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The standard timed automaton model [AD90,AD94]

Example

repairing

¥ repair
2<y Ax<56

problem, x:=0

y:=0

failsafe

23 problenm 15.6 delayed
safe —> safe —— alarm —— alarm failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
v

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Why should we go further?

@ Not only time should be modelled, but further (time-dependent, or
not) information might be of interest.
o Examples:

Interaction
Uncertainty

o
)
o Resources
o
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Task graph scheduling problems

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:
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Modelling the task graph scheduling problem

@ Processors

Py: x=2 x=3
donep N donep
add; idle multy

(x<2) x:=0 x:=0 (x<3)
Py: y=5 y=7

donep idl doney
addp ale multy

(y<5)  x—o =0 (=7)
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Modelling the task graph scheduling problem

° Processors @ Tasks
Tal __tint ty:=1
doney doney ‘ :1 2 ( ) ¢ < ,
add; multy add; S done;
(x<2) (x<3) Te:
5 —
OO0
Py: y=5 y=7 add; S done;

donep idl doney
addp ale multy

(y<5)  x—o =0 (=7)
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Modelling the task graph scheduling problem

@ Processors @ Tasks
. =2 x=3 -

P -l Ta: _tine ty:=1
done; done; ‘ >1 2 0O ¢ O
add; multy add; S done;

x<2 o — x<3 -
(x<2) =0 x=0 (x=3) Ts: ts ~ tszzi:

Py: y=5 y=T7 : add; S done;
doney donep
addy multy

(y<5) =0 =0 W=7)
Global system: (Py || P2) |ls (T2 || T2 |l <=+ || Te)

A schedule: a path in the global system which reaches t; A--- A tg
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Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example

x=2 x=3
done done
(x=2) x:=0 x:=0

(x<3)
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Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example
x>

>1 x>1
" done "‘." “done "+
GL);\a_dd/\mtﬂt/@
x:=0 x:=0 )

(x<2) (x<3
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Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example

X

>1 x>1
““done % 4" “done "~
Gl\add/\mult/@
=0 x:=0

(x<2) (x<3)

@ to model an interaction with an environment

Example of the gate in the train/gate example

OpenGate
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An example of a timed game

Rule of the game

1
x<1,up,x:=01

8/22



An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

x<1,uy,x:=0

8/22



An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

v

x<1,up,x:=0

8/22



An example of a timed game

Rule of the game
(x<2) o Aim: avoid @ and reach ©
@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

v

A (memoryless) winning strategy

e from (4o,0), play (0.5, ¢c1)

8/22



An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

(x<2)
, () @ @ How do we play? According to a
/’ strategy:
I' x<1l,c
! f : history — (delay, cont. transition)

x<1,up,x:=0

A (memoryless) winning strategy

\ e from (4,0), play (0.5, ¢c1)
~ can be preempted by >

8/22



An example of a timed game

Rule of the game
(x<2) o Aim: avoid @ and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

A (memoryless) winning strategy
() e from (¢o,0), play (0.5, c1)
~ can be preempted by >
o o from (£2,%), play (1 — x, )

8/22



An example of a timed game

Rule of the game
(x<2) o Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
x<1,c5 e from (¢o,0), play (0.5, c1)
~ can be preempted by >
o from (£2,%), play (1 — x, )
e from (¢3,1), play (0, c3)

8/22



An example of a timed game

Rule of the game

(XQ @ o Aim: avoid @ and reach ©
@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x>2,¢

A (memoryless) winning strategy
e from (£, 0), play (0.5, ¢c1)
~ can be preempted by >
o from (£2,%), play (1 — x, )
e from (¢3,1), play (0, c3)
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An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x<1,up,x:=01

XS].,C;; .
Problems to be considered
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An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

1
1
x<1,up,x:=01
1

1

\

XS].,C;;

Problems to be considered
@ Does there exist a winning strategy?

@ If yes, compute one (as simple as possible).
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Why add stochastic features? And how?

@ to model probabilistic behaviours
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Why add stochastic features? And how?

@ to model probabilistic behaviours

Example of losses when sending messages

O lost

send
x<2
x:=0

O delivered
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x=0 Tog [KNSS02]
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[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
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@ to model probabilistic behaviours

Example of losses when sending messages

d o) O lost ~> the probabilistic timed automata model
Qi»oéz used e.g. in PRISM and UPPAAL-PRO
x=0 Tog [KNSS02]

O delivered

@ to model uncertainty on delays

Example of a processor in the taskgraph example

x>1 x>1
~ “done “ done™ ™
n n
O 9_mix O
(x<2) x:=0 x:=0 (x<3)

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
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Why add stochastic features? And how?

@ to model probabilistic behaviours

Example of losses when sending messages

d o) O lost ~> the probabilistic timed automata model
Qi»oéz used e.g. in PRISM and UPPAAL-PRO
x=0 Tog [KNSS02]

O delivered

@ to model uncertainty on delays

Example of a processor in the taskgraph example

done done
1

(x<3)

~ the stochastic timed automata model [BBB-+08,BF09]
v

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GraBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

9/22



Stochastic timed game: an example

@ Timed graph with vertices partitioned among three players:

& O O

- D

classical players the Nature
playing “turn-based” stochastic player
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Stochastic timed game: an example

@ Timed graph with vertices partitioned among three players:

& O O

. —_—
classical players the Nature
playing “turn-based” stochastic player

@ There are prescribed probability distributions from O vertices.
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How is this game played?

o Players O and [ play according to standard strategies

o Player @) plays according to the prescribed probability distributions:
o choose a delay according to some distribution
e choose an action according to some discrete distribution
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Play, an example
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@ Strategy for 0. go to g when x =2
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Play, an example

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

(b,1)
<
(e;1)
2
(e,14+¢)
(3.0) — (1) §
probability distribution
over delays (e,2)

12/22



Play, an example

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(b,1)
C
(e.1)
2
(e,14+¢)
(2,0) —> (c,1)
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Play, an example

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(b,1)
(¢
(e1)
P
(e,14¢) — (g,2)
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Play, an example

1

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(e, 1+€ (g:2)
(a,0)
probability distribution
over delays (97)2)
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Play, an example

1

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(e, 1+€ (g,2)
(a,0)
probability distribution (f.3)
over delays (97)2)
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How can we attach probabilities to delays?

@ The example of continuous-time Markov chains

exponential distribution

{)\ ~exp(—At) ift>0
0

ity fi i .
density function t — otherwise
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How can we attach probabilities to delays?

@ The example of continuous-time Markov chains

exponential distribution

{)\ ~exp(—At) ift>0
0

ity f i .
density function t — otherwise

~> this is ok if delays are in [0, +00)

@ But what if bounded intervals?

truncated normal distribution

density function t — 4 Il

uniform distribution 1 ey >0
0 otherwise

13/22



The semantics for t-player games in a nutshell
s-player g

@ We measure symbolic cylinders of the form 7(s 2 ... =)
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The semantics for t-player games in a nutshell
s-player g

@ We measure symbolic cylinders of the form 7(s 2 ... =)
o Idea:

From state s:

s/ =g
o randomly choose a delay
S
o then randomly select an edge
o then continue probability distribution
over delays
°
P(r(s 2o 2)) = P(m(se 2+ )

o I(s,e1) = {7 | s =%} and ps distribution over I(s) = |JI(s, €)

o psyt distribution over transitions enabled in s + t
(given by weights on transitions)

t e
e s—>s+t—s
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Some remarks

° %—player games define purely stochastic processes.
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Some remarks

° %—player games define purely stochastic processes.

@ Continuous-time Markov chains = timed automata with a single
“useless” clock which is reset on all transitions. The distributions on
delays are exponential distributions with a rate per location.

@ The semantics can be extended in a natural way to several players:

P(ﬂ'(s R )) = / ps+t(e1)IP(rr(st 2 )) dps(t)

tel(s,er) N

mass distribution gi:ven by the strategy
if s is a player vertex

@ Probabilistic timed automata = a subclass of the 1%—p|ayer games

O

2<x<5

O
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The synthesis problem

Problem statement
Given a game G, a (linear-time) property ¢, a rational threshold < r,

is there a strategy £, for player s.t.
for all strategies f; of player O, IP’(G,cm,cD = ,:) D r?
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The synthesis problem

Problem statement
Given a game G, a (linear-time) property ¢, a rational threshold < r,

is there a strategy £, for player s.t.
for all strategies f; of player O, IP’(G,cm,cD = ,:) D r?

Number of players
& O O
° 1%-p|ayer games: O O (“Markov decision process”)
O

e 21-player games:

1 :
@ 5-player games:

(“Markov chain”)
v

@ Possibility to ask ‘performance evaluation’ questions [BHHK10] J

[BHHK10] Baier, Hermanns, Haverkort, Katoen. Performance Evaluation and Model Checking Join Forces (CACM).
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Why model time-dependent resources?

@ System resources might be relevant and even crucial information

@ energy consumption, e price to pay,
© memory usage, o benefits,

e bandwidth, o temperature,
]

~ timed automata are not powerful enough!

@ A possible solution: use hybrid automata

Theorem [HKPV95]
The reachability problem is undecidable in hybrid automata. J

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
17/22



Why model time-dependent resources?

@ System resources might be relevant and even crucial information

@ energy consumption, e price to pay,
e memory usage, o benefits,

o bandwidth, o temperature,
]

~ timed automata are not powerful enough!

@ A possible solution: use hybrid automata

Theorem [HKPV95]
The reachability problem is undecidable in hybrid automata. J

@ An alternative: priced/weighted timed automata [ALPO1,BFH+01]
~ hybrid variables are observer variables
(they do not constrain a priori the system)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed
automata (HSCC'01).
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A simple example of weighted timed automata (WTA)
[ALPO1,BFH+-01]

Example (with a linear observer)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata {HSCC 01).
[BFH+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, \ drager. ost reachability in priced timed automata (HSCC'01).

18/22




A simple example of weighted timed automata (WTA)
[ALPO1,BFH+-01]

Example (with a linear observer)
-3 +6 —6
% 0, A
x:=0 x=1
delay( delay(3
Run (f6,0) <5 (1o, 1) = (11, 1) = (11, 3) = (82, 3)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata {HSCC 01).
[BFH--01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, \ drager. ost reachability in priced timed automata (HSCC'01).
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The taskgraph scheduling example

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

P, (slow):

time

py (fast):
time
+ | 2 picoseconds
X | 3 picoseconds

A | 5 picoseconds
X | 7 picoseconds

energy

ide | 10 Watt

energy

in use | 90 Watts

idle | 20 Watts

in use | 30 Watts

AT

‘f‘t

Yo
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The taskgraph scheduling example

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

‘L
AT
‘f‘\
Yo

py (fast): P, (slow): - 7.
time time c
+ | 2 picoseconds aF | 5 picoseconds \
X | 3 picoseconds X | 7 picoseconds o A
ks D
energy energy N
ide [ 10 Watt ide [ 20 Watts @_»@
in use | 90 Watts in use | 30 Watts Ts Te

Py: x=2 x=3
donep done;
2
(x=<2) =0 =0 (x=3)
Py: y=5 y=7
Jone, doney
add mult
=9 =0 =0 =7
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Beyond linear observers...

—100

—150

5

<ot
Bank A: - ~ Bank C:
rate: 2% Bank B: rate: 6%
rate: 5%

—100
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Beyond linear observers...

Example

We also consider PTA with an exponential observer:

-3 +6 —6
~ -1
ly (1) Uy

x:=0 x=1
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Beyond linear observers...

Example
We also consider PTA with an exponential observer:

-3 +6 —6
N\ L
Ly (41) Uy
x:=0 x=1

Rate —3 in location /5 means

0 cost
0 time

= —3 X cost

cost = costg - e Xt
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Relevant questions

@ Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

~> an abundant literature since 2001 (for the linear observers only)
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Relevant questions

@ Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

~> an abundant literature since 2001 (for the linear observers only)
@ Scheduling under energy constraints (resource management): are

there scheduling policies/strategies when energy is constrained?
[BFLMSO08]

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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Relevant questions

@ Various optimization questions (optimal reachability, optimal
mean-cost or discounted infinite schedules, etc)

~> an abundant literature since 2001 (for the linear observers only)

@ Scheduling under energy constraints (resource management): are
there scheduling policies/strategies when energy is constrained?

[BFLMSO08]
~ An example: an oil pump control system [CJL+09]

+2.2 litres/second.

= Vimax

Reservoir

A \]

Machine/Consumer

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC'09).
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Conclusion

@ Timed automata have been proven to be a convenient model for
representing real-time systems

@ However it is not expressive enough to faithfully represent some
important features of systems
e interaction with the environment (antagonistic, stochastic,
cooperative...)
o modelling of resources or energy
o probabilities

@ A number of extensions have been proposed to adequately represent
such features (we can mix them)
o The algorithmics of such systems is difficult (in general)
e But a huge effort is put to develop methods for (approximate)
verification
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