=1x :=0

0
0

1

2

3

4

1

Rate −3 in location ℓ0 means

∂ cost

∂ time
= −3× cost

cost = cost0 ⋅ e−3×t
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Relevant questions

Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

; an abundant literature since 2001 (for the linear observers only)

Scheduling under energy constraints (resource management): are
there scheduling policies/strategies when energy is constrained?

[BFLMS08]

; An example: an oil pump control system [CJL+09]
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Conclusion

Timed automata have been proven to be a convenient model for
representing real-time systems

However it is not expressive enough to faithfully represent some
important features of systems

interaction with the environment (antagonistic, stochastic,
cooperative...)
modelling of resources or energy
probabilities

A number of extensions have been proposed to adequately represent
such features (we can mix them)

The algorithmics of such systems is difficult (in general)
But a huge effort is put to develop methods for (approximate)
verification
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